Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Что такое эргодическая теорема

Что такое эргодическая теорема . ..............31У  [c.9]

Что такое эргодическая теорема  [c.349]

Статистическая гидромеханика широко использует результаты и методы классической гидромеханики и теории вероятностей. Поэтому знание указанных двух дисциплин сильно облегчит знакомство с настоящей книгой. Тем не менее мы надеемся, что наша книга будет доступной и для лиц, имеющих лишь общую математическую и физическую подготовку. Имея з виду таких читателей, мы включили в первые два раздела основные сведения из классической гидромеханики (начиная с уравнений неразрывности и движения) и из теории вероятностей (начиная с самого понятия вероятности). Уже в этих главах, как и во всех дальнейших, мы старались уделять основное внимание принципиальным вопросам, не задерживаясь на технических деталях. С этим стремлением связано то, что мы нигде не излагаем методов решения встретившихся дифференциальных уравнений или других стандартных математических задач, а сразу приводим ответ (который иногда совсем нелегко найти). В то же время мы сравнительно подробно останавливаемся на некоторых недостаточно широко известных, но важных математических вопросах, традиционно опускаемых во всех книгах и статьях, предназначенных для механиков или физиков (типа, например, вопроса об эргодических теоремах или спектральных разложениях случайных полей) этим объясняется то, что целых два раздела книги посвящены математической теории случайных полей.  [c.25]


Доказательство эргодической теоремы о том, что существует временная вероятность р такая, что точка Р траектории общего положения лежит в заданном объеме v многообразия М, имеет параллели с вышеуказанной теоремой о возвращении, как будет видно в дальнейшем.  [c.343]

Доказательство. Из эргодической теоремы следует, что ц(й (ц))=1. По теореме 1 Л(/, й(ц) )> Ац(/). Так как G ) QR(h (f)), из теоремы 2 получаем обратное неравенство.  [c.192]

Во многих задачах естественная инвариантная мера заранее не известна. В основу теории этой главы кладутся условия на поведение решений уравнений в вариациях, так или иначе связанные с мультипликативной эргодической теоремой. Далее окажется, что часто, исходя из этих условий, можно строить инвариантные меры, а сами эти условия проверять, анализируя локальные свойства динамической системы.  [c.124]

Суть проблемы состоит в обосновании принципа равной вероятности состояний. Многих физиков не удовлетворяет доказательство эргодической теоремы, о котором говорилось в гл. 1, 3, и отступлении 4. Математическое доказательство теоремы носит слишком общий характер и не использует характерные физические свойства тех динамических систем, которые рассматриваются в статистической механике. Поэтому мы склонны думать, что в этом доказательстве в действительности упущены какие-то основные свойства физических систем, благодаря которым статистическая механика оказывается справедливой. Можно предполагать, что соответствие между реально наблюдаемыми величинами и значениями, вычисленными при помощи теории вероятности, объясняется огромным числом частиц, из которого состоят реальные системы. Хотя такое интуитивное соображение, возможно, и верно, полной ясности в этом вопросе пока еще нет.  [c.191]

Рассмотрим фазовую функцию х 1), т. е. функцию, зависящую от времени через динамические переменные, определяющие состояние, или фазу системы. Если фазовые корреляционные коэффициенты р(т), связывающие х (О и х(/- -т), обладают свойством р(т)->0 при т->оо, то функция х (/) есть эргодическая, т. е. ее среднее по времени равно ее фазовому среднему (по поверхности постоянной энергии) для почти всех начальных условий на поверхности постоянной энергии в фазовом пространстве. Фактически для доказательства эргодической теоремы необходимо показать, что корреляционная функция р(т) ведет себя именно нужным образом. Хинчин приводит интуитивные соображения, подтверждающие такое поведение x t) для случая, когда х 1) представляет собой фазовую функцию, зависящую от небольшою числа динамических переменных (координат одной молекулы), в системе с очень большим числом степеней свободы, т. е. с очень большим числом молекул. Однако необходимое свойство корреляционной функции является характерным для необратимого процесса, и его следует установить вполне строго, прежде чем доказывать таким путем эргодическую теорему. Мы исследуем здесь возможность обращения теоремы Хинчина, т. е. изучим, когда и при каких дополнительных условиях из эргодического характера фазовой функции следует ее необратимость, выражаемая асимптотическим поведением корреляционной функции р(т)->0 при т->оо. Это означает, что мы хотели бы изучить возможность получения статистической механики необратимых процессов, исходя из эргодического постулата, точно так же, как это делается в статистической механике равновесных процессов. В этой связи нас не интересует, является ли эргодическое свойство общим динамическим свойством или оно справедливо лишь в том случае, когда  [c.305]


