Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы расчета и виды нагрузок

МЕТОДЫ РАСЧЕТА И ВИДЫ НАГРУЗОК  [c.44]

Усталостные разрушения. Этот вид разрушений возникает при циклическом приложении нагрузок, превышающих предел выносливости металла детали. При этом происходят постепенное накопление и рост усталостных трещин, приводящие при определенном числе циклов нагружения к усталостному разрушению деталей. Совершенствование методов расчета и технологии изготовления автомобилей (повышение качества металла и точности изготовления, исключение концентраторов напряжения) привело к значительному сокращению случаев усталостного  [c.26]


Очевидно, что расчет напряжений в зонах отверстий указанных выше типов методами плоской теории упругости и теории пластин и оболочек принципиально невозможен. Вследствие большой сложности расчетного анализа напряженного состояния около отверстий переменного диаметра и косых отверстий методами трехмерной теории упругости для оценки напряжений около таких отверстий проводят экспериментальные исследования поляризационно-оптическим методом или методом тензометрии [5, 6, 8]. Полученные в этих работах данные о концентрации и распределении напряжений около отверстий переменного диаметра и косых отверстий в корпусах и сосудах представляют большой интерес, но, к сожалению, они относятся лишь к некоторым частным случаям соотношений размеров отверстий и видов нагрузок и не позволяют получить систематические данные для определения напряжений.  [c.111]

Разработка технологии. Определив вид заготовки и назначив ТУ на ее изготовление, разрабатывают схему базирования и выбирают тип приспособления. Для основных поверхностей и их систем выбирают методы обработки и виды инструментов, определяют число переходов. При расчете режимов резания выявляется лимитирующий переход и выполняются все расчеты для определения времени его выполнения. За этим следует собственно разработка структуры операции с целью наивыгоднейшего распределения нагрузок от сил резания по рабочим позициям.  [c.741]

Коэффициент запаса зависит от свойств материала, характера действующих нагрузок, точности применяемого метода расчета и условий работы элемента. Для каждого вида деформации устанавливают соответствующие значения допускаемых напряжений. В отдельных случаях возможно небольшое (до 5%) превышение рабочего напряжения над допускаемым, если это обосновано конструктивными соображениями.  [c.138]

Исследование конструктивной прочности рулонированных тонкостенных и толстостенных оболочек типа газопроводных труб и корпусов атомных реакторов Здесь имеются в виду как разработка теории расчета таких систем, так и экспериментальное исследование их напряженно-деформированного состояния (в том числе в упруго-пластической области) и разрушения под действием силовых нагрузок и теплосмен при неравномерном нагреве, а также малоцикловой усталости. Цель — установить их предельное состояние и разработать метод расчета таких объектов на прочность применительно к тем или иным условиям их эксплуатации.  [c.664]


Интенсивность выхода из строя зубчатых колес зависит, в первую очередь, от значений напряжений, возникающих в зубьях. Эти напряжения зависят, с одной стороны, от прикладываемых нагрузок, а с другой — от геометрических колес и зубьев. Для обеспечения необходимого срока службы зубчатых передач надо рассчитать параметры зубчатой передачи так, чтобы они обеспечивали достаточную контактную прочность и прочность на изгиб. Методы расчета на прочность прямозубых и косозубых цилиндрических передач с модулем т 1 мм стандартизован (ГОСТ 21354—75)." Стандартом предусмотрены следующие виды расчетов  [c.200]

Круг решаемых методами сопротивления материалов задач включает в себя задачи расчета безопасных нагрузок, определения надежных размеров элементов, обоснования выбора наиболее подходящих материалов. Для этого необходимо выявить закономерности распределения внутренних усилий и соответствующих им геометрических изменений (деформаций) в элементах в зависимости от их формы и размеров, вида, характера, места приложения, величины и направления нагрузок, определить меры измерения усилий и деформаций и сопоставить их с механическими характеристиками реальных конструкционных материалов.  [c.146]

