Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы координат для случая взаимодействия

Рис. 6.2.1. Система координат для случая взаимодействия двух частиц. Рис. 6.2.1. <a href="/info/9040">Система координат</a> для случая взаимодействия двух частиц.

Существует огромное разнообразие уравнений теории оболочек, отличие которых связано с исходными физическими гипотезами, на которых построена частная теория, областью ее применимости, геометрией оболочки и используемой системой координат. Для выявления и анализа некоторых эффектов гидроупругого взаимодействия достаточно ограничиться случаем малых перемещений оболочки, в других случаях необходимо рассматривать весьма большие формоизменения среды с учетом геометрически и физически нелинейных свойств оболочки. Из всех существующих вариантов здесь приведем уравнения нелинейной теории пологих оболочек, а также уравнения, описывающие сильные формоизменения осесимметричных оболочек. Такой выбор определяется характером рассматриваемых далее задач. Исчерпывающее изложение приводимых ниже материалов можно найти в работах [39, 40, 67, 83, 161].  [c.25]

В настоящее время энергия, до которой могут быть ускорены протоны, достигла 30 ООО Мэе. В СССР строится ускоритель на 70 ООО Мэе. Очень большие возможности для исследования взаимодействий при сверхвысоких энергиях обещает разрабатываемый в настоящее время метод встречных пучков, идея которого заключается в использовании вместо неподвижной мишени пучка частиц, движущихся навстречу бомбардирующим частицам. Очевидно, что в этом случае относительная доля кинетической энергии, идущая на взаимодействие, повышается (по сравнению с долей кинетической энергии, идущей на выполнение закона сохранения импульса). Если обе сталкивающиеся частицы имеют равные массы и скорости, то их суммарный импульс равен нулю и вся кинетическая энергия частиц идет на взаимодействие. Записав для этого случая выражение (79.6) в с. ц. и. обеих частиц, а затем в системе координат, связанной с одной из частиц, и приравняв их между собой, можно найти связь между кинетической энергией во встречных пучках (Т ) и эквивалентной (по вызываемому эффекту) кинетической энергией бомбардирующей частицы (Т) при обычном способе ее взаимодействия с неподвижной частицей-мишенью  [c.570]

Отметим, что в появляется представление 4 (или Р ). Поскольку начало координат выбрано в узле, занятом дефектом, любое движение, в котором участвует дефект, относится к представлению р2, так как по этому представлению преобразуются декартовы компоненты смещения дефекта (Ах, Аг/, Аг), т. е. некоторый полярный вектор. Таким образом, локальные колебания, в которых участвует дефект, должны всегда иметь симметрию р2 (в обозначениях группы примесного узла). В следующем приближении можно учесть взаимодействие примеси с четырьмя ближайшими и шестью следующими за ближайшими атомами. Теперь кластер состоит из одиннадцати атомов, ил.ч тридцати трех степеней свободы. Система характеров для этого случая обозначена в табл. 56 через п- представ-  [c.231]


Для того чтобы изучить взаимодействие материала поверхности с реагирующим пограничным слоем, нужно описать поведение плавящегося слоя. На рис. 3.2 и 3.3 изображена ожидаемая картина течения газового и жидкого слоя, а также приведена система координат. Мы рассмотрим случай турбулентного пограничного слоя около пластины или кругового цилиндра. Трехмерное  [c.71]

Взаимодействие вихревой пары с одиночным вихрем. Для случая одинаковой по модулю интенсивности при анализе взаимодействия вихревой пары / 3 (к,= -Кз=к) с одиночным вихрем 2 (ка к) начальное расположение и система координат показаны на рис. 16 а. Такое расположение вихрей всегда можно осуществить выбором направления осей координат. Поскольку здесь начало координат размещено в центре завихренности, то вихри в любой момент времени образуют параллелограмм. Причем вихрь 3 и начало координат расположены в противоположных вершинах. При таком выборе системы координат инварианты Р и Q тождественно равны нулю. Введем нормировку всех линейных параметров к величине /, определяемой формулой  [c.96]