В настоящей работе понятие эргодичности оставляется в стороне. Мы отказываемся от принятия эргодической гипотезы она одновременно и недостаточна и не необходима для статистики. Мы исходим из понятия движений размешивающегося типа. В работе показывается, что необходимое механическое условие для применимости статистики заключается в требовании того, чтобы в фазовом пространстве системы все области, начиная с некоторых, достаточно больших областей, деформировались с течением времени так, чтобы при сохранении объема — по теореме Лиувилля — их части распределялись по всему фазовому пространству (точнее, слою заданных значений однозначных интегралов движения) все более и более равномерно. Далее, устанавливается критерий, которому должна удовлетворять потенциальная энергия системы для того, чтобы осуществлялось такое размешивание и показывается, что во всех случаях практически важных сил взаимодействия этот критерий будет выполнен.  [c.169]

Эта теорема известна под названием, предложенным еще самим Больцманом, как эргодическая теорема ). Теперь определим эргодический поток как такой поток, для которого справедлива формула (П.6.5). С интуитивной точки зрения формула (П.6.5) вьфажает то, что почти любая траектория системы проводит равное время в одинаковых по объему областях фазового пространства.  [c.380]

Если принять такую точку зрения, то эргодическая теорема очень сильно упрощала бы проблему вычисления средних величин. В самом деле, если такая теорема справедлива, то практически неразрешимая динамическая задача вычисления среднего значения величины Ь по траектории (в свою очередь подлежащей определению) для одиночной системы заменяется гораздо более простой задачей вычисления среднего значения этой же величины по энергетической поверхности. Последний метод приводит к весьма привлекательной физической интерпретации. Концепция меры, которая играет столь важную роль в эргодической теории, является столь же решающей и для теории вероятности. Таким образом, мы приходим к заключению, что к динамической величине Ъ можно подходить как к случайной переменной. Вместо одной системы рассматривается бесконечное количество тождественных копий этой системы, распределанных непрерывно по фазовому пространству. Множество таких систем называется ансамблем. Плотность распределения изображающих точек F (х) интерпретируется как плотность вероятности нахождения интересуюш ей нас системы в данной точке фазового пространства. (Иными словами, мера области в фазовом пространстве интерпретируется как вероятность нахождения системы в данной области.) Поскольку полная мера всего фазового пространства равна единице, система определенно находится где-то в доступном ей фазовом пространстве. Макроскопическая динамическая величина В теперь определяется как  [c.384]

Таким образом, мы полностью присоединяемся к той группе физиков (к ней принадлежат, в частности, Толмен и Ландау), которые считают, что эргодическая теорема является любопытным свойством динамических систем, но не имеет отношения к обоснованию статистической механики. Выход из обсуждавпшхся выше трудностей заключается в том, чтобы рассматривать средние по ансамблю (П.7.2) как первичное определение макроскопических динамических функций, не вводя какой-либо более фундаментальной концепции. Эргодическая теорема, таким образом, отходит на второй план. Более того, отпадает упомянутая выше главная трудность. Теперь макроскопическая величина В в (П.7.2) уже может быть функцией времени. В самом деле, соответствующую функцию Ь можно считать зависяш ей от времени и при этом усреднять ее по ансамблю тогда ожидаемое значение будет, очевидно, зависеть от времени. Не нужно вводить какого-либо немеханического предположения для определения закона эволюции во времени он задается самими уравнениями механики b t) = U t)b [см. (1.2.24)]. В силу соотношения (П.7.2) данный механический закон эволюции индуцирует закон эволюции макроскопических величин B t) [см. (2.2.9)].  [c.386]

