Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модель Условие долговечности

На основании рассмотрения процесса в первом полуцикле можно заключить, что, по-видимому, если в экстремальных условиях долговечности материала одинаковы, то в связи с подобием процессов в модели и натуре повреждаемости в течение всего цикла будут тождественны. Для этого случая воспользуемся обобщенными графиками параметрической зависимости длительной прочности материалов.  [c.201]


Изложенные здесь основные закономерности межзеренного разрушения в условиях длительного статического и циклического нагружений положены в основу рассматриваемой ниже физико-механической модели. Анализ влияния скорости деформирования на критические параметры, контролирующие предельное состояние материала, может быть выполнен исходя из схемы, приведенной на рис. 3.2. Для этого значения критической деформации е/ или долговечности Nf при межзеренном накоплении повреждений, рассчитанные по предлагаемой ниже модели, должны сравниваться с аналогичными параметрами, полученными в предположении внутризеренного характера зарождения макроразрушения по одной из ранее разработанных методик (см. гл. 2).  [c.155]

Во всех случаях анализировался жесткий симметричный цикл нагружения с размахом деформаций 2%. Температура деформирования 7 = 600°С. Указанные условия отвечают имеющимся экспериментальным данным о долговечности стали 304, что позволяет провести их сопоставление с результатами расчетов. В соответствии с работами [115, 250, 294, 434] для стали 304 были приняты следующие значения входящих в модель параметров Е= 125 000 МПа 7 о = 0,5 мкм Da = = 2,04-10- 4 ммУ(Дж-с) Й = 1,21-10-29 м dg = 200 мкм. Коэффициенты в уравнении (3.42) определяли из условия наилучшего соответствия расчетных и экспериментальных данных при 1 = 6,7-10-5 с- и g = 6,7-10- с- ( = 1 1 = Ь ) Aj = = 0,804 сГ/мм2, mj = —1.  [c.181]

Как уже упоминалось, наличие пластической деформации у конца трещины приводит к увеличению затрат работы па ее продвижение. Эта работа должна быть определена экспериментально, но иногда ее можно вычислить аналитически, пользуясь некоторой моделью трещины и небольшим числом экспериментальных данных. В частности, как отмечалось выше ( 26), для плоского напряженного состояния пластическая область (работа пластической деформации в этой области отождествляется с работой разрушения) имеет удобную для расчета форму в виде узкой зоны перед краем трещины. Остальной объем тела находится в упругом состоянии. Используем энергетическое условие (4.6) для определения критических состояний равновесия. В дальнейшем это условие будет использовано для расчета докритических состояний ( 29) и долговечности при повторном нагружении ( 30).  [c.231]

Выражения (4.36) и (4.37) представляют термодинамическую (энтропийную) модель металлополимерной трибосистемы, рассматриваемой в качестве открытой термодинамической системы. Известно, что имеющиеся в арсенале конструкторов расчетные зависимости на износ н долговечность носят эмпирический характер и не учитывают действительную картину и природу изнашивания поверхностей трения. Предлагаемая же модель открывает принципиальную возможность оценить интенсивность изнашивания металлополимерной пары трения на этапе проектирования машины на основе закономерностей физико-хи-мических процессов в зоне трения и физических свойств изнашиваемого материала. Для этого необходимо записать уравнения потоков энергии и вещества для каждого слагаемого подынтегрального выражения согласно физическому закону соответствующего эффекта (теплового, электрического, диффузионного) и решить эти уравнения при соответствующих начальных и граничных условиях, а также, используя выражение (4,32), определить А. для выбранного композиционного материала, Однако задача получения аналитического выражения для соответствующих эффектов требует проведения сложных теоретических и экспериментальных исследований и составляет одну из актуальных задач трибологии на ближайшие десятилетия.  [c.121]


