Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Датчики положения

Блок-схема следящей системы с пассивным отражением усилия дана на рис. 11.18, а. Пусть к валу нагрузки приложен некоторый момент /Ин, а оператору нужно повернуть этот вал на некоторый угол фи. В этом случае он поворачивает вал управления на угол ф<, = ф 1, что фиксируется датчиком положения ДП. Сигнал, пропорциональный углу фон, поступает на усилитель мощности УМ и далее на исполнительный элемент — двигатель Д, который поворачивает вал нагрузки на заданный угол ф, =ф и развивает момент Мц=Мн этот момент измеряется датчиком моментов ДМ и, как было сказано выше, фиксируется загружателем 3, с тем чтобы оператор имел информацию о величине нагрузки от объекта манипулирования.  [c.335]


При децентрализованном управлении движением механизмов в функции положения звеньев информация передается от упоров, путевых и конечных переключателей и выключателей или иных датчиков положения или перемещения. Надежность функционирования системы механизмов при децентрализованном управлении зависит от надежности датчиков и других элементов системы управления. Децентрализованное управление может быть также с регулированием по заданным режимам работы (например, по давлению, предельной нагрузке, скорости и т.д.).  [c.480]

С помощью голографических методов стало возможным получать оптические. элементы, по всем свойствам аналогичные волоконно-оптическим устройствам. Такие. элементы имеют все свойства оптического волокна, но отличаются от него простотой. изготовления. Методы голографии позволяют выполнять оптические элементы и придавать им оптические свойства, которые невозможно получить при обычных методах изготовления. Голографические методы находят широкое применение при аттестации качества оптических. элементов и узлов оптических приборов успешно используются при решении задач выделения сигналов из шумов и распознавания образов. Голография позволяет увеличивать изображения во много раз больше, чем это можно сделать с помощью оптических линз, строить принципиально новые датчики положения и формы объектов и многое другое.  [c.6]

Первый метод цифрового кодирования был положен в основу построения голографических датчиков положения, размеров и формы объектов с корреляционной обработкой измерительной информации, а второй метод — в основу построения датчиков с голограммой кодовой маски. Рассмотрим более подробно принцип построения и функционирования. этих датчиков.  [c.89]

Рис. 35. Оптическая схема датчика положения с голограммой кодовой маски (для случая диффузно отражающего объекта) Рис. 35. <a href="/info/4760">Оптическая схема</a> датчика положения с голограммой кодовой маски (для случая диффузно отражающего объекта)
Рис. 36. Схема, поясняющая принцип работы датчика положения с голограммой кодовой маски для случая зеркально отражающих объектов Рис. 36. Схема, поясняющая принцип работы датчика положения с голограммой кодовой маски для случая зеркально отражающих объектов

Устойчивость работы золотника обеспечивается системой контроля его положения (через датчик положения и демодулятор), являющейся внутренней обратной  [c.207]

В блок обработки поступает информация о дефектах с радиометрического дефектоскопа и датчиков положения блюма. В результате обработки информации о дефектах на достаточно большой длине выдается команда на срабатывание ножниц.  [c.153]

Точность позиционирования бц определяется погрешностью датчика обратной связи, погрешностью задания программы, зазорами в кинематических передачах, силовой погрешностью (из-за влияния сил трения без смазки), нестабильностью параметров системы, нелинейностью статических характеристик элементов системы управления и т. д. Погрешность задания программы 63 и измерительная погрешность датчика положения 8 выбираются примерно на порядок меньше заданной величины погрешности позиционирования.  [c.108]

В процессе сборки трансформаторов контролируются поступление деталей на исходные позиции (оптическими датчиками) собираемость деталей и узлов (датчиками положения) электрические параметры магнитопро-вода (датчиками тока). После формовки и сушки трансформатора осуществляется контроль электрических параметров. В случае невыполнения одного из условий работы детали и узлы бракуют и сбрасывают их в браковочную тару.  [c.450]

На рис. 18, а, б показана схема устройства маятникового типа для калибровки ударного акселерометра. На наковальне 1 размещено тормозное устройство 2 для формирования ударного импульса при соударении с подвешенным на тягах 3 ударником 4, на заднем торце которого установлен градуируемый ударный акселерометр. Электрический сигнал, снимаемый с акселерометра. 5, поступает на вход согласующего усилителя 6, выход которого соединен с электронным осциллографом 7. Оптический датчик положения 8 формирует управляющий сигнал на запуск электронного осциллографа перед моментом соударения ударника с наковальней- Длительность, максимальное ударное ускорение, форма воспроизводимого ударного импульса зависят от типа тормозного устройства, начальную скорость соударения регулируют изменением угля отклонения ударника на маятниковом подвесе. Устройства маятникового типа применяют для калибровки ударных акселерометров по методу изме-  [c.365]