Вопросы расчета различных конструкций, объективов и аппаратов на нагрузки, которые возникают при их транспортировании автомобильным, железнодорожным и другим транспортом, относятся к малоизученным. Имеются работы, в которых рассмотрены вопросы подрессоривания транспортных машин, расчета амортизаторов, колебания жесткого кузова многоопорных машин и влияния неровностей дороги на нагрузки, действующие на мотор. В последние годы разрабатывалась спектральная теория подрессоривания транспортных машин [75], в основу которой положена стационарная теория случайных процессов. Нет надобности доказывать, что неровности всех видов автомобильных и железных дорог носят случайный характер. Поэтому все задачи определения транспортных нагрузок и построение расчетов, связанных с оценкой напряжений в перевозимых конструкциях, должны опираться на теорию случайных процессов и вероятностные методы расчета как наиболее подходящий математический аппарат.  [c.123]

Расчет по методу допускаемых напряжений можно представить как частный случай расчета по методу предельных состояний для первой группы при одинаковых для всех видов нагрузки значениях коэффициента перегрузки. Вместо одного общего запаса прочности, принимаемого при расчете по методу допускаемых напряжений, в методе по предельным состояниям используют три коэффициента безопасности - по материалу м, по перегрузке п,- и по условиям работы то, устанавливаемые на основе статистического учета действительных условий работы конструкции. Поэтому метод расчета по предельным состояниям позволяет лучше учесть действительные условия работы элементов металлоконструкции и степень воздействия каждой из действующих нагрузок, а также лучше учитывают механические свойства материала.  [c.495]

Следует иметь в виду, что минимально допустимое значение коэффициента запаса прочности [и] неразрывно связано с методом расчета, который включает в себя правила выбора и определения расчетных нагрузок, величин пределов выносливости и параметров кривой усталости детали, расчетные формулы. Изменение метода расчета в какой-либо его части должно сопровождаться уточнением величин [ ]. Это уточнение основывается на расчетах деталей уже эксплуатирующихся машин данного типа и сопоставлении результатов расчета с информацией об отказах по условию прочности в эксплуатации.  [c.175]

Отличным от указанного выше расчета по допускаемым напряжениям является расчет конструкций по коэффициенту запаса прочности по отношению к разрушению. Сначала, надо определить величину нагрузки (или нагрузок), которая вызовет разрушение конструкции, а затем найти допускаемую нагрузку (или рабочую нагрузку) путем деления предельной нагрузки на соответственно выбранный коэффициент нагрузки. Подобный метод расчета называется расчетом по предельной нагрузке, и, как можно видеть, в этом случае при определении рабочих нагрузок величины фактических напряжений, возникающих в конструкции, непосредственно не используются. В общем случае при проектировании металлических конструкций применяется как метод расчета по рабочим напр ян се-ниям, так и метод расчета по предельным нагрузкам. Определение предельных нагрузок для некоторых простых конструкций будет обсуждаться ниже в разд. 1.8 и 9.5.  [c.18]


Расчет тяговых цепей на прочность. При работе цепи возможны три вида ее предельных состояний по критерию прочности усталостное разрушение деталей, появление в них недопустимых пластических деформаций и полное разрушение под действием кратковременной перегрузки. Расчет цепи на прочность в общем виде должен сводиться к определению нагрузок соответственно ( р у, и Ср. в, чри которых могут возникнуть эти состояния. При конструировании новых цепей необходимо определить разрушающую нагрузку Ср. в. И) которую принято считать основным паспортным параметром любой цепи, В ходе производства цепей нагрузки Ср. в. н находят путем испытании на разрыв, получаемые при этом значения должны быть не ниже паспортного, определяемого предварительным расчетом. Излагаемые в учебной и справочной литературе методы расчета цепей на прочность по допускаемым напряжениям непригодны для определения указанных нагрузок. В многолетней практике работы ЦКБ цепных передач и устройств при ВНИИПТуглемаше хорошо зарекомендовал себя метод расчета, изложенный ниже.  [c.31]

Развитие методов динамического исследования механизмов с распределенными параметрами звеньев. Во многих машинах, применяемых в металлургии, горном деле, обогащении, в промышленности строительных материалов и в строительном производстве, представление звеньев в виде-систем, обладающих дискретными параметрами, т. е. сосредоточенными массами и жесткостями, во многих случаях не позволяет объяснить и количественно оценить явления, сопровождающие работу машины. Требуется более тщательный анализ стационарных и переходных процессов, возникающих в результате действия рабочих и инерционных нагрузок. В связи с этим приобретает большое значение развитие точных методов расчета,, основанных на математическом описании систем с учетом распределения параметров — массы и жесткости звеньев.  [c.396]

