Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двигатели постоянного така

Если конструкцию из металлического материала защитить от воздействия агрессивных сред, необходимо длительное время для того, чтобы такая ненагруженная конструкция самопроизвольно разрушилась. Время до разрушения может исчисляться сотнями лет. Создание же любой промышленной конструкции предполагает, что она должна будет нести определенную нагрузку опоры моста испытывают сжатие, трос подъемного крана - растяжение, вал двигателя - кручение. Таким образом, материал конструкций постоянно или периодически подвергается внешним воздействиям. При этом в материал происходит накачка энергии извне, и он вводится в неравновесное состояние. В его структуре начинают происходить постепенные перестройки. Они ведут к усилению границ раздела между отдельными структурными элементами, составляющими материал, и в конечном итоге - к появлению и развитию микротрещин.  [c.100]


Обычно для изменения скорости растяжения образца применяются схемы регулирования числа оборотов электродвигателя постоянного тока с помощью включения в обмотку якоря или обмотку возбуждения управляющего реостата. Включение реостата требует значительного дополнительного расхода электроэнергии в цепи управления. Кроме того, сопротивление реостата ограничивает пределы изменения частоты вращения электродвигателя в области низких значений скорости растяжения, поэтому при такой схеме регулирования приходится использовать электродвигатель с заведомо увеличенной в несколько раз мощностью с тем, чтобы при минимальной частоте вращения получить требуемое значение крутящего момента на валу двигателя и, таким образом, усилие растяжения образца.  [c.84]

Двигатели переменного тока с короткозамкнутым и фазовым ротором, а также двигатели постоянного тока могут выполняться в виде самотормозящего электродвигателя. При необходимости размыкания тормоза без вращения ротора двигателя можно на короткое время включить одну фазу или применить систему механического размыкания тормоза либо приспособить электромагнит с независимой цепью питания. Тормозной момент такого тормоза обычно в 1,5—2 раза больше номинального момента электродвигателя.  [c.239]

В случае необходимости с помощью данного механизма можно осуществить регулирование скорости опускания груза. При пологой характеристике число оборотов двигателя, работающего на спуск груза, близко к числу его оборотов на холостом ходу. Это позволяет производить изменение скорости опускания путем изменения числа оборотов холостого хода переключением числа полюсов трехфазных электродвигателей или изменением магнитного поля двигателей постоянного тока. Весьма точное регулирование скорости спуска можно произвести даже при трехфазном двигателе введением в систему рычагов дополнительной пружины 1, имеющей предварительное натяжение (фиг. 213, а). При наличии такой пружины корпус вспомогательного двигателя при повороте под действием реактивного момента прежде, чем он разомкнет тормоз, должен преодолеть усилие пружины 1. В зависимости от включенной в данный момент ступени сопротивления двигатель работает на одной из искусственных характеристик а—<1 или на своей естественной характеристике е (фиг. 213, б). Возможный диапазон изменения чисел оборотов, а значит, и скорости  [c.326]


Следует отметить, что электрогидравлические толкатели не являются совершенно бесшумными устройствами, особенно при их работе с двигателями постоянного тока или с коллекторными двигателями переменного тока. Поэтому их не рекомендуется устанавливать в таких помещениях, как больницы, театры, клубы и т. п.  [c.464]

Передача включает задающий сельсин 8, источник переменного тока 9, фазовый индикатор 7, усилитель 6, регулируемый двигатель постоянного тока 4, реечные колеса 2 и 5, сельсин обратной связи 1 и рейку 3 стола станка. Как видно из схемы, ротор сельсина обратной связи получает вращение от рейки стола станка во время его перемещения, которое осуществляется электродвигателем 4. Обмотки статоров обоих сельсинов питаются от одного и того же источника переменного тока частотой 200 Гц. Концы обмоток роторов, в которых индуктируется однофазный переменный ток той же частоты, подключены к фазовому индикатору 7. Он непрерывно сравнивает фазы напряжений обоих сельсинов и вырабатывает управляющий сигнал в виде напряжения, пропорционального разности фаз. Это напряжение после усиления используется для управления скоростью вращения электродвигателя 4. Стол станка будет перемещаться до тех пор, пока имеется несовпадение угловых положений роторов. Такой способ управления работой станка носит название способа фазовой модуляции.  [c.208]