Поиск области оптимума и допусков на значения управляемых и контролируемых технологических факторов Т, из условия обеспечения заданной прочности и долговечности всех опасных зон детали. Поиск осуществляется с помощью построенных моделей, при этом, как будет показано ниже, можно учитывать временные процессы, например постепенный износ инструментов, и соответственно с помощью ЭВМ отыскивать наивыгоднейшие программы управления режимами обработки или осуществлять оптимальное адаптивное управление операциями.  [c.393]

При моделировании работы таких конструкций, в частности лопаток газовых турбин, ввиду сложности механических и физикохимических процессов трудно использовать рекомендации теории подобия и теории размерностей, поскольку при этом приходится сталкиваться с противоречивыми требованиями. В предыдущей главе отмечалось, что в этом случае следует стремиться к тождественности тензоров напряжений и тензоров деформаций в сходственных зонах геометрически подобных тел. Наиболее надежные результаты можно было бы получить при соблюдении тождественности граничных условий теплообмена и механического нагружения на моделях, изготовленных из реального материала тех же размеров, что и натурная деталь, например лопатка. Другими словами, наиболее надежные данные о несущей способности и долговечности таких деталей, как лопатки газовых турбин, можно получить, если испытывать реальные лопатки в условиях, воспроизводящих реальные спектры силовых и тепловых нагрузок в подвижных средах, имеющих тождественные термодинамические параметры и одинаковый химический состав. Однако это не всегда осуществимо, поскольку для такого моделирования требуются капитальные затраты.  [c.187]

В связи со сложностью формирования граничных условий и назначения указанных параметров в расчетных схемах в целом ряде случаев возникает необходимость (см. гл. 2) в переходе к следующей стадии уточнения напряженно-деформированных состояний ВВЭР. Эта стадия включает в себя упругое моделирование (плоские и объемные модели из оптически активных и низкомодульных материалов) не только рассматриваемых зон концентрации напряжений (резьбы, отверстия, патрубки, наплавки, дефекты), но и целых узлов ВВЭР (зоны главного разъема, опорные конструкции). Для дальнейших уточнений условий механической, тепловой, гидродинамической, вибрационной нагруженности используются металлические модели в масштабе от 1 5 до 1 1. При этом удается устанавливать не только номинальные и местные напряжения, но и условия разрушения, а по ним назначать и уточнять запасы прочности и долговечности [10].  [c.224]

Остановимся на формуле суммирования повреждений (3.37), которая получена на основе силовой модели длительного разрушения. Эту формулу обычно применяют для оценки долговечностей при ползучести [10, 18, 39] причем в условиях сложного напряженного состояния в числитель каждой дроби должно войти приращение величины е на й-й ступени деформирования. Принципиальных трудностей вычисление этих приращений не вызывает, так как формула (2.49) или (2.50) позволяет определять приращения компонентов вязкопластических деформаций eT ) на любой ступени нагружения, после чего для этой ступени находится модуль приращения вектора R,, определяемого согласно (2.20). Эта величина, умноженная на i/ 2/3, и составит в соответствии с выражением (2.28) приращение инварианта Одквиста el на данной ступени нагружения.  [c.92]

Снижение запасов прочности допускается [5, 8] при обосновании малоцикловой прочности и долговечности результатами испытаний натурных элементов конструкций и их моделей, спроектированных и изготовленных в соответствии с требованиями, предъявляемыми к штатным конструкциям. При этом режимы испытаний по нагрузкам и температурам должны соответствовать условиям эксплуатации. Степень снижения запасов и л устанавливается в зависимости от объема модельных и натурных испытаний (см. гл. 11) однако их величины (определенные по моменту возникновения трещин) даже при циклических испытаниях натурных конструкций или полномасштабных моде.лей должны быть не ниже 1,25 и 3 соответственно [5].  [c.46]


