Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ПРОЦЕССЫ ПЕРЕНОСА В СВЯЗАННЫХ СРЕДАХ

ПРОЦЕССЫ ПЕРЕНОСА В СВЯЗАННЫХ СРЕДАХ  [c.102]

При изучении динамического поведения жидкостей мы обычно рассматриваем некоторые аспекты явлений переноса, а именно способность жидкостей в своем движении переносить присущие им материальные характеристики и физические свойства от точки к точке пространства, и механизм, посредством которого эти характеристики и свойства распространяются и переносятся в жидкой среде. Основными явлениями переноса, которые связаны с движением жидкости, являются перенос массы, тепла и импульса (количества движения). Каждый из этих процессов в свою очередь связан с тем или иным фундаментальным законом физики, который сформулирован на основании наблюдений и опыта. Связь этих процессов и законов может быть представлена в следующем виде.  [c.61]


Большое значение в технике приобрели процессы теплообмена в движущихся средах. Как известно, течение любой жидкости или газа может быть разделено иа принципиально различные области ламинарного и турбулентного течения. Теплообмен при ламинарном и турбулентном течениях имеет различный Характер. Теплообмен в движущейся среде (жидкость или газ) представляет собой конвективный теплообмен, или. короче, конвекцию. При этом перенос тепла осуществляется путем перемещения объемов жидкости или газа, а следовательно, этот вид теплообмена неразрывно связан с переносом самой среды. Обычно при технических расчетах теплообмен между потоком жидкости, газа и поверхностью твердого тела называют конвективной теплоотдачей. Различают свободную (гравитационную) и вынужденную конвекции.  [c.8]

Явление конвекции происходит лишь в текущей среде, т. е. в жидкостях или газах. Под конвекцией понимают процесс переноса теплоты при перемещении объемов жидкости или газа в пространстве из области одной температуры в область другой. При этом перенос теплоты неразрывно связан с переносом самой среды. Конвекция обычно сопровождается теплопроводностью.  [c.89]

Конвекция возможна только в текучей среде. Под конвекцией теплоты понимают процесс ее переноса при перемещении объемов жидкости или газа (текучей среды) в пространстве из области с одной температурой в область с другой. При этом перенос теплоты неразрывно связан с переносом самой среды.  [c.5]

Понятие конвективного теплообмена охватывает процесс теплообмена при движении жидкости или газа. При этом перенос теплоты осуществляется одновременно конвекцией и теплопроводностью. Под конвекцией теплоты понимают перенос теплоты при перемещении макрочастиц жидкости или газа в пространстве из области с одной температурой в область с другой. Конвекция возможна только в текучей среде, здесь перенос теплоты неразрывно связан с переносом Самой среды.  [c.125]

Явление теплопроводности в жидкостях и газах, так же как и в твердых телах, вполне определяется коэффициентом теплопроводности и температурным градиентом (см. гл. 1). Иначе обстоит дело с явлением конвекции — вторым элементарным видом распространения тепла. Здесь процесс переноса тепла неразрывно связан с переносом самой среды. Поэтому конвекция возможна лишь в жидкостях и газах, частицы которых легко могут перемещаться.  [c.32]

В жидкометаллических системах, имеющих разную температуру в различных участках, наблюдается интенсивное коррозионное воздействие среды благодаря специфическому эффекту, получившему название термический перенос массы. Этот эффект связан с увеличением растворимости твердого металла в жидком с увеличением температуры. В системе с циркулирующим жидким металлом процесс переноса массы можно разделить на следующие этапы [208]  [c.259]


При рассмотрении многих вопросов, связанных с различными топочными устройствами для жидкого топлива, в частности с камерами горения газовых турбин, важно определить время, необходимое для сжигания капли жидкого топлива заданного начального размера, если известны температура и состав среды, в которой капля находится, и условия ее движения. В действительности выбор расчетной температуры среды и остальных параметров для определения условий переноса и теплообмена представляет большие трудности. Однако, прежде всего, для построения теоретического расчета процесса горения в камере необходимо найти метод определения времени горения единичной капли, с тем чтобы затем уже перейти к более сложной задаче.  [c.57]