Таким образом, линеаризованная динамическая характеристика асинхронного двигателя (2.29) может рассматриваться как уточненная по сравнению с характеристикой (2.30). Отметим, что динамическая характеристика (2.29) совпадает с уравнением (2.24), ранее полученным для двигателей постоянного тока с независимым возбуждением, в котором следует положить  [c.27]

Как указано выше, механические характеристики двигателей задаются в виде функции одного параметра, а именно угловой скорости его ротора, но в общем случае движущие силы подчиняются более сложным законам. Например, механическая характеристика электродвигателя представляет собой зависимость развиваемого им момента от угловой скорости ротора. Такой зависимостью можно пользоваться только для определения угловой скорости ротора двигателя, преодолевающего постоянную нагрузку. Если же угловая скорость ротора изменяется, то изменяется и сила тока двигателя, а вместе с током происходит изменение и развиваемого двигателем момента. Таким образом, развиваемый электродвигателем момент зависит не только от угловой скорости, но и от углового ускорения его ротора. Влияние углового ускорения ротора на развиваемый им момент оказывается более существенным для электродвигателей постоянного тока, чем для асинхронных двигателей. Влияние углового ускорения ротора на развиваемый им момент получается более заметным при быстро протекающих переходных процессах, когда происходит резкое изменение нагрузки двигателя. Во многих случаях практики влиянием углового ускорения на изменение момента двигателя можно пренебрегать.  [c.23]

Эта зависимость показана в виде графика на фиг. 34. Штрихами обозначена та часть графика, которая определяется приближенной характеристикой двигателя вне узлов интерполирования. Поэтому штриховой участок графика нельзя считать достаточно точным. Однако в данном случае угловая скорость звена приведения машинного агрегата медленно убывает даже при большой нагрузке. Объясняется это видом механической характеристики электродвигателя постоянного така с последовательным возбуждением с уменьшением угловой скорости двигателя его момент очень быстро возрастает.  [c.55]

Зависимость скорости от момента и =/(Л ) носит гиперболический характер, так же как у сериесных двигателей постоянного тока.  [c.540]

В СССР однофазные коллекторные двигатели изготовляются небольшой мощности, в виде универсальных, могущих работать как на постоянном, так и на переменном токах. Схема двигателя УМ приведена на фиг. 66. Обмотка возбуждения его состоит из двух  [c.540]


В асинхронных двигателях приходится иметь дело с двумя номинальными токами -- статора и ротора. Для получения величин относительных сопротивлений необходимо ввести особое понятие о номинальном (фиктивном) сопротивлении машины. Для двигателей постоянного тока всех типов под номинальным сопротивлением понимается такое сопротивление якорной цепи, через которое при номинальном напряжении сети и неподвижном якоре  [c.6]

Ионный электропривод постоянного тока и его механические характеристики. Электропривод этого типа состоит из ионных выпрямляющих аппаратов и двигателя постоянного тока. Для выпрямления переменного тока при больших мощностях двигателей используются ртутные выпрямители с регулируемой сеткой, при меньших мощностях — тиратроны (стеклянные или металлические) и игнитроны. Подводимое к двигателю напряжение ионных аппаратов можно регулировать в широких пределах, изменяя момент зажигания игнитронов посредством подачи соответствующих потенциалов на сетки ртутных выпрямителей или тиратронов. Этим создаётся возможность производить пуск и широко регулировать скорость так же, как и в системе Леонарда. Пределы регулирования скорости двигателя — от 1 20 и выше.  [c.13]

Для напряжённого повторно-кратковременного режима короткозамкнутые двигатели подходят менее всего, так как в обмотках их роторов должно рассеиваться всё тепло от пусковых и тормозных токов. В двигателях постоянного тока и в асинхронных с кольцами большая часть этого тепла рассеивается в добавочных пусковых сопротивлениях, а не в обмотках якоря или ротора. Возможность создания специальных типов короткозамкнутых двигателей небольших мощностей, рассчитанных на пуск до 3000—4000 раз в час, не ограничена.  [c.20]

Асинхронные двигатели с кольцами Практически 1 0,8 Такой же плавный, как и в двигателях постоянного тока, питаемых от нормального напряжения Практически нет При мощностях свыше 150—200 кет совершенно не экономичны. Получение очень низких скоростей сопряжено с потерями. Подходят для повторно-кратковременного режима  [c.21]