В реакторах ВВЭР-440 применен синхронный двигатель с вращающимся ротором (рис. 11.3). Статор электродвигателя 12 расположен в герметичном кожухе 7, а ротор 6 находится в среде первого контура. Его полый вал через редуктор 11 передает вращение на реечную шестерню 9, связанную с рейкой 8-К рейке жестко прикреплена штанга, сцепленная с головкой регулирующей кассеты 10. Сверху располагается датчик положения 1, состоящий из катушек 2 и магнитного шунта 3, установленного на шариковой гайке 4, линейно перемещающейся при вращении ходового винта 5, связанного с валом электродвигате-  [c.131]

Датчик положения по конструкции аналогичен датчику привода с системой шестерня — рейка.  [c.133]

Электрические контакты 8 п 17 замыкаются в процессе измерения с плоскими контактами 10 и 16, смонтированными на плоских пружинах, закрепленных между текстолитовыми пластинами в корпусе датчика. Положение плоских пружин и момент срабатывания контактов  [c.36]

Измерение фактического съема с детали возможно двумя методами датчиком линейного размера детали (I) и датчиком положения шлифуемой поверхности относительно базы, связанной с инструментом (t). Реализация первого метода возможна при круглом, но вызывает затруднения при плоском шлифовании. Второй метод применим для обоих видов шлифования. Его недостатком является необходимость суммирования в приборе величин, соответствующих tфi за один ход.  [c.303]

Принцип управления в функции положения, когда сигнал об окончании такта движения данного органа подается конечным (концевым) выключателем, датчиком положения или другим подобным элементом, на который воздействует сам перемещаемый орган, широко используется в технологических Л1ашинах (чаще всего для линейных перемещений), в транспортных машинах (конвейеры с автоматическим адресованием, лифты). Эта форма управления является децентрализованной.  [c.582]


В ЛПМ входят стартстонпый механизм привода и буферное устройство. Он в значительной степени определя-сг характеристики накопителя (рабочую скорость и скорость перемотки МЛ, время разгона и реверсирования МЛ, габаритные размеры и т. п.). Во время движения МЛ сматывается с одной катушки и наматывается на другую. Следящий привод катушек обеспечивает поддержание запаса МЛ в буферном устройстве, он состоит из двух независимых друг от друга следящих систем. Сигнал от датчика положения ленты сравнивается с эталонным напряжением. Знак сигнала рассогласования определяет паправлепис вращения двигателя привода.  [c.39]

В манипуляторах промышленных роботов (ПР) с автоматическим управлением различают два режима работы систем автоматического управления режим обучения и рабочий режим. В режиме обучения оператор с помощью специальной системы, включающей в себя датчики перемещений звеньев и устройства для записи сигналов датчиков на магнитную ленту или перфоленту, проводит исполнительный механизм манипулятора через требуемую последовательность рабочих положений звеньев. Информация, получаемая от датчиков положения звеньев, кодируется (шифруется) и поступает в запоминающее устройство в виде определенной программы. В рабочем режиме манипулятор работает автоматически по этой программе, которая декодируется (расшифровывается) и преобразуется в заданные движения звеньев.  [c.332]

На рис. 11.17,6 показано, что преобразованные сигналы датчиков перемещений системы управления подаются в виде электрических напряжений и, на соответствуюихие приводы, которые прикладывают определенные моменты или силы к звеньям и перемещают их на нужные расстояния. Скорость вращения каждого электродвигателя регулируется напряжением, подводимым к якорю двигателя, а управление этими напряжениями осуществляется от датчиков положения звеньев.  [c.332]

Голот рафические методы обработки измерительной информации находят широкое применение при построении измерительных преобразователей (датчиков) положения, линейных размеров, формы, а также деформации и скорости перемещения объектов. Перспективность применения этих методов объясняется тем, что информация о геометрических параметрах и физическом состоянии объекта непосредственно и полно выражается в световых полях, рассеянных. этим объектом. Измерительная информация заключена во всех характеристиках отраженной объектом световой волны амплитуде, фазе, длине волны, а также ее поляризации. Существенной особенностью задачи контроля геометрических параметров объектов при этом является необходимость регистрации и обработки многомерных входных сообщений, содержащихся в световых полях или изображениях объектов. Эти сообщения отличаются высокой информативностью, причем повышение требований к точности и быстродействию измерительной системы приводит к необходимости увеличения количества принимаемой и обрабатываемой информации. Поэтому применение обычных оптических методов обработки измерительной информации с одномерным кодированием. электрических сигналов, вырабатываемых фотоэлектрическим преобразователем датчика в процессе сканирования изображения контролируемого объекта, либо недостаточно. эффективно, либо вообще не решает поставленной задачи.  [c.87]

