Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругие круговые кольца

Из методических соображений, прежде чем перейти к исследованию устойчивости цилиндрической оболочки, детально рассмотрена родственная задача устойчивости упругого кругового кольца. Затем дан вывод основного линеаризованного уравнения круговой цилиндрической оболочки, находящейся в неоднородном безмоментном докритическом состоянии, и получено выражение для подсчета изменения полной потенциальной энергии такой оболочки. Приведены решения только двух задач устойчивости оболочки при равномерном внешнем давлении и равномерном осевом сжатии. Многочисленные решения других задач устойчивости оболочек получены приближенными методами [7,9, 19,22,27].  [c.220]


Рассмотрим вывод таких уравнений на примере тонкого упругого кругового кольца.  [c.370]

УПРУГИЕ КРУГОВЫЕ КОЛЬЦА Общие сведения  [c.50]

Упругие круговые кольца  [c.51]

При нагрузках, меньших критических, стержень, пластина или круговое кольцо не имеют других состояний равновесия кроме невозмущенного устойчивого начального состояния (рис. 6.23, а). При достижении критической нагрузки наряду с начальным невозмущенным состоянием равновесия становятся возможными новые возмущенные состояния равновесия. С дальнейшим увеличением нагрузки начальное состояние равновесия перестает быть устойчивым, взамен его появляется новое возмущенное состояние равновесия, в которое переходят стержень, пластинка или круговое кольцо (кривая А В на рис. 6.23, а). При плавном нарастании нагрузки упругий стержень, пластина или круговое кольцо иде-  [c.268]

Если закрепления краев упругой оболочки таковы, что допускают чисто изгибную деформацию оболочки без удлинений и сдвигов ее срединной поверхности, то оболочка тоже имеет критическую точку бифуркации первого типа и при потере устойчивости ведет себя аналогично сжатому стержню или круговому кольцу. В этом случае существует тоже только одно критическое значение нагрузки, при превышении которого оболочка плавно, без хлопков переходит в новое возмущенное состояние равновесия.  [c.269]

На рис. 6 приведены и другие примеры упругих систем, нагруженных параметрическими силами круговое кольцо, нагруженное равномерно распределенной радиальной периодической во времени нагрузкой (рис. 6, б), изгибно-крутильные колебания упругой балки, нагруженной периодическими силами в одной из главных плоскостей инерции (рис. 6, в), изгибные колебания пластин и оболочек, нагруженных периодическими силами, действующими в срединной поверхности, и т. п. (рис. 6, г, д).  [c.246]

Линеаризованные уравнения устойчивости упругой цилиндрической оболочки получим с помощью приема фиктивной нагрузки, как это было сделано при выводе линеаризованных уравнений устойчивости пластины и кругового кольца (см. 7.2 и 8.1). При этом задачу устойчивости цилиндрической оболочки рассмотрим в следующей постановке  [c.221]

Ниже рассмотрим задачу для кольца в случае плоского напряженного состояния под действием неосесимметричных нагрузок и задачу о плоской деформации толстостенной упругой круговой цилиндрической конструкции под действием случайного нагружения. Результаты исследований показывают, что принимая различные упрощения в части математической постановки задачи, можно с достаточной точностью приблизиться к решению конкретной технической задачи.  [c.166]


Выше рассмотрены контактные задачи в случае взаимодействия оболочечной конструкции (в месте расположения подкрепляющего кольца-шпангоута) и кругового ложемента. В данном случае оболочки являются для шпангоута некоторым упругим основанием, учет влияния которого может быть в конечном итоге проведен введением некоторых эквивалентных жесткостей. При дискретном подкреплении кольца требуется учет локальности включения подкрепляющих элементов, что значительно усложняет задачу. Рассмотрим круговое кольцо, шарнирно скрепленное в нескольких точках с плоской упругой системой (рамой или фермой), опертое на круговое опорное основание (ложемент) (рис. 2.18).  [c.64]