Приближенный метод расчета полых (и сплошных) цилиндров при осесимметричном их нагружении был предложен В. Л. Бидерманом (1946, 1950) представляя касательное напряжение в виде суммы произведений осевых и радиальных функций, Бидерман задавался подходящими функциями радиуса, а для осевых функций получал вытекающие из принципа минимума потенциальной энергии обыкновенные дифференциальные уравнения, содержащие в правых частях функции, зависящие от приложенных по боковым поверхностям цилиндра нормальных нагрузок распространение метода на случай наличия касательных сил было осуществлено впоследствии В. Г. Горским (1963).  [c.21]

Упрощенные методы расчета напряженного состояния. Наряду с рассмотренными методами, позволяющими учитывать реальные формы поршней и действительные нагрузки, широко применяют методы, в которых производят значительную схематизацию изучаемой конструкции для упрощения процесса расчета напряжений. Выбор расчетной схемы зависит от поставленных целей. Наибольшее распространение получила схема [17], [75] и [76], в основу которой положен схематизированный поршень в виде цилиндрического стакана головка его представлена диском постоянной толщины, а юбка — цилиндром с постоянной толщиной стенки. Несмотря на значительные отличия от реальных конструкций поршней, применение такой схемы дает возможность производить с малой затратой времени сравнительный анализ влияния конструктивных и эксплуатационных факторов на их напряженное состояние. Упрощенные методы полезны также тем, что они облегчают понимание сложных процессов, происходящих в поршне под действием температурных и механических нагрузок.  [c.135]

В работе [86] излагается метод расчета косозубых колес на контактную выносливость, с помощью которого можно исследовать эффективность выбранного вида коррекции теоретическим путем. Предполагается, что у относительно мягких НВ 350) косозубых колес начальное (не прогрессивное) выкрашивание рабочих поверхностей зубьев приведет к такому изменению геометрии зубьев, при котором нагрузка распределится по контактной линии пропорционально изменению приведенного радиуса кривизны зубьев р р вдоль этой линии. В связи с неодинаковой контактной выносливостью опережающих и отстающих поверхностей (см. гл. III) предлагается раздельно учитывать отрезки контактных линий на головках и ножках зубьев, причем несущая способность контактных линий на ножках принимается большей, чем на головках. Автор метода считает, что предложенные им изменения в расчете косозубых передач позволят правильно подойти к выбору коррекции и во многих случаях обеспечат возможность резкого увеличения нагрузок по сравнению с получаемыми с помощью используемых в настоящее время методов расчета. Предлагаемый метод пока не прошел развернутой экспериментальной проверки, что не позволяет сделать окончательного вывода о его эффективности. Представляется, что судить о практической ценности того  [c.208]

В настоящем учебнике изложены основы конструирования и проектирования ЖРД. В нем кроме общих вопросов проектирования ракетного двигателя рассмотрены проектирование отдельных узлов и элементов, виды нагрузок, действующих на элементы конструкции, а также методы инженерных расчетов.  [c.3]

Лобовую стенку на действие распирающих нагрузок рассчитывают по формуле (13) методом расчета отдельных балок. При этом распределение нагрузки между отдельными стойками устанавливают применительно к особенностям конструкции. Продольный борт при расчете на вертикальную нагрузку принимают в виде балки на двух опорах, расположенных в зоне пятниковых узлов. Нагрузка при такой схеме расчета состоит из веса бортов и равномерно распределенной по длине нагрузки, равной 25% полезной нагрузки.  [c.176]


Усилия В элементах стропильных ферм определяют раздельно от каждого вида нагрузок графическим методом-путем построения диаграммы Кремона или аналитическим методом. Применение первого метода характерно для расчета ферм со сложным очертанием поясов и переменных углах наклона решетки, второго — для простых ферм. Для построения диаграммы Кремона вводят цифровые и буквенные обозначения стержней (рис. 87), определяют аналитическим путем опорные реакции и строят многоугольник внешних, а затем внутренних сил.  [c.105]

Поведение других инструментальных сталей аналогично приведенным выше данным. Прочность ледебуритных сталей при самом мягком методе испытаний (сжатии) в 2—3 раза больше прочности при растяжении. Поэтому всегда необходимо иметь в виду, какому напряженному состоянию соответствует предел прочности, о котором идет речь. Из ледебуритных сталей целесообразно изготавливать инструменты, работающие преимущественно на сжатие. К сожалению, часто из-за неправильного расчета в инструментах, кроме благоприятных сжимающих нагрузок, действуют и другие, приводящие к возникновению неблагоприятных схем напряженного состояния. Именно поэтому свойства используемых инструментальных сталей должны удовлетворять и этим -требованиям.  [c.29]