В целях уменьшения расхода энергии при пуске в ход в часто пускаемых электроприводах необходимо стремиться 1) к уменьшению приведённого махового момента системы 2) махового момента электродвигателей. Тепло во время пуска двигателей постоянного тока и асинхронных с кольцами выделяется как в главных цепях, так и в добавочных сопротивлениях. В асинхронных короткозамкнутых двигателях оно выделяется в обмотке ротора. Поэтому конструирование короткозамкнутых асинхронных двигателей на большое число пусков в час сложно. Короткозамкнутые двигатели для таких условий могут быть лишь малых мощностей с уменьшенным маховым моментом и повышенным номинальным скольжением. Применение двигателей подобного типа даёт возможность вести производственный процесс более интенсивно и с меньшими потерями электрической энергии.  [c.29]

Двигательные реле времени применяются в тех случаях, когда необходимо получить выдержку времени в несколько минут. Они изготовляются как для постоянного, так и переменного тока и приводятся в движение соответствующим электродвигателем. В этих реле двигатель через зубчатую передачу с очень большим передаточным числом, доходящим до 10 000, приводит во вращение с очень малой скоростью конечный элемент реле. В зависимости от настройки реле один оборот конечного элемента может совершаться в период от 1 мин. до 1 часа. После поворота на некоторый угол этот элемент замыкает контакты реле. Выдержка времени регулируется изменением передаточного числа передачи или положения замыкаемых контактов реле.  [c.57]

Автоматизация ускорения с зависимой от тока выдержкой времени. В этом методе выдержка времени фиксируется нагрузкой — током двигателя. Чем больше нагрузка, тем больше выдержка времени. При постоянном токе это может быть достигнуто с помощью специальных сериесных реле (стр. 36). Схема автоматизации пуска в этом случае одинакова со схемой, приведённой на фиг. 92. Как при постоянном, так и переменном токе этот принцип может быть осуществлён комбинацией двигательного реле времени с токовыми реле в цепи управляемого двигателя. Нормально процесс пуска определяется работой двигательного реле времени. Однако если сила тока рабочего двигателя имеет чрезмерную величину, то сериесные реле задерживают ускорение, отключая двигательное реле от напряжения до соответствующего момента времени, пока сила тока управляемого двигателя не спадёт до нужной величины.  [c.67]

Основные способы поддержания постоянства скорости двигателей при многодвигательном приводе. В ряде многодвигательных электроприводов (нереверсивные регулируемые станы, станы холодной прокатки, бумагоделательные машины, конвейеры резиновой промышленности и т. п.) строгая синхронизация вращения отдельных электроприводов не требуется. В производстве вполне достаточно постоянства скорости с точностью от 1% (для прокатных станов) до 0,10/о (для бумагоделательных машин). При этом скорость отдельных двигателей должна оставаться постоянной независимо от мгновенных изменений нагрузки. В таких приводах синхронизация в большинстве случаев непригодна, так как по условиям производства в отдельные периоды должно меняться соотношение скорости отдельных двигателей, приводящих различные секции исполнительного механизма. Обычно в таких электроприводах применяются двигатели постоянного тока с независимым возбуждением. В этих двигателях постоянство скорости при различных нагрузках наиболее удобно достигается соответствующим изменением магнитного потока, т. е. тока возбуждения. Это изменение должно быть быстрым и по возможности мгновенно ликвидировать всякое отклонение двигателя от скорости, фиксированной при установке процесса. Лучше всего это достигается применением быстродействующих автоматических регуляторов, используемых также для поддержания по-  [c.71]


Привод летучих ножниц, режущих полосы на куски при одновременной прокатке их, осуществляется шунтовым двигателем постоянного тока с регулированием скорости в цепи обмотки возбуждения в пределах 1 3-ь-1 4. При необходимости в более широкой регулировке скорости применяется система Леонарда. Поддерживание скорости ножей в соответствии со скоростью полосы в клети стана достигается применением регуляторов скорости, изменяющих скорость ножниц соответственно скорости металла приводом ножниц от стана через механическую связь приводом ножниц от двигателя, получающего питание от генератора, который вращается двигателем клети стана (генератор и двигатель могут быть выбраны как постоянного тока, так и синхронные) синхронизацией скоростей ножниц  [c.1067]