В охлаждаемых сплавах и рабочих лопатках напряженное состояние в критических участках гораздо сложнее, чем в образцах, используемых для испытаний на ползучесть и усталость. Вообще говоря, общедоступны только данные по одноосному нагружению, так что при конструировании деталей приходится прогнозировать служебную долговечность в условиях двух- или трехосного нагружения, пользуясь данными для одноосного напряженного состояния. Методы анализа напряжений в деталях сложной конфигурации становятся все более тривиальными, поэтому определить характер напряженного состояния и уровень напряжений проще, чем установить точную модель поведения материла.  [c.78]

Для сравнительных целей допускаются испытания образцов металла или изделий на одном уровне переменных напряжений с фиксированием долговечности (по числу циклов до разрушения). К такому способу прибегают при испытании сложных дорогостоящих или крупногабаритных моделей, или натурных изделий, изготовление и испытание которых в крупных сериях вызывает большие затруднения. Однако в этих случаях следует особо выбирать условия испытания (вид и уровень нагрузки, среду и др.), с тем чтобы они полнее отвечали эксплуатационным.  [c.18]

Разнообразные и многочисленные конструкции сварных сосудов, применяемых в современной промышленности, изготовляют преимущественно из мягких углеродистых или слаболегированных сталей. Эти стали обладают хорошей пластичностью и свариваемостью (газгольдеры, барабаны паровых котлов, хранилища для жидких продуктов, химические реакторы, баллоны, крупные газовые и нефтяные трубы и др.). Расчет сварных сосудов, как правило, ограничивают условиями статической прочности или сопротивлением однократным ударным нагрузкам. Для оценки прочности крупных ответственных сварных сосудов в последние годы учитывают также характеристики хрупкой прочности (критическая температура хрупкости, вязкость разрушения Ки) и ДР-Во многих случаях сварные конструкции типа сосудов давления подвергаются в процессе эксплуатации циклически меняющимся нагрузкам, что требует особых оценок их эксплуатационной прочности и долговечности. Наиболее полные и надежные данные о работоспособности сварных сосудов могут быть получены путем испытаний натурных конструкций или их моделей и элементов.  [c.199]

Известные в литературе модели хрупкого разрушения тел с трещинами не учитывают изменение реологических свойств материалов в пластически деформируемой зоне у вершины трещины при циклическом нагружении образцов и динамический характер распространения трещины при ее нестабильном развитии и поэтому не позволяют прогнозировать влияние режимов циклического нагружения на характеристики вязкости разрушения и закономерности перехода от усталостного к хрупкому разрушению конструкционных сплавов. Это не позволяет обосновать расчеты предельной несущей способности и долговечности тел с трещинами при циклическом нагружении с учетом стадии их нестабильного развития и ответить на практически важные вопросы в каких случаях циклически нагружаемая конструкция с трещиной разрушится при нагрузках меньших, чем нагрузка, которую она может выдержать при статическом нагружении при каких условиях полное разрушение конструкции произойдет при первом скачке трещины, а при каких — после определенного числа скачков.  [c.210]

Рассмотренные модели конструкционных материалов в сочетании с современными методами определения температурного и напряженно-деформированного состояний и оценки работоспособности и долговечности конструкций используются в книге при изложении способов решения прикладных задач термопрочности для характерных конструктивных элементов, подверженных переменным во времени тепловым и механическим воздействиям. Кратко охарактеризованные подходы к оптимизации теплонапряженных конструкций могут быть использованы при оптимальном проектировании таких конструкций и создании систем автоматизированного проектирования. Описанные в приложении алгоритм и ФОРТРАН-программа обеспечивают численную реализацию одной из наиболее полных моделей неупругого поведения конструкционного материала в неизотермических условиях, которая позволяет провести анализ кинетики напряженно-деформированного состояния и оценить работоспособность и долговечность теплонапряженных элементов конструкций при различных режимах тепловых и механических воздействий.  [c.6]

Механически подобные модели с тождественным нагружением поверхностного слоя при оценке усталостной прочности по нижней границе областей рассеяния обеспечивают приближенное моделирование характеристик усталости и долговечности натурных деталей по началу образования трещины [17, 15]. Условия подобия для этих моделей, как критерии первого приближения, обеспечивают удовлетворительное экспериментальное совпадение соответствующих усталостных кривых.  [c.224]