Расчет оболочек без учета влияния деформативноети диафрагм, как было показано выше, дает респределение усилий, значительно отличающееся от опыта. Разработано несколько методов расчета отдельно стоящих и многоволновых оболочек положительной кривизны, учитывающих жесткость диафрагм. В настоящем разделе даются основные положения расчета оболочек методом В. С. Бартенева [49], позволяющим рассчитывать отдельно стоящие и многоволновые ОПГК на действие равномерно распределенной по всей поверхности покрытия и односторонней снеговых нагрузок при диафрагмах в виде балок, арок, ферм, рам и т. д. Расчет разработан для трех вариантов воздействия равномерно распределенной нагрузки (равномерное распределение нагрузки по всему покрытию, кососимметричное загружение в продольном сечении и кососимметричное загружение в поперечном сечении). Последние два варианта позволяют учитывать нагрузку от снеговых мешков.  [c.141]

Современные методы расчета отражают влияние динамичности нагрузок, формы и жесткости деталей, типа напряженного состояния, пластичности, усталости, ползучести и других факторов на несущую способность, поддающихся расчетному или экспериментальному определению. Влияние факторов, не поддающихся таким определениям, должно быть отражено в запасе прочности на основании наблюдений за работой деталей и узлов, статистического анализа данных эксплуатации и испытания машин. Н. С. Стрелецким [33] и А. Р. Ржанициным [28] на основании статистических кривых распределения возникающих усилий и отклонений механических свойств, а также анализа основных факторов отклонения между действительными и расчетными усилиями, обоснована каноническая структура запаса прочности п в виде произведения минимального числа сомножителей п = 1П2П3, каждый из которых отражает важнейшие факторы отклонения между рассчитываемой и фактической несущей способностью детали или конструкции.  [c.536]

Займемся дальнейшим развитием, нестационарной теории профиля с тем, чтобы приспособить ее к анализу обтекания вращающейся лопасти. Хотя основы теории уже излагались в предыдущих разделах, приложение ее к лопасти несущего винта требует учета целого ряда дополнительных факторов. Применение схемы несущей линии разделяет задачу расчета нестационарных аэродинамических нагрузок при пространственном обтекании на две части внутреннюю, в которой исследуются аэродинамические характеристики профиля, и внешнюю, состоящую из расчета индуктивных скоростей, создаваемых в сечении лопасти вихревым следом винта. Что касается внутренней задачи, то при стационарном обтекании плоского профиля аэродинамические нагрузки могут быть получены из эксперимента и представлены в виде табулированных зависимостей их от угла атаки и числа Маха. При нестационарном досрывном обтекании применимы результаты теории тонкого профиля. Решение внешней задачи затруднено тем, что система вихрей винта имеет весьма сложную конфигурацию. За каждой из вращающихся лопастей тянутся взаимодействующие винтовые вихревые поверхности, деформирующиеся в поле создаваемых ими индуктивных скоростей с возникновением областей сильной завихренности в виде концевых вихревых жгутов. Аналитическое определение индуктивной скорости на лопасти без весьма существенных упрощений модели вихревого следа (например, представления винта активным диском) оказывается невозможным. На практике неоднородное поле индуктивных скоростей определяют численными методами, подробно обсуждаемыми в гл. 13. Ввиду сказанного ниже не предполагается отыскивать зависимость между индуктивной скоростью и нагрузкой путем введения функции уменьшения подъемной силы. Напротив, сами индуктивные скорости являются фактором, учитываемым явно в нестационарной теории профиля. Для построения схемы несущей линии желательно, чтобы вычисление индуктивных скоростей производилось лишь в одной точке по хорде. Проведенное выше исследование обтекания профиля на основе схемы несущей линии указывает способ, который позволяет аппроксимировать нестационарные нагрузки с достаточно полным отображением влияния пелены вихрей. Применительно к лопасти достаточно рассмотреть лишь часть пелены, расположенную вблизи ее задней кромки. При построении нестационарной теории обтекания вращающейся лопасти надлежит учесть влияние обратного обтекания и радиального течения. Теоретические нагрузки должны быть скорректированы таким образом, чтобы они отражали влияние  [c.480]