Здесь мы покажем (см. п. 4.1, 4.2 и приложение В), что система Лоренца отвечает простейшему лагранжиану суперсимметричного поля, компоненты которого представляют величины г/, Л, 5. В отличие от обычной полевой теории стохастической системы [39], где грассмановы компоненты суперполя играют вспомогательную роль переменных, не обладающих физическим смыслом, в рассматриваемом случае они задают управляющий параметр 5. С другой стороны, объединение переменных г , Л, 8 в вектор суперсимметричного пространства является отражением самосогласованного поведения синергетической системы (в отличие от статистической полевой схемы [39], где суперполе представляет не более чем удобное техническое средство). Исследование корреляторов суперполя, проводимое в п. 4.3, показывает, что в эргодическом состоянии компоненты таких корреляторов не являются независимыми наличие суперсимметрии обуславливает выполнение флуктуационно-диссипационной теоремы, связывающей указанные компоненты [39]. С включением за-  [c.90]


Эргодическая теорема применяется к разнообразным серьезным задачам анализа и прикладной математики — как ко всей солнечной системе, так и к простой задаче бильярдного шара Так, в известной идеализации для системы Земля-Солнце-Луна Дж. У. Хилла (ограниченная задача трех тел), можем сразу же утверждать (с вероятностю 1), что Луна обладает истинно средним угловым вращением вокруг Земли (измеренное через период), одинаковым в обоих направлениях времени.  [c.353]

Доказательство. В этом случае спектральное разложение имеет вид Ai = Q = Qo. Пусть еСШ). По эргодическо теореме существует функция g такая, что  [c.87]

Начиная с 70-х годов, преимущества широкого изучения действия общих групп стали очевидными и соответствующая теория интенсивно развивалась в тесном взаимодействии с теорией представлений, теорией групп Ли и дифференциальной геометрией. При этом, в свою очередь, эргодические методы дали много нового и для теории групп Ли (например, в теории арифметических подгрупп Мостова—Маргулиса) и теории представлений. Особенно важно, что метрические задачи для групп R , групп движений и др. стали широко использоваться в математической физике. В самое последнее время активно изучаются действия бесконечномерных ( больших ) групп (например, групп диффеоморфизмов, токов и др.). Различие между локально к01мпактными группами и остальными в эргодической теории очень существенно, а именно, орбиты действия не локально компактной группы могут не иметь даже квазиинвариантной меры поэтому разбиение на орбиты, разложение на эргодические компоненты могут быть не определены корректно. Для локально компактных групп эти вопросы решаются так же, как и для групп Z и R. Здесь мы будем рассматривать лишь локально компактные группы. Остановимся на немногих общих вопросах определение действия групп, эргодические теоремы, характеризация дискретного спектра.  [c.79]

Напомним, что для 2 и для К эргодическая теорема Бирь гофа — Хинчина выглядит так  [c.82]

С эндоморфизмом Т (Uf) (х) —f(Tx). Эти теоремы ближе к теории операторов, чем к эргодической теории, обычно онк рассматриваются для операторов в произвольных линейных пространствах. Наиболее общие теоремы доказаны А. А. Тем-пельманом. Оказалось, например, что статисти.ческие теоремы для групп Ли (в том числе и для неаменабельных) имеют место для произвольной последовательности усредняющих множеств Gn, меры которых стремятся к бесконечности [47]. В то> же время для дискретных групп имеются контрпримеры к аналогичному утверждению. Например, если W2 — свободная группа с двумя образующими, а G — множество слов длины п,. то существует такое действие, что при усреднении по Gn нк индивидуальная, ни статистическая теоремы не имеют места  [c.83]