Однако такие феноменологические модели малопригодны для экстраполяции результатов относительно кратковременных лабораторных опытов на реальные длительные сроки эксплуатации, а также для описания разрушения в условиях ОНС при сложных программах нагружения. В этой связи многие исследователи обращаются к анализу физических механизмов и моделей накопления повреждений при разрушениях, зависящих от времени. Выполненный во многих работах [240, 256, 306, 318, 324, 342, 392, 433] металлографический и фрактографиче-ский анализ показал, что снижение долговечности при уменьшении скорости деформирования при различных схемах нагру-  [c.152]

Закономерности разрушения материала при длительном нагружении достаточно хорошо могут быть описаны с помощью разработанной физико-механической модели межзеренного разрушения, которая базируется на математическом описании процессов зарождения и роста пор, обусловленного как пластическим деформированием, так и диффузией вакансий, а также на введенном в гл. 2 при анализе внутризеренного вязкого разрушения понятии — потере микропластической устойчивости. Модель позволяет прогнозировать долговечность при статическом и циклическом длительном нагружениях элементов конструкций в условиях объемного напряженного состояния и переменной скорости деформирования. В частности, с помощью указанной модели могут быть описаны процессы залечивания межзе-ренных повреждений при сжатии и рассчитана долговечность в условиях циклического нагружения при различной скорости деформирования в полуциклах растяжения и сжатия.  [c.186]


Один из наиболее трудных и наименее разработанных вопросов механики материалов — прогнозирование типа разрушения (внутризеренного или межзеренного) и условий перехода от внутризеренного, менее опасного разрушения, к межзерен-ному, приводящему к снижению критической деформации и долговечности материала. В настоящей главе предложен подход к анализу типа разрушения в зависимости от условий испытаний. Суть подхода заключается в параллельном анализе накоплений повреждений в теле зерна и по его границам тип разрушения будет определяться тем процессом, который дает меньшие значения параметров предельных состояний материала Nf и е/). Такой анализ может проводиться на основании физико-механических моделей кавитационного внутризеренного или усталостного разрушения, рассмотренных в гл. 2, и модели кавитационного межзеренного разрушения, представленной в данной главе.  [c.187]

Гидродинамическая теория смазки описывает идеализированные модели под-П1ИПНИК0В скольжения. Теория износа еще не позволяет оценивать долговечность деталей с необходимой точностью с учетом реальных условий эксплуатации.  [c.473]

Обоснование использования структурно-вероятностного подхода при оценке надежности и долговечности маБ1Ин даны в [30]. В рамках предлагаемой методики вводится учет кинетики физико-механических свойств элементов систем, динамики влияния внешних условий и характера нагружения технических усфойств, сформулирован принцип суммирования повреждений. Наиболее интересным в предлагаемом методе построения модели является возможность масштабно-временного преобразования интегральной функции распределения отказов. Для оценки качества разработанного подхода проведе-  [c.130]

Эксплуатация ВС но принципу их безопасного повреждения связана с оценкой их технического состояния по различным критериям и подразумевает определение предельного состояния по выработке ресурса до предотказного состояния и до безопасного отказа [57]. Установление ресурса произвольному изделию авиационной техники из условия требуемой безопасности полетов по данным испытаний на надежность связано с оценкой ряда параметров. В частности, необходимо учитывать плотность распределения долговечности при принятом плане испытаний, эквивалентность программ испытаний ожидаемым условиям эксплуатации (соответствие циклов ЗВЗ или ПЦН), степень неадекватности принятой модели надежности изделия реальному физическому объекту, неэквивалентность ожидаемых и реальных условий эксплуатации, а также должно быть учтено качество изготовления изделия. Все перечисленные параметры могут быть оценены приближенно, что приводит к существенному рассеиванию рассматриваемой долговечности каждого элемента конструкции.  [c.45]