Теплофизический процесс связан с установлением закономерностей переноса тепла и влаги от поверхности изделия в окружающую среду (внешний тепло- и влагоперенос), а также перенос тепла и влаги в самом изделии (внутренний тепло- и влагоперенос).  [c.113]

Понятие конвективного теплообмена охватывает процесс теплообмена при движении жидкости или газа. При этом перенос тепла осуществляется одновременно конвекцией и теплопроводностью. Под конвекцией тепла понимают процесс переноса тепла при перемещении макрочастиц жидкости или газа в пространстве из области с одной температурой в область с другой. Конвекция возможна только в жидкой среде, здесь перенос тепла неразрывно связан с переносом самой среды. Под теплопроводностью понимают процесс передачи тепла при непосредственном соприкосновении отдельных частиц тела или отдельных тел, имеющих различные температуры. Теплопроводность обусловлена движением микрочастиц тела.  [c.121]

Различают диффузию линейную и пространственную, полубесконечную и ограниченную, стационарную и неустановившуюся. Линейная диффузия происходит в одном направлении, пространственная-в нескольких направлениях одновременно. Диффузия считается полубесконечной, если фронт диффузии не успевает за время испытания достичь границ системы в случае сорбционных испытаний в жидкой среде гравиметрическим методом-середины образца). Под фронтом диффузии понимают границу заметного изменения концентрации низкомолекулярного вещества, вызванного процессом переноса. Фронт диффузии связан с глубиной проникновения, которая может быть зафиксирована индикаторным или поляризационно-опти-ческим методом.  [c.42]

Для полноты описания реального физического процесса переноса оптического изображения в дисперсных средах необходимо также учитывать еще два фактора, первый из которых связан с учетом энергетического ослабления излучения при его прохождении через среду. Это ослабление приводит только к затуханию интенсивности в распределении по плоскости изображения, не исканная само распределение. Следовательно, учет энергетического ослабления производится просто умножением ОПФ на величину если выполняются условия применимости закона Бугера. Далее, при наблюдениях объектов через дисперсные среды (например, в дневной атмосфере) на изображение накладывается фон рассеянного излучения от посторонних источников. Этот фон обычно не имеет частотно-пространственной структуры и его можно с большой точностью считать помехой в виде постоянной составляющей.  [c.77]

Однако понятие частично-локализованных фурье-амплитуд и связанное с ними в случае стационарно-флуктуирующих полей понятие яркости света ( 1.1) в точке г с направлением распространения и и частотой ск очень удобно и наглядно. Оно вполне законно в рамках геометрической оптики и является основным понятием для описания процессов переноса света в мутных средах.  [c.85]

Поскольку только модулированные колебания и волны могут переносить информацию, процесс создания модуляции и перенесения заданной модуляции на несущую чрезвычайно интересен для разнообразных приложений. В этой главе мы рассмотрим лишь процессы возникновения модуляции. В основном речь пойдет о модуляции волн, возникающей при их распространении и взаимодействии в нелинейных средах. Нелинейные явления и эффекты, связанные с модуляцией волн, очень разнообразны. Это самофокусировка волновых пучков [1, 25], са-  [c.410]


Понятие конвективного теплообмена (теплоотдачи конвекцией) охватывает процесс теплообмена, обусловленный совместным действием конвективного и молекулярного переноса тепла. Под конвективным переносом понимается процесс переноса тепла при-перемещении макрочастиц жидкости или газа в пространстве из области с одной температурой в область с другой. Конвекция возможна только при движении среды перенос тепла конвекцией связан с переносом вещества. Под молекулярным переносом (теплопроводностью) понимается процесс переноса тепла посредством теплового движения микрочастиц в среде с неоднородным распределением температуры. Конвекция тепла всегда сопровождается теплопроводностью, так как при движении жидкости или газа неизбежно соприкосновение отдельных частиц, имеющих различные температуры.  [c.58]