Рассмотрим взаимодействие подкрепленной цилиндрической оболочки и соосного кругового кольца (бандажа), контактирующих между собой через упругий слой (прокладку). В свою очередь, опорное кольцо нагружено посредством кругового упругого основания (ложемента). Оболочка испытывает поперечное нагружение в виде локальных радиальных рг(ф), касательных /г(ф) сил и изгибающих моментов П1г(ф), приложенных к подкрепляющим шпангоутам (рис. 4.29). Предполагаем, что коэффициенты податливости прокладки и кругового основания ложемента при растяжении и сжатии С2 в общем случае различны. Если упругий слой не скреплен с контактирующими элементами, то коэффициент податливости при растяжении принимаем равным нулю ( i = 0).  [c.154]

Комплексные потенциалы, описывающие напряженное (деформационное) состояние, могут иметь в некоторых точках особенности, связанные с наличием дефектов или структуры в материале. Такие особенности — концентрации напряжений (КН) — дают краевые дислокации и клиновые дисклинации. При решении краевых задач теории упругости характер особенностей необходимо знать заранее, и это нетрудно. Воспользуемся решением первой основной задачи теории упругости-тела кругового кольца [154]. Не принимая во внимание условные однозначности смещений и полагая, что внешняя нагрузка отсутствует, будем иметь некоторое решение. Йз него устремляя внешний радиус к бесконечности, а внутренний к нулю, получим комплексные потенциалы, описывающие поля напряжений краевой дислокации  [c.127]

Рассмотрим первую основную задачу моментной теории упругости для. кругового кольца, ограниченного окружностями радиуса Ri и Яг, поскольку из ее решения легко получить решения для де-  [c.161]

Этот результат опять-таки можно иллюстрировать примером с круговым кольцом. Действительно, если в вышеприведенном примере примем q = 0, то решение становится определенным, перемещения однозначными и очевидно, что отношение упругих постоянных не войдет в решение при этом всестороннее давление на края отверстия является самоуравновешивающейся системой сил.  [c.432]

Исследование кругового кольца подтверждает, следовательно, предварительное заключение 6.07 относительно того, что поправки для напряжений, зависящие от изменения отношения упругих постоянных, в большинстве случаев будут вероятно ничтожными. Это конечно ни в коем случае не может считаться абсолютным доказательством для общего случая. Полученные выше общие теоремы дают возможность определить эти поправки там, где ими нельзя просто пренебречь или вычислить их величину аналитически это определение может быть сделано путем специального исследования напряжений, вызванных соответствующими дислокациями.  [c.450]

Метод сингулярных интегральных уравнений оказался эффективным также при решении задач теории трещин для кусочно-однородных тел [18, 19, 32, 77, ПО, 121, 152, 173]. Предлагаемая модификация интегральных уравнений при наличии кругового отверстия применяется в данной главе при исследовании составных кольцевых областей с трещинами. В качестве примера решена первая основная задача теории упругости для кусочно-однородно -го кругового кольца с краевыми трещинами решение получено в приближенной и строгой постановках.  [c.183]


Получим численные решения задач об упругом равновесии кругового кольца с треш инами.  [c.187]

Краевые радиальные трещины. Изложенный в предыдущем параграфе метод решения задачи теории упругости для кольцевых областей с трещинами применим и для кругового кольца, рассмотренного в шестой главе другим подходом. Отметим, что в дан-  [c.191]

В начале данной главы получены сингулярные интегральные уравнения первой основной задачи плоской теории упругости для кольцевой пластины с трещинами, ограниченной внутренним круговым и произвольным внешним контурами. В параграфе 3 подробно рассмотрено круговое кольцо с краевыми радиальными трещинами. Ниже, пользуясь этим же приемом, изучим упругое равновесие эллиптической пластины с одной или двумя радиальными трещинами, выходящими на внутреннюю круговую границу, при действии сосредоточенных сил на замкнутых граничных контурах.  [c.200]

С помощью описанной б -модели задачу о напряженно-деформированном состоянии твердого тела с начальными трещинами и зонами пластичности возле них можно свести к упругой задаче для тела с разрезами. Таким приемом будут решены обобщенная задача Гриффитса и упругопластическая задача для кругового кольца с краевыми трещинами.  [c.220]

