Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент инерции сечения полярный

Моменты инерции сечений полярные 184, 202  [c.783]

Но dF= J — полярный момент инерции сечения Поэтому  [c.192]

Полярный момент инерции сечения шва определяется как сумма осевых моментов инерции =  [c.63]

J, Jo — осевой и полярный моменты инерции сечений валов, м  [c.335]

Полярным моментом инерции сечения называется геометрическая характеристика, определяемая интегралом вида  [c.95]

Полярный момент инерции сечения внутренней трубки — наружной — /р. Они определяются, как для кольцевых сечений, по формулам  [c.128]


По расчетной формуле (2.50) находим требуемый полярный момент инерции сечения, выразив модуль сдвига О в паскалях  [c.189]

В 2.16 при исследовании зависимости между крутящим моментом и касательными напряжениями возникла еще одна геометрическая характеристика — полярный момент инерции сечения Jр. Появление этой величины обусловлено неравномерностью распределения касательных напряжений по сечению при кручении.  [c.192]

Сумма осевых моментов инерции сечения относительно взаимно перпендикулярных осей равна полярному моменту инерции относительно точки пересечения этих осей. Моменты инерции относительно осей, проходящих через центр тяжести сечения, называются центральными.  [c.194]

Полярный момент инерции сечения относительно начала коорди  [c.182]

В формулах (23.1)... (23.3) Е ц О — модули продольной упругости и сдвига материала / —длина звена А — площадь его поперечного сечения Jр — полярный момент инерции сечения J — момент инерции сечения,  [c.294]

Постоянную с находим из условия Q = MI(GJi) при / = 0, где /i = =/р —полярный момент инерции сечения. Следовательно,  [c.312]

Пользуясь рис. 2.87, установим связь между полярным и осевыми моментами инерции сечения. По определению (см. стр. 231),  [c.246]

Для стержня круглого сечения /1 равен полярному моменту инерции сечения Ур. Моменты инерции У2 и Уз (а для круглого сечения н У1=Ур) входят в характеристики жесткости стержня Ац  [c.27]

Интеграл, входящий в выражение М , представляет собой геометрическую характеристику сечения, называемую полярным моментом инерции сечения и обозначаемую Jp  [c.234]

При изучении растяжения, сжатия и кручения можно было заметить, что возникающие в сечениях напряжения и перемещения зависели не только от действующих нагрузок, но и от размеров поперечных сечений. Так при растяжении и сжатии они зависели от площади поперечного сечения бруса, а при кручении бруса круглого сечения — от более сложных геометрических характеристик — от полярного момента инерции и полярного момента сопротивления сечения.  [c.241]

Известно, что полярный момент инерции сечения выражается интегралом вида  [c.244]

Отсюда требуемый полярный момент инерции сечения вала 180 max Мг-100 180-22,9-Ю . 100  [c.67]

Полярные моменты инерции сечений отдельных участков имеют следующие значения (см. рис. 4-8, а, б) участка АС  [c.71]

При расчетах на прочность, жесткость и устойчивость используются геометрические характеристики поперечного сечения бруса площадь, осевые и полярный моменты инерции, осевые и полярный моменты сопротивления. Кроме того, при их определении вспомогательную роль играют статические моменты и центробежные моменты инерции сечения.  [c.80]


Полярный момент инерции сечения в виде круга определится следующим образом  [c.26]

На основе своих исследований Сен-Венан сделал общие выводы, представляющие практический интерес. Он показал, что в случае односвязных сечений при заданной площади поперечного сечения крутильная жесткость увеличивается при уменьшении полярного момента инерции сечения. Отсюда следует, что при заданном объеме материала круглый вал будет обладать максимальной крутильной жесткостью. Подобные выводы можно сделать, и рассматривая максимальное касательное напряжение. При заданном крутящем моменте и площади поперечного сечения максимальное напряжение будет наименьшим для поперечного сечения с минимальным моментом инерции.  [c.308]

Здесь 1р - полярный момент инерции сечения вала  [c.30]

Пример 27. На цилиндрическом валу постоянного поперечного сечения (рис. 42) длиной 2I = 50 см, закрепленном одним концом, насажены два одинаковых диска с моментами инерции 7i = 72 = 50 кгм . Один из дисков насажен посередине вала, а другой —на его свободном конце. Полярный момент инерции сечения вала Ур = 602 см, а модуль сдвига 0 = 8,3- 10 н/см . Определить, пренебрегая массой вала, частоты fei и fea и формы свободных крутильных колебаний дисков.  [c.93]

Найти полярный Ур и осевой У моменты инерции сечения круглой трубы, приближенно рассматривая сечение как тонкое кольцо толщиной и длиной nd по средней линии. Выразить точное значение У ", полученное как разность моментов инерции наружного (di=d+0 и внутреннего d =d—i) кругов, через и отношение t/d. Насколько отличается приближенное значение от точного при отношении tjd=0, 1  [c.80]

При расчетах на изгиб, кручение, сложное сопротивление, а также при расчетах сжатых стержней на устойчивость используются более сложные геометрические характеристики сечений статический момент, а также осевой (или экваториальный), полярный и центробежный моменты инерции сечений. Выражения этих характеристик отличаются от выражения (5.1) тем, что у них под знаки интеграла входят произведения элементарных площадок ЛР на функции координат у, г, р этих площадок (рис. 5.1). Таким образом, указанные геометрические характеристики зависят не только от формы и размеров сечения, но также от положения осей и точек (полюсов), относительно которых они вычисляются.  [c.135]

Таким образом, сумма осевых моментов инерции сечения относительно двух взаимно перпендикулярных осей равна полярному моменту инерции этого сечения относительно точки пересечения указанных осей.  [c.141]

Что называется осевым, полярным и центробежным моментами инерции сечения  [c.164]

Полярный момент инерции сечения относительно точки равен сумме его моментов  [c.112]

Если на участке бруса крутящий момент и полярный момент инерции сечения постоянны, то угол закручивания — угол относительного поворота концевых сечений этого участка (в радианах) — определяется по формуле  [c.166]

J —полярный момент инерции сечения.  [c.478]

B. Уравнение кручения бруса с круглым поперечным сечением M = GJpQ, где М — крутящий момент G — модуль сдвига /р — полярный момент инерции сечения Q = d(pldl — относительный угол закручивания.  [c.69]

Здесь = GJqH— коэффициент жесткости, зависящий от модуля упругости материала проволоки при кручении G, полярного момента инерции сечения проволоки Jo и длины проволоки I.  [c.220]

Отношение полярного момента инерции сечения к его радиусу называется по.гярным мо.ыентом сопротив.гсния и обозначается 11 р  [c.186]


Смотреть страницы где упоминается термин Момент инерции сечения полярный : [c.268]    [c.29]    [c.204]    [c.556]    [c.332]    [c.114]    [c.84]    [c.186]    [c.76]    [c.131]    [c.306]    [c.112]    [c.189]    [c.140]    [c.112]    [c.166]    [c.119]   
Вибрации в технике Справочник Том 1 (1978) -- [ c.146 ]



ПОИСК



Вычисление полярного момента инерции и полярного момента сопротивления сечения вала

Вычисление полярных моментов инерции и моментов сопротивления сечения вала

Кручение Моменты инерции сечений полярные

Момент инерции

Момент инерции полярный

Момент полярный

Полярный

Сечения Момент инерции



© 2025 Mash-xxl.info Реклама на сайте