О виде функции Лагранжа для незамкнутой системы в общем случае трудно сделать какие-либо утверждения. Однако тут имеется один важный частный случай, когда интересующая нас незамкнутая система (обозначим ее I) взаимодействует только с другой системой (И), движение которой можно считать заданным (т. е. не зависящим от движения системы I), — говорят о движении системы I во внешнем поле. Тогда можно выписать функцию Лагранжа полной системы I + И (она уже будет замкнутой), отмечая в ней координаты первой и второй подсистем соответствующими индексами, в виде  [c.26]

На рис. 9, а представлены наиболее характерные траектории двух взаимодействующих частиц в системе координат, связанной с экраном. Одинаковыми числами обозначены положения частиц на соответствующих кадрах. На рис. 9, б показана траектория движения одной из взаимодействующих частиц в системе координат, связанной с другой частицей для этого же случая взаимодействия. Как видно из представленных кино-грамм, сначала частицы находятся вне действия гидродинамических сил, и лишь с положения 3 на них начинают действовать сближающие силы.  [c.660]

Предположим, что путем кратковременного включения тормозной двигательной установки (ТДУ) КА переведен с орбиты ИСЗ на траекторию, проходящую через плотные слои атмосферы (рис. 14.1), — траекторию спуска. Далее рассмотрим пассивный случай движения, т. е. будем считать, что из всех возможных сил на него действуют сила притяжения Земли mg и сила взаимодействия с окружающей средой — аэродинамическая сила. Пренебрегая центробежной и кориолисовой силами, запишем для этого случая уравнения движения КА в скоростной системе координат  [c.369]

Напомним, что, согласно теории поляризуемости (обобщенной теории Плачека), изложенной в 3, мы можем определить оператор поляризуемости системы, взаимодействующей с электромагнитным полем. В частности, весь вывод выражения (3.45) можно проделать так же, как для чистого кристалла, за исключением тех результатов, которые определяются трансляционной симметрией и приводят к зависимости оператора поляризуемости P(R) от волнового вектора. Однако использованное при выводе (3.45) адиабатическое приближение и связанные с ним предположения разумно перенести на случай возмущенной системы. Это означает, что основная структура теории, изложенной в 3, сохраняется и для кристалла с дефектами, так что комбинационное рассеяние света на фононах мы можем описывать в рамках теории, в которой оператор P R) разлагается в ряд Тейлора по нормальным координатам и подставляется в (3.45), причем последовательные члены ряда описывают 1-, 2-. .. фононные процессы.  [c.245]

Эти три условия выполняются далеко не всегда, и механика изучает методы, с помощью которых законы, полученные для систем, удовлетворяющих этим условиям, могут быть использованы и в тех случаях, когда какое-либо из этих условий не выполняется. Как мы уже видели выше, предположение о том, что время не зависит от пространства и материи и что пространство является евклидовым, однородным и изотропным, сделало невозможным рассматривать причины такого в 1Жиейшего явления материального мира, как взаимодействие материи, и заставило в рамках этой простой модели искать для описания взаимодействия обходные пути —ввести понятие о дальнодействии. Тот же прием используется в механике, если условия Г —3° не выполнены помимо сил, возникающих при выполнении условий 1° —3°, в этих случаях вводятся дополнительные силы, которые подбираются так, чтобы скомпенсировать нарушение условий 1° —3° и распространить законы механики на случай, когда не все эти условия выполняются. Так, например, поступают в механике для того, чтобы распространить ее законы на случай, когда изучается движение относительно неинерциальных систем отсчета. Аналогичным образом изучается движение системы, материальный состав которой меняется во время движения. Этот же прием используется иногда и для исследования движений в тех случаях, когда в пространстве существуют ограничения, наложенные на координаты  [c.65]