Как и в случае обобщенной задачи Гриффитса, представим зону пластичности L3 разрезом, к берегам которого (помимо действующих нагрузок) приложены постоянные сжимающие напряжения, равные пределу текучести материала на растяжение ат. Вследствие такой замены сформулированная упругопластическая задача сводится к решению упругой задачи для кругового кольца с разрезами, длина которых равна сумме длин исходной трещины и пластической зоны. Эта задача подробно исследована в седьмой главе с тем лишь отличием, что в данном случае задана разрывная нагрузка на берегах разреза, длина которого не известна и подлежит определению.  [c.229]

Теория Кирхгоффа возбудила много споров, в ходе которых удалось устранить многочисленные трудности, найти путь к упрощенному ее построению и в то же время подтвердить ее конечные выводы. В более близкое К нам время она нашла применение в решении задач устойчивости упругих систем, как, например, выпучивания равномерно сжатого кругового кольца или поперечного выпучивания кривого стержня с узким прямоугольным поперечным сечением, подвергнутого чистому изгибу.  [c.308]

Многочисленные смешанные задачи теории упругости и математической физики для областей различных геометрических форм (плоскость, нло- скость с круглым отверстием, полуплоскость, полоса, клин, прямоугольник, круговой диск, круговое кольцо, пространство, полупространство, слой, конечный или бесконечный цилиндр, пространство с бесконечной цилиндрической шахтой и т. д.) методом построения функции влияния сводятся к интегральным уравнениям первого рода с ядрами, представимыми в виде своих главных й регулярных частей. Применение к ним метода ортогональных, полиномов приводит к бесконечным системам линейных уравнений, ядра которых выражаются, вообще говоря, трехкратными интегралами. При численном анализе указанных задач возникает необходимость вычисления этих интегралов. В таких задачах наиболее Часто встречаются интегралы следующих типов  [c.475]

Исследуем возможные формы упругой линии и границы существования их при симметричном изгибе кругового кольца ма-  [c.100]

Изучаются изгиб и кручение призматических стержней, плоская задача теории упругости (изгиб кругового стержня, задача Ламе для кругового кольца, задача Колосова для эллиптического отверстия в бесконечном растягиваемом листе).  [c.6]

Напряженное состояние подшипниковых колец. Современные методы математической теории упругости, созданные академиком Н. И. Мусхелишвили и развитые многочисленными его учениками, позволяют решить ряд новых задач подшипниковой техники. Ниже приведены результаты применения плоской теории упругости к изучению напряженного состояния кругового кольца, посаженного на вал (или в корпус) с натягом под действием сосредоточенных сил, приложенных к дорожке качения кольца.  [c.54]

Распределение напряжений в изотропной полуплоскости, ослабленной круговым отверстием, в которое впаяно упругое круговое кольцо из инородного материала, разыскивает И. Г. Ара-манович [2.6]. Путем представления решения в виде специального ряда, автор приходит к бесконечной системе линейных алгебраических уравнений относительно искомых неизвестных. Отметим, что полученпая система квазирегулярна при как угодно сближенных границах области. Развитие статьи [2.6] содержится в работах [2.7, 2.8].  [c.284]

Однако существенно больший интерес представляют такие задачи, для решения которых элементарные гипотезы не могут привести к цели. Типичный пример — задача о кручении призматического стержня. Если принять для кручения такую же гипотезу плоских сечений, которая была принята для изгиба, окажется, что верный результат получится только для того случая, когда сечение представляет собою круг или круговое кольцо для других форм сечения эта гипотеза приведет к очень грубой ошибке. Точно так же никакие элементарные нредно-ложения не позволяют найти напряжения в толстостенной трубе, подверженной действию внутреннего давления. Можно привести много примеров других элементов конструкций, для которых напряжения и деформации нельзя определить с помощью элементарных приемов, а нужно использовать уравнения теории упругости.  [c.266]


В выражениях (4.30), (4.31) г — радиус кругового кольца F — площадь поперечного сечения кольца /г — момент инерции меридионального сечения кольца относительно радиальной оси — полярный момент инерции сечения h — геометрическая характеристика /кесткости сечения кольца на кручение Е, G и р — модули упругости и плотность материала кольца qz — перемещение  [c.62]