Данное обстоятельство приводит к тому, что дальнейшее исследование эргодических свойств биллиардов, по сравнению с гладкими равномерно полно гиперболическими системами (см. гл. 7, 3), значительно усложняется. В самом деле, для последних систем сразу можно доказать эргодичность. Это делается с помощью метода, впервые примененного Хопфом (Е. Hopf) для доказательства эргодичности геодезического потока на поверхности постоянной отрицательной кривизны. Идея этого метода состоит в том, что для почти всех точек Х и Х2 фазового пространства рассматриваемой системы строится конечный набор W4, W , Л.У1А и ЛНМ (цепочка Хопфа) такой, что Wfdxi, и где y = i l. Тогда из эргодической теоремы Биркгофа—Хинчина, (см. гл. 1, 2) легко выводится, что точки Xi и Х2 принадлежат  [c.183]

Эргодическая теорема утверждает, что < >врем = где А — фазовое среднее, определяемое соотношением (1,13). Смысл весового множителя I grad < Ж I 1 в (1.13) можно понять, если учесть, что он определяет промежуток времени, в течение которого фазовая точка проходит окрестность точки Р, так как grad = (р1 —  [c.104]

Квантовая механика, конечно, как и всюду, внесла в самые основы статистической механики существенные изменения. Так, например, эргодическая гипотеза здесь становится теоремой, изменяется, в силу закона сохранения состояний, принадлежащих к определенной группе симметрии, сама схема вычисления вероятности состояния. Но и здесь все, что касается обоснования термодинамики, остается почти что по-старому, вследствие чего лекции Лоренца продолжают служить великолепным введением и для этих более возвышенных областей. Здесь следует указать снова на книгу Фоулера (последняя глава), книгу Бриллюэна , небольшую книжку Й о р д а и а и, наконец, на статьи Неймана .  [c.14]

Предположение о равновероятности микросостояний поверхности заданной энергии (так называемое эргодическое распределение) было отвергнуто нами на основании непосредственного сопоставления его с опытом и, в частности, на основании сравнения с опытом определяемой этим предположением вероятности обнаружить неравновесное состояние. Сопоставление с опытом может быть проведено и несколько иным путем. Равномерное на поверхности заданной энергии распределение вероятностей, как известно, стационарно. Следовательно, математическое ожидание любой, относящейся к рассматриваемой системе величины, являющейся функцией состояния, не изменяется со временем. Между тем, ZT-теорема указывает на возрастание энтропии. Именно этот аргумент был выдвинут в свое время Цермело [4], рассматривавшим его как доказательство невозможности молекулярно-кинетического истолкования второго начала (аналогично предыдущему этот аргумент может быть усилен при помощи соединения его с законом больших чисел). Об этом доводе Цермело мы упоминали в 3. Мы отметили там также, что рассуждения Цермело должны быть дополнены совершенно новыми аргументами.  [c.78]


Кроме того, в рассматриваемой трактовке /Г-теоремы при помощи Я-кривой с самого начала предполагается, что осуществляется заданная динамическая траектория (которая может, например, обладать эргодическими свойствами). Получаемое таким путем толкование /Г-теоремы не дает возможности цолучить основное свойство релаксации — распределение состояний после времени релаксации по флюктуационной формуле  [c.116]

Мы видели, что последняя трудность, связанная с конкретным видом вероятностной схемы, так же как и неудовлетворительность описания состояния релаксации (неприменимость флюктуационной формулы), не являются логически необходимыми следствиями классического характера теории их можно из-бел ать, если при интерпретации Я-теоремы итти по пути, охарактеризованному в 4 и 8. Мы указали здесь, тем не менее, на эти добавочные недостатки интерпретации Я-теоремы с помощью ступенчатой -кривой, так как эта интерпретация очень распространена, благодаря ее мнимой простоте и кажущейся возможности получить ее при помощи эргодической гипотезы или даже при помощи менее точного качественного динамического утверждения. Кроме того, переход от интегральной Я-теоремы к локальной существенен для одной из основанных на квантовой механике трактовок вопроса о необратимости работы Неймана [21], Паули и Фирца [22]), где присущих такому переходу недостатков уже нельзя избежать способом, подобным тому, который может быть использован в классической теории.  [c.119]