Уравнение (5.10) можно использовать также при анализе частотного управления СД в замкнутой структуре с позиционной обратной связью, обеспечивающей коммутацию обмоток в строгом соответствии с положением ротора. Для такого СД, классифицируемого обычно как бесконтактный двигатель постоянного тока (БДПТ), фазу результирующего вектора напряжения и его проекций и у qy нужно представлять в (5.10) ступенчатой функцией, дискретно формируемой датчиком положения в зависимости от угла поворота ротора.  [c.108]

Системы автоматического управления манипуляторами строятся обычно по принципу программного управления, причем эти системы могут работать в двух режимах режиме обучения и рабочем режиме. На рис. 148 показана блок-схема манипулятора с программным управлением, который состоит из исполнительного механизма, снабженного системой сервоприводов, датчиков положений звеньев и вычислительной машины. В режиме обучения (ключ 1 замкнут, ключи. 2 и < разомкнуты) оператор с помощью дополнительной обучающей системы проводит исполнительный механизм через требуемую последовательность рабочих положений. Информация об этой последовательности, получаемая от датчиков положений звеньев, кодируется (шифруется) и поступает в запоминающее устройство. В рабочем режиме (ключ 1 разомкнут, ключи 2 и 3 замкнуты) манипулятор работает автоматически по введенной ранее в запоминающее устройство программе, которая декодируется (расшифровывается) и преобразуется в заданные движения звеньев исполнительного механизма. Кроме того, вычислительное устройство по сигналам от датчиков положений звеньев производит коррекцию работы манипулятора через управляющее устройство.  [c.266]

Сервоклапан является конечным щравляющим элементом элек-трогидравлической системы. Используют два типа клапанов при расходе до 200 л/мин и частоте до 50 Гц применяют клапан с управляющим соплом-заслонкой, при производительности до 600 л/мин и частоте до 500 Гц — клапан с управляющим электродинамическим золотником. Клапан с трехпозиционным рабочим золотником, снабженным индуктивным датчиком положения, имеет управляющий электродинамический золотник. Сигнал рассогласования между параметрами, заданными программой на входе и полученными на силовом цилиндре, сравнивают с сигналом от динамометра.  [c.207]

Для обеспечения работы системы в случае значительных односторонних удлинений испытываемого образца (статическое растяжение, сжатие или накопление деформаций в условиях квазиста-тического разрушения) предусматривается дополнительный автономный контур поддержания среднего положения поршня. Система слежения его, получая сигнал от датчика положения поршня, через усилительную аппаратуру, электродвигатель, зубчатую передачу и винтовые колонны осуществляет перемещение подвижной траверсы, сохраняя среднее положение поршня и соответствующие запасы хода его.  [c.229]


Замкнутые системы безунорного позиционирования осуществляют операцию точного останова подвижного узла машины путем торможения и переключений привода по команде датчиков положений и скорости. В завпснмости от требований точности, конструктивных особенностей привода, требуемого быстродействия осуществляются различные законы торможения.  [c.122]

Рис. 4G. Система управления для безупорной установки заготовок на ноя5-ницах блюминга а — функциональная схема, 6 — структурная схема. БП — блок программы, Ki, К , Кз — ключи, С — сумматор, ЗУ — запоминающее устройство, ЦАП — цифро-аналоговый преобразователь, ДП — датчик положения, ВУ — вычислительное устройство, НП — нелинейный преобразователь. Рис. 4G. <a href="/info/30949">Система управления</a> для безупорной установки заготовок на ноя5-ницах блюминга а — <a href="/info/120986">функциональная схема</a>, 6 — <a href="/info/2014">структурная схема</a>. БП — блок программы, Ki, К , Кз — ключи, С — сумматор, ЗУ — запоминающее устройство, ЦАП — <a href="/info/54332">цифро-аналоговый преобразователь</a>, ДП — датчик положения, ВУ — вычислительное устройство, НП — нелинейный преобразователь.
Профилактическое обслуживание арматуры состоит из комплекса профилактических работ, выполняемых в целях поддержания бесперебойного функционирования арматуры, участвующей в работе системы. Работы по профилактическому обслуживанию проводят в плановом порядке по графикам, разрабатываемым службой эксплуатации АЭС. Периодичность и объем работ устанавливаются с учетом рекомендаций заводов — изготовителей арматуры и накопленного опыта эксплуатации. В объем профилактического обслуживания обычно входят такие работы, как очистка и смазка арматуры, подиабивка сальников, проверка работоспособности приводов, электромагнитов, датчиков положений.  [c.237]