Изложенный в настоящей главе материал имеет большое практическое значение, поскольку упругое круговоё кольцо является типичной расчетной схемой весьма распространенного элемента силовой конструкции ракет — шпангоута. Приводимые б главе уравнения могут быть использованы для расчета как изолированных шпангоутов, так и шпангоутов, подкрепляющих тонкую обшивку. Кроме того, задача изгиба кругового кольца имеет методическое значение - сравнительно простые уравнения равновесия элемента кольца и зависимости, связывающие перемещения и деформации, весьма полезны для облегчения понимания вывода уравнений теории оболочек вращения.  [c.104]

Задача решена, и можно определить напряженное состояние кругового кольца (в частности, плоскости с круговым отверстием) для любы способов нагружения. Из этих выражений легко найти решение для кругового отверстия в поле растяжения, полученное в 185]. В этой работе показано, что при учете моментных напряжений коэффициент концентрации силовых напряжений зависит от коэффициента Пуассона и отношения радиуса отверстия к масштабному фактору I. Изменение коэффициента концентрации oжeт быть значительным (до 30%)- Кроме того, для разрушения сун ествен-но, на каком структурном уровне рассматривается концентратор. Появление моментных напряжений может привести к новым видам их релаксации за счет поворотов элементов структуры (двойникова-ние, мартенситное цревращение). Решение задачи для жесткого включения в упругую плоскость также не представляет трудности и приводит к таким же качественным выводам.  [c.163]

П р и м е р 7.23. Определить упругую линию и изгибающие моменты замкнутого кругового кольца, опертого в верхней точке и нагруженного сосредоточенной силой в нижней (рис. 7.29 а). В расчетах принять изгибная жесткость в плоскости кольца EJz= onst точка приложения силы может перемещаться только по вертикали.  [c.288]

В том же 1940 г. вышла еще одна пионерская работа по численному решению ГИУ для плоской задачи теории упругости [15]. В ней Ц. О. Левина и С. Г. Михлин рассмотрели плоскость с двумя вырезами. Эта область конформно отображается на круговое кольцо, для которого известна функция Грина. В результате получено ГИУ, решенное численно путем предварительного разложения его ядра в ряд и перехода к близкому уравнению с вырожденным ядром, а последнее решалось сведением к алгебраической  [c.267]

В заключение отметим некоторые работы, в которых рассмотрено решение плоских задач теории упругости методом Шварца. В [63] рассмоторено решение этой задачи для эксцентрического кругового кольца. В [41] решена задача для бесконечной области, ограниченной двумя круговыми контурами. В [135 рассмотрено решение задачи теории упругости для бесконечной области, ограниченной несколькими эллиптическими контурами. В [81] рассмотрен итерационный метод решения задач теории упругости для тел, содержащих упругие включения, свойства которых отличаются от свойств окружающего их материала (матрицы). Этот метод в основном аналогичен методу Шварца и в определенном смысле является его обобщением.  [c.236]

Этот результат представляет собой случай изгиба пластинок, исиользоваиный впоследствии А. Надаи для экспериментального подтверждения приближенной теории изгиба ), предложенной Кирхгоффом. О другой интересной краевой задаче упоминается н Натуральной философии Томсона—Тэйта. Здесь сообщается по этому поводу До сих пор, к сожалению, математикам не удалось решить, а возможно, что они даже и не пытались решать, прекрасную задачу об изгибании широкой, весьма тонкой полосы (подобной, например, часовой пружине) в круговое кольцо ). Лэмб исследовал антикластический изгиб по краю тонкой полосы ) и достиг большого прогресса в решении задачи о балке ). Рассматривая бесконечно длинную балку узкого прямоугольного сечения, нагруженную через равные интервалы равными сосредоточенными силами, действующими поочередно вверх и вниз, он упростил решение двумерной задачи а для некоторых случаев получил уравнения кривых прогиба. Таким путем было показано, что элементарная теория изгиба Бернулли достаточно точна, если высота сечения балки мала в сравнении с ее длиной. При этом было также показано, что поправка на поперечную силу, даваемая элементарной теорией Рэнкина и Грасхофа, несколько преувеличена и должна быть снижена до 75% от рекомендуемого этой теорией значения. Надлежит упомянуть также и о труде Лэмба, посвященном теории колебаний упругих сфер ) и распространению упругих волн по поверхности полубесконечного тела ), а также в теле, ограниченном двумя плоскими гранями ). Он изложил также и теорию колебаний естественно искривленного стержня ). Особый интерес для инженеров представляет его и Р. В. Саусвелла трактовка колебаний круглого диска ).  [c.407]