Предварительные замечания. Силовое замыкание обычно применяется в скоростных кулачковых механизмах для предотвращения отрыва толкателя от профиля кулака. Однако в конструкторской практике встречаются случаи, когда замыкающие пружины устанавливаются также на ведомых звеньях рычажных, кулачково-рычажных и других цикловых механизмов. При этом, как известно, устраняются локальные разрывы кинематической цепи и пересопряжения рабочих поверхностей кинематических пар, приводящие к уменьшению точности и ударному взаимодействию звеньев механизма, которое особенно нежелательно из-за повышения уровня вибраций, шума, дополнительного износа элементов кинематаческих пар и других эффектов, снижающих надежность и долговечность механизма. Но даже и при силовом замыкании, начиная с некоторого значения угловой скорости приводного вала, может наступить разрыв кинематической цепи из-за того, что сила инерции, развиваемая в приводимом звене, оказывается больше замыкающего усилия. Для определенности обратимся к динамической модели кулачкового механизма 1—П—О (см. рис. 45). На первый взгляд способ устранения этого явления очевиден и весьма прост следует увеличить замыкающее усилие. При этом, если динамические нагрузки оказываются преобладающими, должно соблюдаться условие  [c.239]

Опыт показал, что испытания на служебную выносливость во многих случаях не могут быть проведены из-за высокой стоимости испытаний натуральных объектов. Кроме того, получить результаты в более короткое, чем при естественной эксплуатации, время можно лишь при форсировании режима нагрузки. Однако это приводит к изменению первоначальной цели служебных испытаний, так как вопрос о долговечности окончательно не будет выяснен. Поэтому испытание на служебную выносливость обычно сопровождается опытами по изучению накопления усталостного повреждения, проводимыми на образцах материала конструкций, на отдельных деталях или их моделях. Цель таких испытаний состоит не в точной передаче режима эксплуатационной нагрузки, а в выяснении принципиальных вопросов накопления повреждения и эквивалентности режимов. В связи с этим для испытаний могут назначаться разнообразные условия чередования нагрузок и спектры. Служебные испытания и опыты на накопление повреждения квляются экспериментальной проверкой гипотез, положенных в основу расчетной оценки долговечности при нестационарных режимах нагружения. По иолученным результатам можно уточнить параметры расчетных соотношений.  [c.13]

Расчетная оценка малоцикловой долговечносга. На базе полученной информации о циклических деформаций в опасной точке детали и кривых малоцикловой усталости оценим долговечность телескопического кольца, используя деформационно- кинетический критерий прочности при постоянных температурах [см. соотношение (1.3)]. Разрушения детали (см. рис. 3.2) в условиях эксплуатации, а также модели при стендовых испытаниях в условиях высокотемпературного малоциклового нагружения имеют преимущественно усталостный характер (наличие сетки мелких трещин, инициирующих магистральное разрушение, без признаков накопления односторонних деформаций), поэтому расчетное критериальное уравнение, описьшающее предельное состояние материала, обусловленное накоплением усталостных повреждений, принимаем в виде  [c.144]

Система экспериментов на лабораторных образцах в середине 60-х годов была дополнена важными опытами при малоцикловом нагружении на моделях сосудов давления (с толщинами стенок до 70—120 мм), трубопроводах (с толщинами стенок до 20 -ь 30 мм), сварных пластинах с отверстиями и патрубками, болтах и шпильках (диаметром до 75-150 мм). Анализ полученных данных (в том числе с учетом рассеяния результатов испытаний) позволил обосновать запасы по местным упругопластическим деформациям и долговечности. Нормированные расчеты прочности атомных ВВЭР с учетом их циклического нагружения в эксплуатации осуществляются [5, 6] с введением запасов по местным условным упругим напряжениям и n v - по числу циклов до образования трещин (по долговечности). В зависимости от рассчитьтаемого элемента, объема исходной информации эти запасы находятся в пределах 1,25 -г 2 и 3 20 соответственно. В дальнейшем по мере накопления данных о прочности при изотермическом и неизотермическом нагружении с программируемыми циклами нагрузок, деформаций и температур для расчетов было предложено использовать условия линейного суммирования циклических повреждений (для различных режимов эксплуатационного повреждения).  [c.41]