УГОЛ естественною откоса — угол трения для случая сьшучей среды зрения — угол, под которым в центре глаза сходятся лучи от крайних точек предмета или его изображения краевой — угол между поверхностью тела и касательной плоскостью к искривленной поверхности жидкости в точке ее контакта с телом Маха — угол между образующей конуса Маха и его осью падения (отражения или преломления)— угол между направлением распространения падающей (отраженной или преломленной) волны и перпендикуляром к поверхности раздела двух сред, на (от) которую (ой) падает (отражается) или преломляется волна предельный полного внутреннего отражения — угол падения, при котором угол преломления становится равным 90 прецессии — угол Эйлера между осью А неподвижной системы координат и осью нутации, являющейся линией пересечения плоскостей xOj и x Of (неподвижной и подвижной) систем координат сдвига—мера деформации скольжения — угол между нада ющнм рентгеновским лучом и сетчатой плоскостью кристалла телесный — часть пространства, ограниченная замкнутой кони ческой поверхностью, а мерой его служит отношение нлоща ди, вырезаемой конической поверхностью на сфере произволь ного радиуса с центром в вершине конической поверхности к квадрату радиуса этой сферы трения—угол, ташенс которого равен коэффициенту трения скольжения) УДАР [—совокупность явлений, возникающих при столкновении движущихся твердых тел с резким изменением их скоростей движения, а также при некоторых видах взаимодействия твердого тела с жидкостью или газом абсолютно центральный <неупругий прямой возникает, если после удара тела движутся как одно целое, т. е. с одной и той же скоростью упругий косой и прямой возникают, если после удара тела движутся с неизменной суммарной кинетической энергией) ]  [c.288]

Для случая, когда в той же ситуации движется бесконечное множество частиц, доказано, что соответствующий поток является К-системой. Природа стохастичности этой системы иная, чем у идеального газа. В самом деле, в отличие от модели Лоренца, в движении отд. частицы идеального газа нет никакой стохастичности и, т. к. частицы друг с другом не взаимодействуют, стохастичность всей системы выглядит парадоксально, по крайней мере, она не согласуется с общепринятым представлением, что в основе этого свойства должна лежать нетривиальность взаимодействия. В случае же идеального газа причиной стохастичности служат бесконечность числа частиц и их неразличимость—при отказе от любого из этих условий стохастичность исчезает (впрочем, неразличимость частиц, вследствие к-рой координата и скорость отд. частицы не являются ф-циями на фазовом пространстве, можно считать суррогатом взаимодействия).  [c.635]

Рассматриваются плоские контактные задачи теории упругости о взаимодействии штампа, имеющего основание в форме параболоида или плоское основание, со слоем при наличии сил кулоновского трения в области контакта. Предполагается, что нижняя грань слоя либо закреплена, либо на ней отсутствуют нормальные перемещения и касательные напряжения, а на штамп действуют нормальные и касательные усилия. При этом система штамп-слой находится в условиях предельного равновесия и штамп в процессе деформации слоя не поворачивается. Случай квазистатики, когда штамп перемещается по поверхности слоя равномерно, может быть рассмотрен аналогично в подвижной системе координат. Задачи исследуются методом больших Л (см. 1.3). ИУ, к которым сводятся поставленные в дополнении задачи, обладают иными свойствами по сравнению с ИУ 1.3. Здесь для них также получены простые рекуррентные соотношения для построения любого количества членов разложения решения ИУ в ряд по отрицательным степеням безразмерного параметра Л, связанного с толщиной слоя.  [c.287]

Поскольку движение точечных вихрей на сфере является обобщением случая плоского вихревого течения, приведем кратко известные результаты для задачи о взаимодействии вихрей на плоскости. Простейший пример движения двух вихрей рассмотрен Гельмгольцем [23]. Г. Кирхгоф [27] установил гамильтоновость уравнений движения N точечных вихрей, а также нашел четыре первых интеграла этой системы, которые связаны с независимостью гамильтониана от времени и его инвариантностью относительно параллельного переноса и поворота системы координат. Интегрируемость задачи трех вихрей отметил А. Пуанкаре [32] (существуют три первых интеграла, находящихся в инволюции). В работе [18] система точечных вихрей рассматривалась в качестве модели двумерной турбулентности. Там же получено решение задачи о взаимодействии трех одинаковых вихрей. Авторы работы [19] на основе численных расчетов устанавливают стохастические свойства системы четырех вихрей и тем самым показывают, что двумерное течение идеальной жидкости в общем случае не является вполне интегрируемой системой. Как уже было отмечено, аналитическое доказательство неинтегрируемости системы четырех точечных вихрей на плоскости дано в работах Зиглина [9, 33]. Отметим также работы [20] и [22]. В [20] проинтегрирована в эллиптических функциях система трех одинаковых вихрей и показана хаотизация движения четырех вихрей равной интенсивности. В [22] рассматриваются интегрируемые случаи движения четырех вихрей.  [c.376]