А. Тимпе ), рассмотрев несколько частных случаев, пришел к решениям X. С. Головина для изгиба части кольца парами и силами, приложенными по концам. Круглое кольцо представляет собой простейший случай многосвязной области, и общее решение для него содержит многозначные члены. Тимпе дает физическое истолкование факту многозначности решений, принимая во внимание остаточные напряжения, возникающие в результате разрезания кольца, смещения одного конца в месте разреза относительно другого и последующего соединения их тем или иным способом. Как мы уже упоминали выше (см. стр. 421), общее исследование решений двумерных задач для многосвязных контуров было проведено Дж. Мичеллом ), показавшим, что распределение напряжений в этом случае не зависит от упругих постоянных материала, если объемные силы отсутствуют, а поверхностные силы таковы, что их равнодействующая обращается в нуль на каждом контуре. Это заключение представляет большую практическую важность в тех случаях, когда исследование напряжений производится поляризационно-оптическим методом. Случай кругового диска, нагруженного в произвольной точке сосредоточенными силами, был исследован Р. Миндлином ). Автор настоящей книги изучил частный случай напряженного кругового кольца, именно сжатие его двумя равными противоположно действующими по диаметру силами ). При этом было показано, что в сечении, расположенном на некотором расстоянии от точек приложения нагрузок, достаточно точным для практических целей является даваемое элементарной теорией Винклера гиперболическое распределение напряжений. Другие примеры деформации круговых колец были изучены Л. Файлоном ) и Г. Рейсснером ). К. В. Нельсон ) в связи с задачей  [c.486]

Пластинка, толщина которой б мала по сравнению с остальными размерами, подвергается действию приложенных по контуру сил, лежащих в срединной плоскости пластинки. Положим, что нам известен закон распределения напряжений. Задача заключается в том, чтобы найти, как изменятся напряжения, если в какой-либо точке пластинки, удаленной от контура, сделать круглое отверстие малого диаметра. Частный случай поставленной задачи решен Г. Киршем ), им разобран случай растяжения пластинки. Свое решение Г. Кирш получил путем подбора. Процесса этого подбора решения он не приводит, а дает окончательные значения перемещений и деформаций и показывает, что они удовлетворяют основным уравнениям теории упругости. Недавно вышла по этому же вопросу новая работа П. А. Велихова ). Хотя автор в начале своей работы и указывает, что ему при отыскании решения много помогла гидродинамическая аналогия, но в действительности опять все сведено к постепенному подбору решения. В заключение этой работы автор приходит к результатам Г. Кирша. Ниже мы подробно остановимся на работе П. А. Велихова, здесь же предлагаем решение задачи прямым путем, а не путем подбора. Такое решение вполне возможно, если рассматривать задачу как плоскую и воспользоваться общим решением ее в случае кругового кольца ).  [c.106]


И. Г. Араманович [1 ] рассмотрел практически интересную задачу о напряжениях в упругой полуплоскости с незаглубленным отверстием круговой формы, подкрепленным упругим же кольцом из другого материала. Внешние воздействия здесь могут быть разнообразными, как, например, нормальное давление на внутреннем контуре впаянного кольца, растяжение полуплоскости параллельными прямолинейной границе силами, сосредоточенная нагрузка на краю полуплоскости и др.  [c.579]