Совершенствование конструкций направляющих. Перераспределение износа меи ду направляющими (пли гранями) из условий минимального влияния износа на точность обработки может обеспечить значительное повышение долговечности (по точности). Необходимые изменения в конструкции направляющих определяются в результате изучения фактического распределения износа по граням. Применительно к специальным н специализированным станкам, а также станкам, выполняющим постоянные операции, достаточно определить износ направляющих станины и перемещаемого узла в данном модернизируемом станке для универсальных станков широко ранространенных моделей целесообразно изучить распределение износа но граням направляющих у значительной группы станков и найти общие закономерности. Приведем два примера модернизации станков [10]. В результате износа направляющих станины и салазок передней стойки универсального расточного станка (станки со столом, имеющим одно перемещение или станки без стола) ось шпинделя наклонилась на угол а (рис. 20), величину которого определяют приближенно  [c.49]

Для уточненной] оценки прочности и долговечности элементов резьбовых соединений необходимо располагать расчетными или экспериментальными данными по изменению усилий, номинальных напряжений, деформаций и температуры в шпильках и по кривым малоциклового разрушения натурных соединений или их моделей. Кроме того, проводят исследование основных механических и циклических свойств применяемых материалов с установлением соответствующих параметров деформирования и разрушения [8, 14]. Ниже приведены результаты экспериментальных исследований сопротивления деформированию и разрушению сталей 25Х1МФ и ХН35ВТ, используемых для изготовления натурных шпилек основного разъема энергетических аппаратов [8]. Испытания проводились при мягком и жестком нагружениях на гладких цилиндрических образцах 011 мм в условиях комнатной температуры на программной испытательной установке фирмы  [c.201]

Из рис. 1.3 и 1.4 следует, что уравнения сосчояния являются существенным составным элементом определения прочности и долговечности элементов конструкций и деталей машин при малоцикловом нагружении. При этом выбор уравнений состояния, моделей деформируемых сред и теорий циклической пластичности и ползучести в общем случае должен осуществляться с учетом условий нагружения (по деформациям, температурам, временам), конструктивных форм рассматриваемых элементов, уровня точности задания исходной расчетной информации об эксплуатационных тепловых и механических нагрузках.  [c.15]

В связи с этим для оценки долговечности в настоящее время может бьпь предложена следующая схема проводится экспериментальное исследование пульсаций температур в стендовых или эксплуатационных условиях по полученным реализациям определяются расчетным путем необходимые статистические характеристики температурных пульсаций определенные таким образом граничные условия позволяют решить задачу о распределении температур по сечению элемента, а при этом также рассчитать характеристики максимальных температурных напряжений по соответствующим прочностным моделям выполняется оценка долговечности. Наиболее сложным, трудоемким и дорогим этапом приведенной схемы являются экспериментальные работы, избежать которых, к сожалению, нельзя.  [c.7]

Однако учет пространственности распределений значительно усложняет модель (см., например, решение двумерной задачи, выполненное Р.И. Вейцма-ном [9]) и делает ее труднодоступной для выполнения расчетов. С другой стороны, в настоящее время не созданы приемлемые методики измерения пространственных корреляций температур, и при отсутствии информации о распределенных граничных условиях пространственная модель становится мало пригодной для практических целей. Кроме того, усталостные характеристики материала, используемые при оценке долговечности, также, как правило, получены при простом напряженном состоянии. Данные по прочности при напряжениях, локализованных на малых площадках, отсутствуют.  [c.8]