Цель, которая должна быть поставлена перед квантовыми теориями, посвященными обоснованию статистики, по существу совпадает с той, которая ставилась в работах, исходивших из классических представлений. Эта цель заключается в том, чтобы дать интерпретацию не только некоторым частным проблемам — эргодичности илп ZT-теоремы, как обычно ставилась задача, но и всей совокупности принципов, лежащих в основании физической статистики. Эти принципы — эргодический характер временных средних, равномерная (относительно начальных состояний и относительно выбора той или иной величины заданной группы величин) сходимость к пределу временных средних, существование релаксации п /f-теорема — были охарактеризованы нами в 1 главы I. До сих пор обычно оставлялись в стороне утверждения о равномерной сходимости и о релаксации (в том смысле, что после некоторого времени — времени релаксации — вероятности состояний должны определяться флюктуационной формулой). Мы будем различать в дальнейшем две части проблемы необратимости проблему монотонного возрастания энтропии, которую будем называть ЛГ-теоремой, и проблему релаксации, имеющую только что определенный смысл. Совокупность указанных принципов лежит в основании как классической, так и квантовых статистик. В квантовых статистиках эти утверждения выражаются лишь на квантовом языке, так же как и понятия состояний системы, вероятностных распределешш, эргодических средних и т. д.  [c.135]

Методы, позволяющие решать задачи теории колебаний распределенных систем, не прибегая к их замене дискретными системами, разработаны еще недостаточно. Наметн.м идею одного нз таких методов. Вернемся к уравнению (32). Допустим, что оператор L является линейным оператором по переменным х, у и z и линейным дифференциальным оператором по времени / при этом время t явно в выражение для оператора не входит. Предположим, что оператор I переводит любую функцию q с ограниченным квадратом в функцию w, квадрат которой также ограничен. Больше никаких ограничений иа оператор не накладывается. Пусть, далее, нагрузка q является эргодической стационарной случайной функцией от вр емени t и произвольной случайной функцией с ограниченным средним квадрато.м от координат х, у, г. По теореме Хинчина  [c.536]

Необходимые и достаточные условия того, что процесс является эрго-дическим в соответствии с теоремой Биркгофа-Хинчина следующие его стационарность, причем строгая и так называемая метрическая транзитивность, состоящая в том, что любая часть совокупности реализации случайного процесса уже йе стационарна (строго). Стационарность-это необходимое условие эргодичности. Для нестационарного процесса первый и второй моменты (средние по совокупности) могут быть функциями времени, и в этом случае средние по времени не будут совпадать со средними по реализациям. Временная корреляционная функция для стационарного (в том числе для эргодического) процесса есть функция корреляционного интервала т = Г2-Г1, в то время как для нестационарного и, следовательно, неэргодического процесса корреляционная функция зависит от двух аргументов-корреляционного интервала т и текущего времени г. Однако стационарность, будучи необходимым условием эргодичности, не является условием достаточным. Так в [26] приводится пример стационарной случайной функции, не удовлетворяющей условию транзитивности, а потому не являющейся эргодической. В связи со сказанным, неставдо-нарные случайные процессы не удовлетворяют условиям эргодичности. Приведенные рассуждения о связи стационарности и эргодичности поясняются условным графическим изображением случайных процессов на рис. 1.  [c.9]

Теорема 4.1.12. Каждая инвариантная борелевская вероятност ная мера для непрерывного отображения / метризуемого компактного пространства X может быть разложена в интеграл эргодических инвариантных борелевских вероятностных мер в следующем смысле существует разбиение по модулю множеств меры нуль) пространства X на инвариантные подмножества Х , а е А, где А — пространстве Лебега, и каждое множество Х может быть снабжено такой / -инвариантной эргодической мерой, что для любой функции <р выполненс равенство  [c.150]


Смотреть страницы где упоминается термин Что такое эргодическая теорема : [c.385]    [c.115]    [c.175]    [c.206]    [c.225]    [c.691]    [c.734]    [c.33]    [c.173]    [c.214]    [c.216]    [c.114]    [c.18]    [c.81]    [c.84]    [c.383]    [c.140]    [c.175]    [c.149]    [c.388]   
Смотреть главы в:

Динамические системы  -> Что такое эргодическая теорема



ПОИСК



Теорема эргодическая

Что это такое

Эргодический



© 2025 Mash-xxl.info Реклама на сайте