В работе [С.23] представлен метод расчета срывного флаттера несущего винта, основанный на измерениях нестационарных аэродинамических нагрузок на профиле NA A 0012 при его колебаниях по углу атаки относительно линии четвертей хорд. Полученные в этих измерениях зависимости для коэффициентов момента имеют вид гистерезисных петель (рис. 16.5). При колебаниях в отсутствие срыва, как и при развившемся срыве, демпфирование положительно. Но если средний угол атаки при колебаниях соответствует началу вхождения в срыв, то результирующее демпфирование колебаний становится отрицательным. Параметр Нц,, характеризующий демпфирование при обтекании профиля, связан с работой, совершенной потоком над профилем за цикл колебаний, и определяется выражением  [c.809]

Использование дополнительной энергии и теорема Кротти — Энгессера приводят к важному методу расчета конструкций. Этот метод основывается на концепции статической неопределимости, и в нем в качестве неизвестных величин используются лишние статические неизвестные. Тот факт, что неизвестными являются силовые факторы (результирующ,ие напряжений и реакции), согласуется с необходимостью выражения дополнительной энергии в виде функции от нагрузок с тем, чтобы в дальнейшем можно было применить теорему Кротти — Энгессера,  [c.524]


Таким образом, в методе расчета конструкций по предельным состояниям коэффициенты к, ка, пг, п введены вместо прежнего общего коэффициента запаса прочности. Значения их приведены в СНиПе для каждого вида конструкций. Раздельный учет влияния изменчивости нагрузок, механических характеристик материалов, общих условий работы конструкции и других факторов на несущую способность конструкций позволяет точнее определить величины этих коэф4 1циентов, чем единый общий коэффициент запаса прочности.  [c.234]

При втором методе расчета общую величину допуска на отклонения относительных движений и положений исполнительных поверхностей сначала распределяют на основе техьико-эконо-мических расчетов на отдельные слагаемые допуск на отклонения, порождаемые неточностью расчета и заменой точного движения приближенным допуск на отклонения, обусловленные всеми видами деформаций допуск на отклонения, вызванные неточностью изготовления деталей, сборки и регулировки машины без рабочих нагрузок. Получив таким образом величины допусков на исходном звене, отдельно по каждому из перечисленных ранее отклонений производят раздельный расчет величин допусков по каждому виду отклонений для отдельных деталей машины, участвующих своими размерами в соответствующих размерных цепях.  [c.67]

Приведены общетехнические спраючные сведения, характеристики материалов, основы конструирования литых деталей, покрытия, наиболее распространенные разъемные и неразъемные соединения, детали мащин, подшипники и т.д. Изложены расчеты механизмов, механических передач, приводов, муфт, редукторов и т.д., а также упрощенные методы расчетов элементов конструкций при действии динамических и предельных нагрузок. Формулы даны в виде, удобном для непосредственного пользования. Таблицы и иллюстрации сопровождаются минимальным пояснительным текстом, приведены ссылки на литературу, в которой можно найти подробные сведения по расчетам, редко используемым в практике конструирования.  [c.51]

Статистическое обобщение результатов расчетов. Можно отметить два направления использования данных статистического обобщения 1) в качестве информации об уравнении состояния, когда расчету подлежат структуры, рассматриваемые как представительные макрообъемы данной среды 2) в виде уравнений, описывающих распределение напряжений и деформаций в массиве. Такие уравнения были получены И. И. Кандауровым, применившим статистический метод к модели безраспорной дискретной среды с элементами в форме параллелепипеда. С использованием простых схем передачи усилий от элемента к элементу были получены распределения напряжений и деформаций для разных видов нагрузок, продемонстрировавшие широкие возможности этого метода.  [c.32]

Для рассмотренных видов нагрузок мы получили те же фор мулы опорного и узлового бймоментов, что и в 20 при расчете-этой рамы по методу сил. Но заметим, что расчет подобных раь по методу сил значительно проще, чем по методу деформаций.  [c.380]