Заканчивая рассмотрение особенностей иерархической системы математических моделей ПТУ, отметим, что оптимизация теплообменников вне границ соотношения (3.12) даст возможность повысить степень соответствия их моделей реальным агрегатам, не считаясь, в известных пределах, с затратами машинного времени на оптимизацию, что является немаловажным обстоятельством при ограниченном быстродействии современных ЭВМ. Например, время оптимизации параметров змеевикового парогенератора с жидкометаллическим обогревом, в модели которого учтены условия, исключающие возникновение кризиса теплоотдачи первого рода, параметры, обеспечивающие заданную долговечность парогенерирующих труб под воздействием термоциклических напряжений в зоне высыхания пристешюй пленки жидкости, и ряд других условий, превышает два часа.  [c.47]

Малоциклоеая усталость. Чтобы рассчитать долговечность материала в условиях малоцикловой усталости конструктору деталей турбины нужна модель поведения материала, связывающая какие-то легко наблюдаемые условия с количеством рабочих циклов, не приводящих к отказу детали. Результаты расчетов по первой из таких моделей, разработанной с позиций физики твердого тела, при сопоставлении с результатами испытаний оказались чрезвычайно обнадеживающими. Чтобы улучшить согласие, ввели представление об изначально присутствующих микротрещинах, а свойства материала выразили через энергию единицы поверхности трещины. Эта концепция была распространена Гриффитсом [Ю] на разрушение вообще, хотя родилась она при экспериментировании на хрупких материалах. Этот фундамент механики разрушения был заложен в 1920 г., однако вплоть до недавнего времени большинство оценок усталостной долговечности для каждого конкретного материала основывали на эмпирической зависимости между величиной циклической нагрузки и числом циклов до разрушения.  [c.68]

Усталостная модель Коффина-Менсона и метод универсальных наклонов, разработанный Менсоном, в большей мере относились к высокопластичным материалам малой прочности. Суперсплавы для рабочих лопаток — высокопрочные и малопластичные - служат п и высоких температурах и под воздействием термомеханических нагрузок. Подвергаясь к тому же воздействию химически агрессивных сред, они должны сопротивляться ползучести и усталости. В таких условиях слепо следовать упомянутым моделям для прогнозирования усталостной долговечности не рекомендуется. Надо опираться на реальные, достоверные данные испытаний на малоцикловую усталость.  [c.69]

Качество поверхности отливок. Многие эксплуатационные свойства (например, коррозионная стойкость, износостойкость, долговечность, термостойкость и др.) в большой степени определяются состоянием поверхности изделий. Качество поверхности отливок оценивается по ГОСТ 26645—85, прежде всего, степенью точности поверхности (СТП) и зависит как от их шероховатости, так и от наличия поверхностных дефектов (пригара, наростов, оксидов, волнистости). Однако в требованиях к шероховатости поверхности отливок присутствие поверхностных дефектов литья не оговаривается. В то же время ГОСТ 26645—85 регламентирует минимальный припуск на механическую обработку для устранения дефектов литой поверхности. Зависимость степени точности поверхности отливки от способа литья см. в табл. 16.2. Шероховатость поверхности чаще всего оценивается по наибольшим или номинальным значениям (диапазонам значений) следующих параметров (мкм) среднего арифметического отклонения (Лд) и высоты неровностей профиля по десяти точкам (Л ). Соответствие шероховатости техническим условиям на нее определяют на предварительно очищенной дробью (илк металлическим песком) поверхности отливки. На шероховатость поверхности оказывают влияние размер и конфигурация (сложность формы) отлинки, состав сплава и способ литья. Наименьшие значения шероховатости поверхности отливок достигаются при М ье под давлением, по выплавляемым моделям и в гипсовые формы.  [c.376]

Первая группа методик предназначена для решения задач оптимального конструирования конкретных деталей с учетом реальных свойств материалов и условий эксплуатации по зфитерию максимальной термоцикпической долговечности, а также определение степени опасности реальных эксплуатационных режимов и оценки ресурса по переходным режимам. Программа испытаний должна моделировать наиболее тяжелые тепловые режимы с воспроизведением в цикле тождественных натурных термонапряженных состояний материала. Испытания, как правило, проводят на конструктивных элементах или их моделях, в полной мере отражающих геометрические особенности натурной конструкции.  [c.334]