Задана L Рассмотрим симметричный изгиб тонкого кругового кольца под действием равномерной горизонтально направленной распределенной нагрузки (7= onst по схеме, показанной на рис. 8.11. Вследствие симметрии достаточно рассмотреть одну четвертую часть кольца. Возможны два типа форм упругой линии, изображенные соответственно на рис. 8.12 и 8.13.  [c.202]

Дчфференциалыюе уравнение (4.52) упругой линии кругового кольца при плоском изгибе с учетом зависимости (9.17) запишем в следующем виде  [c.378]

II. Железобетонные Р. 1. Общие указания. При расположении железобетонных Р. в земле руководствуются правилами, приведенными для каменных Р. Железобетонные Р. применяются преимущественно там, где не вполне надежен грунт. В остальных случаях выбор того или другого материала зависит от стоимости сооружения. Наиболее целесообразной формой железобетонного Р. является круглая, в виде кругового кольца, испытывающего при сравнительно тонких стенках лишь растягивающие напряжения. Растягивающие усилия воспринимаются кольцевой арматурой, причем толщину бетонной стенки делают с таким расчетом, чтобы растягивающие напряжения в бетоне не превосходили допускаемых (ок. 10 кг/см ). Площадь сечения горизонтальных железных колец приходящаяся на единицу высоты стены, должна увеличиваться с глубиной воды. Кроме того закладывается равномерно вертршальная распределительная арматура, толщина которой по высоте меняется. Места примыкания стен ко дну подвергаются изгибу, поэтому д.- б. соответственным образом армированы. Наиболее часто круглые Р. находят применение в водонапорных башнях. Прямоугольные Р. применяются там, где по местным обстоятельствам предназначенная для их размещения площадь д. б. полностью использована. Прямоугольная форма допускает лучшее деление Р. на отделения кроме того опалубка для бетона при прямоугольном Р. получается более простая и дешевая. Но, с другой стороны, условия для работы упругих сил в стенках прямоугольных Р. менее выгодны т. к. помимо растягивающих усилий на стенки действуют еще изгибающие моменты кроме-того углы легко становятся водопроницаемыми. При значительной глубине воды стенки прямоугольных железобетонных Р. требуют усиления ребрами. В общем глубина воды в Р. не должна превышать 5 м. Малые Р., устанавливаемые в земле, наиболее целесообразно проектиррвать в виде полушара (фиг. 27) или цилиндрической формы с плоским дном и сводчатым перекрытием. Малые Р., устанав-.ттиваемые в особых помещениях, обыкновенно конструируют с самостоятельным дном и располагают независимо от находящихся под ними междуэтажных перекрытий, отделяя их толевой или иной подходящей прокладкой (фиг. 28). Жесткое соединение дна Р. с его опорой допустимо лишь в случае вполне надежного грунта, исключающего всякую возможность какой-либо осадки в противном случае Р. надлежит сооружать независимо ог его опоры. Р. в земле надлежит во всяком случае располагать вне зависимости от других зданий и снабжать вентиляционными трубами. При значительных размерах в плане открыто стоящих железобетонных Р. (напр, бассейнов для плавания или иных целей) лишь один их конец закрепляется жестко в грунте, все же остальные опоры конструируются подвижными, в виде качающихся или легко деформирующихся тонких стоек,, наподобие изображенных на фиг. 29, или  [c.177]


Смотреть страницы где упоминается термин Упругие круговые кольца : [c.74]    [c.158]    [c.613]    [c.343]    [c.112]    [c.244]    [c.236]   
Смотреть главы в:

Прочность, устойчивость, колебания Том 3  -> Упругие круговые кольца



ПОИСК



Кольца круговые Колебании нагибные упругие — Устойчивость

Кольца круговые Колебания изгибные упругие — Устойчивость Потеря

Кольца круговые — см- Круговые кольца

Кольцо — см, круговое кольцо

Круговые кольца — Применение для упругие — Запрессовка в оболочки вращения 33, 34 — Применение для подкрепления края оболочек вращения 19—23 39—41 Применение для сопряжения двух

Устойчивость за колец круговых упругих Потеря

Устойчивость за пределами упругости колец круговых упругих Потеря



© 2025 Mash-xxl.info Реклама на сайте