Движение четырех колец. При увеличении числа колец, участвующих во взаимодействии и имеющих начальные координаты (4.40), совместное квазнупорядоченное движение системы наблюдается в более ограниченных интервалах р и /. Так, для случая 4 даже при р 0,2 начинается хаотическое взаимодействие с < 5,3. Оно заключается в том, что одно кольцо начинает взаимодействовать с системой из остальных трех колец. Причем взаимодействие в системе трех колец не имеет упорядоченной картины. Упорядоченное движение наблюдалось лишь при Рд 0,1.  [c.219]


Чтобы глубже понять механизмы, участвующие в возбуждении посредством передачи энергии, рассмотрим несколько вопросов, связанных с квантовомеханическим вычислением адв. В процессе переноса энергии, который в действительности происходит следующим образом когда частица А приближается к частице В, между ними происходит взаимодействие, которое может быть описано потенциальной энергией взаимодействия. Эта энергия может быть либо энергией притяжения (см. рис. 2.23), либо энергией отталкивания (см., например, рис. 6.25) в зависимости от того, стремятся ли две частицы сблизиться или оттолкнуться друг от друга. Рассмотрим эту двухчастичную систему как целое. Потенциал взаимодействия обозначим как t/(г,-, R ), где г,- и R координаты соответственно электронов и ядер двухчастичной системы. Заметим, что, когда двумя сталкивающимися частицами являются атомы, единственной интересующей нас ядерной координатой является межъядерное расстояние R. Однако если частицы — это молекулы, то потенциал взаимодействия будет также зависеть от взаимной ориентации двух молекул. Чтобы упростить обсуждение данного вопроса, ограничимся рассмотрением случая сталкивающихся атомов. Во время столкновения межъядерное расстояние R будет меняться во времени [т, е. = / (/)], что приведет к зависящему от времени потенциалу f7(r,-, R t)) = = U Ti, t). Для атомов, которые отталкиваются друг от друга, функция U t), по-видимому, будет иметь общий вид, показанный на рис. 3,26, а порядок величины времени столкновения Лтс можно найти из выражения (2.61). Поскольку мы рассматриваем двухатомную систему как целое, будем считать, что волновая функция i 3i начального состояния (т. е, до столкновения) соответствует ситуации, когда атом А находится в возбужденном состоянии, а атом В — в основном состоянии. Иными словами, 1 з, = где г13д. и iljg — волновые функции двух  [c.154]

Помимо описания регистрируемой информации с помощью перечисления координат провзаимодействовавших центров, возможно также описание этой информации путем перечисления чисел п,-взаимодействий в каждой г-й ячейке А,-, на которые заранее разбивается весь экран. Подобное описание соответствует, например, случаю, когда используются матричные приемники, или же полученная информация считывается и затем оцифровывается для ввода в ЭВМ. Естественно, что во всех подобных случаях дискрет А должен быть порядка разрешающей способности формирующей оптической системы, ибо в этом случае, с одной стороны, не будет излишней загрузки ЭВМ, а с другой — потери зарегистрированной информации будут несущественными. При таком выборе размеров элементов А, все значения tii оказываются практически независимыми и поэтому их совместное распределение равно произведению соответствующих одномерных распределений.  [c.60]