Эффективность работы жидкостного нейтрализатора зависит от режимов работы двигателя. Постоянная работа на режимах, близких к номинальным, приводит к перегреву неДтрализуюшего раствора, резко снижая его поглотительную способность и одновременно увеличивая его расход. Наиболее оптимален для работы жидкостного нейтрализатора повторно-кратковременный режим работы двигателя с умеренными средними температурами и расходами ОГ. Такие режимы имеют место, например,при работе автосамосвалов в условиях горных выработок.  [c.79]

Уравнение (5.10) можно использовать также при анализе частотного управления СД в замкнутой структуре с позиционной обратной связью, обеспечивающей коммутацию обмоток в строгом соответствии с положением ротора. Для такого СД, классифицируемого обычно как бесконтактный двигатель постоянного тока (БДПТ), фазу результирующего вектора напряжения и его проекций и у qy нужно представлять в (5.10) ступенчатой функцией, дискретно формируемой датчиком положения в зависимости от угла поворота ротора.  [c.108]

Еще одна возможность заключается в децентрализации питания постоянным током. При этом питание переменным током отдельных преобразователей защитных установок осуществляется от центрального генератора с регулированием потенциала, расположенного в машинной рубке (на нульте управления двигателем). В таком случае преобразователи защитных установок могут быть соединены с анодами сравнительно короткими кабелями постоянного тока. Поперечные сечения этих кабелей должны быть выбраны с таким расчетом, чтобы падение напряжения на них не превышало 1—2 В.  [c.365]

Отметим, что представление вращающего момента или скорости вращения двигателя в виде известных функций времени является по существу заданием интегральных характеристик, которые невозможно получить, не решая системы уравнений движения машинного агрегата. Поэтому ценность рассмотренного предложения весьма сомнительна, а использование его в практике инженерных расчетов может привести к совершенно неправильным результатам. То же самое можно сказать о предложении считать вращающий момент двигателя постоянным (Мд = onst). В работе М. А. Скуридина показано, что такое предложение в ряде случаев может привести к абсурду [101].  [c.7]

Одной из важных проблем динамики машин является разработка методов отыскания и исследования закона движения машинного агрегата с переменным приведенным моментом инерции. В общем многообразии современных технологических машин, применяемых в различных отраслях промышленности, наиболее распространены такие, у которых во время работы массы звеньев не изменяются. Вместе с тем, механизмы, осуществляюш,ие преобразование движения двигателя в заданное движение рабочего органа, могут иметь как постоянное, так и переменное передаточное отношение. Выше в гл. III— VII рассматривались машинные агрегаты, содержащие механизмы, относящиеся к первой группе, т. е. имеющие постоянные передаточные отношения.  [c.300]

Рассмотренные выше системы с управляемыми двигателями постоянного тока являются разомкнутыми. В таких системах изменение регулируемой величины (скорости вращения двигателя) определяется только внутренними свойствами, вследствие чего точхшсть регулирования оказывается невысокой. В современных автоматизированных приводах с электродвигателями постоянного тока применяются замкнутые системы с устройствами, обеспечивающими коррекцию регулируемых величин при изменении возмущающих воздействий [19, 103, 104].  [c.23]

Подача на вход двигателя постоянного сигнала Uo(f)= onst может рассматриваться как простейшая форма программного уи-равлення такое управление приводит после переходного процесса, обычно кратковременного, к установлению в системе режидга стационарного движения, некоторые частные случаи которого были рассмотрены в предыдущей главе. Характерной особенностью стационарного движения является близость величины угловой (или линейной) скорости выходного звена двигателя к некоторому среднему значению. Имеется обширный класс технологических машин, выполняющих рабочие процессы в режиме стационарного движения.  [c.103]

Характеристики электрического двигателя постоянного тока при параллельном возбуждении (шунтового) представляют собой пучок прямых, сходящихся в одной точке (рис. 0. 1, а). Переход с одной характеристики на другую производят путем изменения пмцирпупгп СОПрОТ ЩЛеНТ . Т, Пключсппсгс в цепь ротора двигателя. Жирными линиями показан процесс запуска двигателя. При этом начальное сопротивление выбирают таким, чтобы двигатель работал на характеристике /, т. е. при нулевой скорости возникает 16  [c.16]