Понятие ячейки и пробной частицы в дисперсной среде. Процессы переноса в двухфазной смеси определяются распределением микропараметров (напряжений, температур, ютнцептрацпп компонент и т, д.) вокруг неоднородностей. При этом, для того чтобы анализ получался обозримым, приходится не только существенно упрощать уравнения микронроцессов, но н схематизировать структуру смеси. Одной из возможных такого рода схем является схема с введением в каждой макроскопической точке диспе])Сной среды ячейки с пробной дисперсной частицей и приходящейся на нее несущей фазой. Таким образом, в каждой мак-роскоогической точке, определяемой вектором х вводится ячейка, связанная с центром пробной частицы и движущаяся с макроскопической скоростью дисперсной фазы в этой точке V2(i, х), Размер ячейки определяется объемным содержанием фаз и равен по  [c.109]

Теплообмен связан с весьма сложными процёссами и при его изучении надо знать законы и методы, анализа, применяемые в физике, термодинамике, гидрогазодинамике, а при изучении процессов переноса в химически активных средах —и химии.  [c.172]

Одновременно с углублением основ теории подобия, очищением ее понятий и уточнением аппарата лроисходило интенсивное проникновение ее методов в самые различные области. Эти методы становятся основным средством исследования процессов химической технологии, сушки, термической обработки строительных материалов и др., связанных с явлениями переноса в сплошных средах. Нет никакой возможности дать даже самый краткий обзор всего этого огромного множества работ.  [c.19]

Уже целое столетие развиваются экспериментальные и теоретические исследования экзотермических волн, распространяющихся в горючих смесях газов, а также в твердых и жидких горючих средах. Механизмом тепловыделения в таких средах являются экзотермические химические реакции, скорость протекания которых при комнатной температуре практически равна нулю и становится очень большой при температурах, достигаемых в ходе реакции (например, смеси водорода или ацетилена с кислородом или с воздухом, смесевые твердые топлива ракетных двигателей). Механизм распространения тепла в несгоревшую еще смесь естественно предполагать обусловленным процессами переноса — теплопроводностью и диффузией активных частиц, т.е. не связанным с макроскопическим упорядоченным движением среды. Однако уже в 1881г. Бертло и Вьей, Маллар и Ле Шателье открыли явление детонации, при котором горение распространяется по газовой среде со скоростями, в тысячи и миллионы раз превосходящими скорость нормального распространения пламени. Механизм распространения зоны тепловыделения в этом случае связан с прохождением по холодной горючей смеси сильной ударной волны, сжимающей и нагревающей смесь и тем самым включающей химическую реакцию с интенсивным тепловыделением роль процессов переноса в распространении зоны тепловыделения в практически реализуемых случаях химической детонации мала.  [c.117]

Данная глава посвящена процессам переноса при движении одиночной частицы, взвешенной в турбулентном потоке жидкости. Хорошо известно, что пока еще нет вполне удовлетворительных и апробированных методов анализа этой задачи. В этой главе описаны физические особенности процесса, требующие объяснения, сделана попытка обобщения имеющегося запаса знаний в данной области, что должно стимулировать дальнейшее осмысливание проблемы. Следует отметить, однако, что задачи, связанные с одиночной частицей, не яв.ляются препятствием для исследования систем, содержащих множество частиц. Обсуждение этой проблемы преследует также цель указать на потребность в других методах исследования. В гл. 4—9 показано, что уже многое достигнуто в об.иасти динамики многофазных систем путем соответствующего обобщения методов механики сплошной среды.  [c.29]

Режим с малым изменением радиуса пузырька. Рассмотрим такой режим, когда в начальный момент жидкость (г > а) имеет однородную температуру (Ti = T ) и процесс начинается из-за резкого изл енения давления в пузырьке рг и связанной с рг температуры насыщения Taipi), совпадающей с температурой Тх на поверхности пузырька. На начальной стадии, когда размер пузырька после указанного изменения рг пе успел заметно измениться, в уравнении теплопроводности жидкости можно пренебречь конвективной составляющей переноса тепла по сравнению с молекулярной теплопроводностью. Тогда на этой стадии самое сложное уравнение системы (2.6.13) — уравнение с частными производными относительно распределения температуры в жидкости Ti = Ti, нужное для определения si, приближенно может быть записано в таком же виде, как в неподвижной среде  [c.198]