П. В. Воронец опубликовал новый метод преобразования дифференциальных уравнений динамики, который позволил значительно расширить известные ранее результаты в области задачи п тел. Развивая идею Э- Рауса об игнорировании координат , он показал, что в случае, когда уравнения движения системы допускают линейные относительно скоростей интегралы, из этих уравнений можно исключить циклические координаты и соответствующие им скорости и ускорения. Этот метод дал возможность П. В. Во-110 ронцу сравнительно просто получить известные результаты Ж. Лагранжа, К. Якоби, Э. Бура, А. Бриоши и Р. Радо при произвольном законе притяжения. П. В. Воронец подробно исследовал задачу четырех тел и указал случай интегрируемости в квадратурах для закона притяжения обратно пропорционально кубам расстояний. В случае сил взаимодействия, пропорциональных любой степени расстояний, он установил возможность двух типов движений. Исследуя дифференциальные уравнения задачи трех тел Ув форме Лагранжа, Воронец изучил случай аннулирования кинетического момента, а также случай пространственного движения, при котором образуемый телами треугольник остается равнобедренным и массы точек, расположенных в его основании, равны.  [c.110]

Уравнения Эйнштейна связывают тензор энергии (массы), удовлетворяющий уравнению дх = О, с метрическим тензором искривленного пространства-времени. Отказ от объемного искривления пространства, т. е. переход к плоскому пространству-времени Минковского приводит к тому, что всеобщая история распределения вещества в соответствии с ОТО не дает осмысленных результатов. К примеру, положив в космологических уравнениях (П2.40) величины = О, = О, получим -аеТ " = и далее р = -Л/ае. При Л = О имеем для плотности массы р = 0. Понять физический смысл этого эффекта или дать физическую интерпретацию постоянной тяготения Эйнштейна при этом довольно затруднительно. Из этого рассмотрения вытекает, в частности, вывод о том, что уравнения Эйнштейна не дружат с метрикой Минковского. Напротив, релятивистские теории гравитации (РТГ), базирующиеся на гипотезе о развитии гравитационного поля в пространстве-времени Минковского (см., например, работы [202-205]) и на отказе от метрики Римана, пытаются приобщить поле тяготения к плоским физическим полям в смысле Фарадея-Максвелла. Различные вариации РТГ предстают, таким образом, как своеобразные обобщения классической теории гравитации Ньютона (постньютоновские обобщения) применительно к релятивистскому случаю, т. е. формируют уравнения и их решения в галилеевых координатах в инерциальной системе отсчета. Отсюда калибровка, спиновые и другие эффекты плоского гравитационного поля в РТГ при попытках создания теории единого всеобъемлющего полевого взаимодействия.  [c.455]

Очевидно, что колебания решетки должны влиять на поведение электронов в твердом теле. Например, в металлах продольные колебания ионов вызывают накопление зарядов. Соответствующим. образом экранированные, эти заряды создают потенциал, зависимость которого от координат имеет такой же вид, как зависимость от координат амплитуды колебаний решетки. Этот потенциал, конечно, входит в полный гамильтониан электронов и определяет взаимодействие между колебаниями решетки и электронами. Задачу о взаимодействии электронов с фононами в принципе можно было бы решить точно и тем самым найти собственные состояния системы, состоящей из электронов и фононов. Эта задача была нами частично решена, когда мы рассматривали электронное экранирование при исследовании колебательных мод. При этом некоторая часть взаимодействия электронов с фононами была учтена точно, и мы получили в результате экранированное поле. При построении поляронов в ионных кристаллах мы столкнулись с другим случаем, когда некоторая часть взаимодействия между электронами и фононами включается в определение электронных состояний. В большинстве случаев использование таких состояний приводило бы к значительным неудобствам. Часто гораздо удобнее находить приближенные собственные состояния как электронов, так и решетки и считать остаточное взаимодействие возмущением, которое мы назовем электрон-фононным взаимодейстшем. Электрон-фононное взаимодействие определяется неоднозначно. Его вид зависит от того, в какой мере мы включили исходное взаимодействие в определение объектов, которые мы называем электронами и фононами. Однако для всех изучаемых систем процедура  [c.436]


Смотреть страницы где упоминается термин Системы координат для случая взаимодействия : [c.21]    [c.172]    [c.654]    [c.321]    [c.141]    [c.108]   
Гидродинамика при малых числах Рейнольдса (1976) -- [ c.0 ]



ПОИСК



Координаты системы



© 2025 Mash-xxl.info Реклама на сайте