Жесткость характеристики электродвигателя постоянного тока с параллельным возбуждением постоянна, всех же других двигателей — переменна. Чем жестче механическая характеристика, тем менее колеблется угловая скорость двигателя при переменной нагрузке. У упомянутого двигателя постоянного тока с параллельным возбуждением характеристика жесткая, а у двигателя внутреннего сгорания она недостаточно жесткая, вследствие чего, например, для автомобильных двигателей применяются коробки скоростей, так как такой двигатель способен работать только при незначительно изменяющихся нагрузках. Коробка скоростей позволяет сохранить приблизи-  [c.22]

Радикальной мерой снижения величины реактивной э.д.с. в. ,5—3 раза является применение в тяговом двигателе бес-пазового якоря [2, 3]. Как показали всесторонние исследования таких двигателей, беспазовая укладка якоря, обеспечивает значительное уменьшение потоков рассеивания коммутируемых секций, их индуктивности и резко улучшает коммутацию как на постоянном, так и на пульсирующем токе. Кроме того, такая обмотка якоря неизбежно об,условливает в Двигателе большой воздушный зазор (18—22 мм) под главными полюсами, что приводит к повышению коэффициента магнитной устойчивости и к улучшению потенциальных условии на коллекторе из-за ослабления реакции якоря. В итоге все это резко. .повышает их коммутационную устойчивость.  [c.145]

Ртутные выпрямители с регулируемым напряжением. Введение в ртутный выпрямитель сетки даёт возможность регулировать начало разряда на анодах выпрямителя так же, как и в тиратронах. С помощью изменения момента подачи на сетку положительного потенциала или изменением фазы переменного напряжения, подаваемого на сетку, можно в широких пределах регулировать напряжение выпрямленного тока. Наличие сеток позвол/ ет осуществить электрическое торможение двигателя постоянного тока, питаемого ртутным выпрямителем, с рекуперацией энергии в сеть переменного тока. Для рекуперации энергии схема должна иметь два ртутных выпрямителя—один для двигательного, другой для тормозного режимов.  [c.546]


Средним индикаторным давлением pi в кг/с <2 или в кг м , как для четырёхтактных, так и для двухтактных двигателей, называется такое условное, постоянное по величине даг вление, которое, действуя а поршень как некоторое избыточное давление, совершает в течение одного хода работу, равную работе газов в цилиндре за 1 цикл.  [c.13]

Размещение статорных обмоток показано на фиг. 36, где 1 — обмотка добавочных полюсов, 2 — обмотка возбуждения и, 3 компенсационная, Ротор (или якорь) двигателя таков же, как у двигателя постоянного тока, но обмотка всегда выполняется петлевой, и пазы делаются полузакрытими для уменьшения коэ-фициента Картера [7].  [c.474]

Сравнение видов электрического торможения. Рекуперативное торможение можно применять в шунтовых двигателях постоянного тока с регулированием скорости током возбуждения и в короткозамкнутых асинхронных Двигателях с переключением полюсов. Выбор между противовключеняем и динамическим торможением зависит от требуемой быстроты торможения и точности остановки при одинаковых исходных токах в якоре торможение противовключением более эффективно, так как тормозной момент при противо-включении меняется мало, а при динамическом торможении спадает до нуля. Динамическое торможение практически считается наиболее точным. Для реверсивных приводов чаще применяют противовключение, для нереверсивных— динамическое, так как схема последнего проще.  [c.8]

Механические характеристики сериес-ного двигателя постоянного тока. Механические характеристики сериесных двигателей аналитически нельзя выразить, так как в этих двигателях магнитный поток не остаётся постоянным, а кривая намагничивания железа Ф = /(/) не может быть представлена простой аналитической зависимостью.  [c.9]

Каждая из них является обычной прямолинейной характеристикой двигателя постоянного тока с независимым возбуждением при постоянном магнитном потоке ф=соп51. Число таких характеристик определяется число.м регулировочных ступеней в цепи возбуждения генератора. Все эти характеристики будут параллельны одна другой. Идеальная скорость холостого хода nf л каждой из них определяется напряжением генератора соответствующей ступени  [c.12]