Характер кривой распределения температуры стенки трубы при различных значениях недогрева жидкости на входе Д/нед связан также с процессом формирования профилей скорости и температуры на входном участке трубы, т. е. на участке гпдродпнамиче-ской и тепловой стабилизации лотока. При уменьшении А/нед сечение, в котором устанавливается развитое поверхностное кипение при неизменных значениях q и Шо, оме-щается в направлении входа в трубу. Если при этом развитое поверхностное кипение устанавливается в области стабилизированного течения [величина (//й()н.к больше относительной длины участка стабилизации], то значение н. не зависит от недогрева жидкости, На участке стабилиза-потока развитое поверхностное кипение устанавливается при более высокой (по сравнению со стабилизированным течением) срёднемассовой температуре жидкости. В этом случае чем меньше недогрев на входе в трубу, тем при большей температуре н.к устанавливается развитое поверхностное кипение. Данное явление объясняется тем, что на входном участке трубы локальное значение коэффициента теплоотдачи в однофазном потоке увеличивается по мере приближения к входному сечению. Так как интенсификация конвективного теплообмена в однофазном потоке всегда приводит к снижению относительного влияния механизма переноса теплоты, обусловленного процессом парообразования, то при данных значениях q и Шр влияние последнего механизма переноса проявляется только при более высокой температуре жидкости. В условиях повышенной интенсивности теплообмена в однофазной среде возрастает и длина зоны перехода к развитому поверхностному кипению.  [c.265]


Процессы переноса вещества представляют собой предмет особой теории массообмена. Во многих случаях массообмен непосредственно связан с теплопередачей, и оба процесса существенно влияют друг на друга. Так, например, одним из эффективных способов защиты элементов машин от воздействия потока газа высокой температуры является так называелГое пористое охлаждение, рри таком способе защиты охлаждающая среда (газ, испаряемая жидкость) вводится через пористую стенку в пограничный слой основного потока газа и, воздействуя на этот поток, существенно меняет интенсивность теплообмена.  [c.417]

Молярный 1массонеренос вызывается появлением в материале или исследуемой среде устойчивого градиента общего давления уР- Так, при интенсивном нагреве влажной дисперсной среды происходит весьма сильное парообразование, приводящее к созданию устойчивого градиента давления парогазовой смеси. Последнее обусловливается соизмеримостью времени релаксации избыточного давления через скелет материала и образованием за это же время пара, необходимого для восстановления исходного состояния. В жидкостях и газах появление существенного перепада давления может быть обусловлено каким-нибудь внешним полем. Наложение молярного переноса на молекулярные процессы приводит к перестройке (изменению) механизма переноса и связанной с ней существенной интенсификации процесса.  [c.391]

Явления переноса в мембранах являются в основном процессами диффузионного типа, связанными со взаимным наложением явлений (в частности, явлений гидродинамики пористой среды) и протекающими со сравнительно малыми скоростями. Поэтому наиболее естественным аппаратом для описания этих явлений представляется термодинамическая теория необратимых процессов, большим преимуществом которой является отсутствие необходимости использовать модельные представления при анализе явлений [8—10]. Этот аппарат нашел широкое применение при анализе различных явлений тепло- и массопереноса и был исПбльзован, в частности, для исследования некоторых мембранных явлений [3]. Наиболее общей в этом отношении является работа Ставер-мана [И], теоретически рассмотревшего различные характеристики мембранных явлений (диффузионный потенциал, электрокинетйческие явления и т. п.) в изотермических условиях.  [c.269]