В усилителях типа ПЭГ (табл. 22) применена двухкаскадная система типа золотник—золотник (рис. 41) с автономным питанием первого каскада давлением 5,5 0,5 МПа. Золотник первого каскада подвешен на мембране, движение которой задается электродинамиком с номинальной мощностью управляющего сигнала 20 Вт и сопротивлением катушки S Ом. На этот же динамик через усилитель заведена обратная связь по положению золотника второго каскада. Сигнал обратной связи вырабатывается датчиком положения — линейным дифферен-  [c.249]

Координатно-отсчетное устройство типа PQT для универсальных токарных станков, разработанное фирмой Оливетти (Италия), представлено на рис. 76. Устройство позволяет определять диаметральные и осевые размеры обрабатываемой детали в процессе обработки путем отсчета поперечных и продольных перемещений суппорта. Эти перемещения фиксируются двумя датчиками положения типа ин-дуктосин. Один из датчиков 2 установлен на кронштейне, прикрепленном к продольным салазкам суппорта. Шток датчика / скреплен с поперечными салазками. Второй датчик салазками суппорта. Таким образом, датчик 2 фиксирует поперечные, а датчик 8 — продольные перемещения суппорта. Величины перемещений преобразуются в показания оптических индикаторов, размещенных в корпусе 6 устройства, установленном на передней бабке станка в положении, удобном для наблюдения. Шкала 4 служит для отсчета поперечных перемещений, шкала 3 фиксирует величину и направления продольного перемещения. При обтачивании с продольной подачей инструмент устанавливается на заданный размер (диаметр) в соответствии с показаниями прибора 5, предназначенного для определения первоначального положения инструмента. Это положение задается цифрами, набранными рабочим-оператором на шкале прибора по результатам обработки пробной детали.  [c.128]

Давление в гидросистеме создавалось с помощью специальных поршней, расположенных в цилиндре X, соединенном с вынесенным резервуаром VIII. Перемещением поршней давление поднималось до тех пор, пока датчик положения вала 9 не фиксировал отрыв и смещение плунжеров от задней стенки упорного подшипника на величину порядка 1—1,5 мм. В дальнейшем при проведении эксперимента цилиндр X отключался с помощью вентиля IX от гидросистемы РП.  [c.91]

Рассмотрим состав и возможности прибора АУКОМС-69-01. Предварительно заметим, что при испытании кругов типа АЧК применение датчика размера детали е конструктивно труднее, чем в случае использования датчика положения шлифуемой поверхности (рис. 1,а, б, рис. 5, б). Кроме того, из сигнала (рис. 2,6)  [c.273]


Смотреть страницы где упоминается термин Датчики положения : [c.265]    [c.270]    [c.28]    [c.28]    [c.300]    [c.93]    [c.269]    [c.397]    [c.149]    [c.127]    [c.133]    [c.264]    [c.107]    [c.365]    [c.249]    [c.249]    [c.252]    [c.99]    [c.81]   
Строительные машины (2002) -- [ c.96 ]



ПОИСК



Автоматизация Датчики углового положения

Автоматическое управление лифтами с перекидными датчиками положения

Датчик

Датчик положение оси цифровой

Датчик положения дроссельной заслонки

Датчик положения дроссельной заслонки (ДПДЗ)

Датчик положения дросселя и ключ холостого хода смесителя

Датчик положения коленчатого вала

Датчик положения коленчатого вала двигателя

Датчик положения оси дискретный

Датчик положения распределительного вала

Датчик углового положения коленчатого вала

Датчик частоты вращения и положения коленчатого вала

Датчик частоты вращения и положения коленчатого вала (ДПКВ)

Датчики бесконтактные углового положения

Датчики бесконтактные углового положения Двигатели внутреннего сгорания 85—86 t i Устройства для пуска

Датчики положения сварочного

Датчики положения сварочного инструмента

Датчики углового положения

Неисправность несоответствие сигнала датчика положения дроссельной заслонки

Ошибка сигнала датчика положения коленчатого вала

Приведение датчика ДРУ-1 в положение для эксплуатации

Приведение датчики ДРУ-i в положение для эксплуйтдпни

Проверка датчика положения дроссельной заслонки

Ш а р и н, М. А. Лысаков. Масштабное преобразование измеряемой величины в кодовых датчиках положения

Ш а р и н. Кодовые датчики положения для металлорежущих станков



© 2025 Mash-xxl.info Реклама на сайте