Карликовые двигатели и микродвигатели. Карликовыми двигателями называются двигатели с мощностью от 1 до 100 Ш, микродвигателями — мощностью менее 1 в/и. Сюда относятся двигатели 1) постоянного тока а) шунтовые, б) сериесные, в) компаунд-ные, г) универсальные 2) трёхфазного тока а) коллекторные универсальные, репульсионные, б) репульсионно-индукционные, в) короткозамкнутые, г) синхронные различных конструкций 3) однофазные асинхронные двигатели а) с пуском вручную, б) со вспомогательной фазой и самоиндукцией, в) двигатели, у которых главная фаза с сопротивлением, вспомогательная — с самоиндукцией, г) двигателя, имеющие вспомогательную фазу с ёмкостью, д) со вспомогательной фазой в виде замкнутого кольца. Все они находят применение в быту, в промышленной и лабораторной практике и в авиации [37, 58]. Заграничная практика показывает большой рост применимости электродвигателей этой группы. Универсальные двигатели могут работать как на постоянном, так и на переменном токе при числах оборотов до 80—100 тыс. в минуту.  [c.23]

Любые возможные режимы производственных агрегатов комбинируются лишь из перечисленных пяти режимов. Решение уравнения привода определяется комбинацией класса производственногомеханизма с его подклассом, с подгруппой электродвигателя и соответствующим режимом. При определённой комбинации методика решения остаётся той же независимо от названия механизма и его назначения. Так, методика решения уравнения движения для привода строгального станка при двигателе постоянного тока одинакова с методикой для реверсивного прокатного стана и шахтного подъёмника с уравновешенным канатом.  [c.31]

Основные применяемые в СССР серии двигателей для такого режима КП (крановые постоянные), КПД (крановые постоянные более поздней усовершенствованной серии), КТ (крановые трёхфазные) и КТО (крановые трёхфазные открытые).  [c.37]

Для щунтовых двигателей постоянного тока она может быть выражена так же, как  [c.39]

Общие соображения. Любая схема автоматизированного электропривода [31] состоит из комплекса разнородных элементов автоматики и электродвигателей. Определённая производственная операция, необходимая в тот или другой момент в некоторой рабочей машине, выполняется электродвигателем. Переключения в цепи двигателя, нужные для этой операции, осуществляются с помощью отдельных элементов автоматики. Отсюда получается вполне естественное деление любой схемы автоматизированного электропривода на две отдельные электрические цепи главную цепь электродвигателя или, как её называют, цепь главного тока и цепь управления или цепь вспомогательного тока. Отдельные элементы цепи управления могут включаться последовательно или параллельно в главную цепь двигателя. В зависимости от типа двигателя и тех условий, которые имеются в автоматизированной установке, указанные цепи могут включаться в одну общую сеть постоянного или переменного тока или питаться от различных источников электрической энергии. Так, в ряде установок переменного тока целесообразно применять управление двигателем на постоянном токе (например, в приводе с синхронными двигателями) из-за ббльшей надёжности и точности автоматической аппаратуры постоянного тока. При высоковольтных двигателях постоянного или переменного тока цепь управления должна питаться напряжением не выше 220 — 380 в. Это диктуется соображениями безопасности.  [c.61]

Применение вспомогательных машин для синхронизации двигателей постоянного тона и асинхронных двигателей. В качестве вспомогательных машин применяются как трёхфазные, так и однофазные асинхронные машины. Эти машины насаживаются на вал двигателей, подлежащих синхронизации (фиг. 97). Обмотки статоров их включаются на сеть, обмотки же роторов связываются между собой. В зависимости от возможной неравномерности нагрузок на каждый из главных двигателей ГД и ГДц, мощность вспомогательных машин BДJ и ВДц составляет от 20 до 40% от мощности главных, доходя в отдельных случаях до ЮОФо- Применение вспомогательных машин удорожает электрический привод, однако в целом синхронизированный привод обычно оказывается выгоднее и удобнее чисто механической связи с одним приводным двигателем.  [c.69]


Смотреть страницы где упоминается термин Двигатели постоянного така : [c.64]    [c.265]    [c.384]    [c.287]    [c.61]    [c.6]    [c.5]    [c.64]    [c.1057]   
Справочник машиностроителя Том 2 (1955) -- [ c.381 ]



ПОИСК



Что это такое



© 2025 Mash-xxl.info Реклама на сайте