Специфика электропотребления и степень изученности электрохозяйства по отраслям наложила свой отпечаток также на методическую и информационную основу расчета электрических нагрузок. К примеру, в металлургии и машиностроении основным (нормативным) для определения расчетных нагрузок при проектировании СЭС стал метод упорядоченных диаграмм (метод коэффициента максимума) в горно-добывающей промышленности, в том числе угольной, наиболее широко используется метод коэффициента спроса. Метод прост и нагляден, однако имеет ряд существенных недостатков. Нормативносправочная литература содержит значения коэффициента спроса вне зависимости от количества технологически связанных электроприемников в группе групповые коэффициенты спроса и мощности принимаются одинаковыми для всего многообразия условий, хотя ясно, что это допущение пределы изменения коэффициента участия в максимуме очень широки. Например, для ЭП участков, питающихся от РПП-6 кВ (см. рис. 3.1, уровень За) К- = 0,65- -0,85 метод в исходном виде не учитывает  [c.79]

Следует иметь в виду, что определяемые излагаемыми методами реакции в ки 1ематических парах являются результирующими распределенных нагрузок. кото] ые реально возникают между элементами кинематических пар механизма. Характер распределения этих нагрузок на элементах кинематических пар зависит от конструктивного оформления этих элементов, их размеров, упругих свойств и т. 11. Это обстоятельство всегда надо иметь в виду при расчете на прочность элем(нтов кинематических пар, а также при учете работы или мощности, затрачи-ваем( й на преодоление трения в этих парах.  [c.103]

В качестве примера изложенного метода рассмотрим результаты восстановления (рис. 3.9) вектора нормальных усилий Рг(>") на торце полого кругового цилиндра с теми же геометрическими размерами поперечного сечения, что и в приведенном выше примере. Высота цилиндра -100 мм. Исходная информация бралась в виде радиальной компоненты вектора перемещений на наружной поверхности цилиндра. Внутренняя и наружная поверхности цилиндра свободны от нагрузок, нижний торец закреплен от осевых перемещений. Расчеты проводились вариационноразностным методом на регулярной сетке Аг = 10 мм, Дг = 5 мм. Вначале решалась прямая задача по заданному вектору нормальных усилий на горце р (г) находился вектор перемещений на внешней грани цилиндра затем обратная задача. На выбранной сетке строились матричные аналоги интегральных операторов уравнений (3.16) и (3.17), по которым находился матричный оператор уравнения (3.18). Методом последовательных приближений решалась разностная задача для уравнения (3.18). На рисунке приведены точное решение — пунктирная линия нерегуляризованное решение, соответствующее решению интегрального уравнения первого рода (3.9) и не имеющее ничего общего с искомым решением - кружки с крестиками решение уравнения (3.18), полученное методом последовательных приближений при различных начальных приближениях вектора р°(г) (осциллирующая функция — квадраты, сосредоточенная сила - треугольник. Из рисунка видно, что метод дает устойчивое приближение к искомой функции и мало чувствителен к выбору начального приближения.  [c.78]

М-220) [Л. 40], позволил провести поверочные многО-вариантные расчетные исследования по определению статических характеристик парогенераторов различных типов в широком диапазоне нагрузок при различных видах топлива, конструктивных параметров, обеспечивающих заданную паропроизводительность, влияния различных термодинамических, конструктивных и технологических факторов на параметры парогенераторов. Время расчета одного варианта на ЭВМ по программе ЦНИИКА составляет 5—10 мин. В программе ЦНИИКА учитываются рекомендации нового нормативного метода [Л. 37]. В СКВ ВТИ по данной программе выполнены тепловые расчеты на ЭВМ парогенератора как по нормам 1957 г., так и по новым нормам [Л. 41].  [c.55]

Метод допускаемых напряжений. Расчет по этому методу проводят, если отсутствуют числовые значения коэффициентов перегрузки щ, необходимые для расчета по методу предельных состояний. Этот метод основан на сравнении напряжений (Т, возникающих в элементе конструкции от действия максимальных нагрузок (расчетные случаи II и III), с допускэг емыми напряжениями. Основная расчетная зависимость имеет вид  [c.494]


Смотреть страницы где упоминается термин Методы расчета и виды нагрузок : [c.35]    [c.252]    [c.667]    [c.178]    [c.40]    [c.372]    [c.155]    [c.25]    [c.427]    [c.27]    [c.204]   
Смотреть главы в:

Мостовые краны общего назначения  -> Методы расчета и виды нагрузок



ПОИСК



223 — Виды 224 — Методы

633 — Виды Расчет

Метод нагрузок

Нагрузки Расчет

Нагрузки — Виды



© 2025 Mash-xxl.info Реклама на сайте