Большинство показателей долговечности аналогично показателям безотка-зности невосстанавливаемых объектов, если в определениях момент наступления первого отказа заменить на момент достижения предельного состояния. Например, гамма-процентный ресурс определяют как суммарную наработку, в течение которой в заданных режимах и условиях применения объект не достигает предельного состояния с вероятностью у, выраженной в процентах. Аналогично вводят гамма-процентный срок службы - календарную продолжительность эксплуатации, в течение которой объект не достигает предельного состояния с выраженной в процентах вероятностью у. Применительно к крупносерийным объектам и массовым комплектующим изделиям обычно используют понятия среднего ресурса и среднего срока службы. В терминах вероятностных моделей эти показатели равны математическим ожиданиям суммарной наработки и календарной продолжительности до достижения предельного состояния. При применении показателей долговечности указывают начало отсчета и вид действий после наступления предельного состояния (например, гамма-процентный ресурс от второго капитального ремонта до списания). Показатели долговечности, отсчитываемые от ввода объекта в эксплуатацию до окончательного снятия с эксплуатации, называют гамма-процентным полным ресурсом, средним полным ресурсом и т.п.  [c.25]

Нагрузочные режимы могут быть определены экспериментально, теоретически или комбинированным способом. Экспериментальные нагрузочные режимы (ЭНР) определяются в результате режимометрических и тензометрических испытаний конкретных моделей автомобилей для выбранных (заданных) условий эксплуатации. После схематизации они могут быть непосредственно использованы для расчетов на долговечность без привлечения дополнительной информации о конструктивных параметрах узлов (агрегатов) и автомобиля, а также учета особенностей поведения системы дорога— автомобиль—водитель. Основное преимущество экспериментальных нагрузочных режимов — универсальность, возможность получения точных и достоверных характеристик нагруженности для практически любых ситуаций, встречающихся при эксплуатации автомобилей, что нельзя сказать в настоящее время о теоретических способах получения нагрузочных режимов. При проведении расчетов и сопоставлении их с данными об эксплуатационной долговечности предпочтение должно быть отдано экспериментальным нагрузочным режимам. К недостаткам экспериментальных нагрузочных режимов по сравнению с теоретическими методиками следует отнести невозможность получения информации о нагрузках при проектировании (без привлечения методов прогнозирования), длительность и высокую стоимость испытаний.  [c.129]

Выработка ресурса машин и конструкций связана главным образом с накоплением необратимых повреждений в их деталях, узлах и элементах. Эти повреждения бывают как механического (усталость, изнашивание, растрескивание, накопление пластических деформаций), так и физико-химического происхождения (коррозия, эрозия, адсорбция). Многие виды повреждений носят смешанный характер. Так, процессы изнашивания трущихся деталей могут включать явления механического, физического и химического происхождения. Несмотря на многообразие перечисленных явлений, их можно описать в рамках единой полуэмпирической теории, связывающей скорость накопления повреждений с действующими нагрузками и условиями окружающей среды. Ни одна из моделей этой теории не ставит целью объяснить или детально описать явления. Полуэмпи-рические модели служат для решения инженерных задач, связанных с расчетом на долговечность и прогнозированием ресурса. Единственное назначение этих моделей — дать средства для расчета, обладающие максимальной простотой и использующие в качестве исходной информации минимальное число опытных данных.  [c.61]


Смотреть страницы где упоминается термин Модель Условие долговечности : [c.3]    [c.186]    [c.320]    [c.37]    [c.225]    [c.47]    [c.101]    [c.207]    [c.245]    [c.114]    [c.185]    [c.134]   
Справочник по пайке Изд.2 (1984) -- [ c.345 , c.347 ]



ПОИСК



Долговечность

Модель долговечности



© 2025 Mash-xxl.info Реклама на сайте