Имеется довольно обширная литература, посвященная теплопроводности в гетерогенных средах, появление которой объясняется главным образом технологической важностью применения таких материалов в качестве теплоизоляции. Изоляционные материалы на основе минеральных волокон можно рассматривать как одну из разновидностей композиционных материалов, в которых окружающий воздух играет роль непрерывной матрицы. Вследствие наличия в таких материалах двух фаз — газообразной и твердой— их называют двухфазными материалами. Однако использо-Bainie такого термина для композиционных материалов, в которых оба компонента находятся в твердом состоянии, оказалось ие вполне точным. Само понятие композиционный уже указывает на присутствие в таком материале более одного компонента и оказывается вполне достаточным для его характеристики. Несмотря на несомненное принципиальное сходство между волокнистыми теплоизоляциоными и композиционными материалами, имеется и существенное различие, оказывающее заметное влияние на свойства, связанные с явлениями переноса в композиционных материалах. В изоляционных материалах непрерывная фаза (воздух или какой-либо другой газ) находится в непосредственном контакте с волокнистым твердым телом. В композиционных материалах конструкционного назначения матрица и армирующий наполнитель приводятся в контакт в процессе формования под действием заданного давления и температуры. Любой дефект, образующийся в процессе формования, например иесмачивание части армирующего наполнителя полимерным связующим, присутствие воздушных включений на поверхностях уплотненного волокнистого мата, препятствует равномерному распределению компонентов и в дальнейшем приведет к возникновению сопротивления на границе раздела фаз. Кроме того, очевидно, что в течение определенного периода времени под действием, например, влаги, влияние этих неблагоприятных условий будет увеличиваться. Хотя этот эффект может быть легко обнаружен, поскольку он приводит к ухудшению механических свойств композиционных материалов, оказывается, что в литературе отсутствуют какие-либо сведения о его влиянии на тепло- и электропроводность.  [c.287]

Суть значительного числа методов, описанных в литературе и связанных с оценкой влияния деформированного состояния на процессы переноса газов и жидкостей, заключается в следующем предварительно растягивают полимерный образец при температурах, значительно превышающих температуру стеклования, затем его охлаждают и далее определяют проницаемость в обычных диффузионных ячейках [42]. В последние годы опубликована методика оценки проницаемости однооснорастянутых полимерных образцов [43]. Проницаемость эластично-деформированной пленки измеряли с использованием специального держателя, позволяющего одноосно растягивать исследуемый образец. Газопроницаемость растянутой пленки оценивали с помощью газоанализаторов. Данная методика позволяет определить значения коэффициентов диффузии и проницаемости, а также непосредственно и толщину растянутых образцов недостатком является небольшой интервал исследуемых деформаций (до 35%) трудности деформирования и оценки параметров переноса при температурах, отличных от комнатных отсутствие регистрации усилий, создаваемых в растянутых образцах ограниченный круг исследуемых низкомолекулярных сред. В работе [44] описана методика оценки относительного количества проникшей в материал жидкости в зависимости от напряжения. Нагруженные образцы помещали в окрашенные растворы и после выдержки исследовали на микрофотометре. Полученные результаты являются чисто сравнительными и не дают конкретной информации о процессах активированной или капиллярной диффузии.  [c.199]

В связи с объемным характером теплообмена излучением в поглощающих средах оптические свойства последних оказываются тесно связанными с процессами переноса тепла излучением. Это в значительной степени должно определять специфику методов исследования оптических характеристик ослабляющих сред. В их основу может быть положено уравнение переноса энергии (20.77) описывающее изменение интенсивности излучения. Эти соображения ввиду боль-П1ИХ методических трудностей используются, однако, далеко не полностью. Поглощательная способность обычно определяется по относительному изменению интенсивности излучения  [c.526]

Коэффициент Т1, вообще говоря, зависит от давления газа, так как при достаточно высоких давлениях наступает адсорбционное насыщение поверхности. Коэффициент т] связан также с процессами переноса внешней среды вдоль полости трещины в область вблизи ее вершины. Эти процессы в зависимости от внешних условий могут быть весьма разнообразными (вязкое течение, капиллярная конденсация, кнудсецовская диффузия и т. д.).  [c.380]

При исследованиях процессов в зоне контактного взаимодействия твердых тел обычно встречаются с трудностями, связанными, с одной стороны, с противоречив выми данными исследований состояния поверхностей трения. К ним относятся результаты, показывающие неоднозначность влияния поверхностно-активной среды, типа кристаллической структуры, распределения плотности дислокаций и т. п. С другой стороны, эти сложности определяются отсутствием литературы, посвященной детальному сопоставлению различных методов исследования, их возможностей, преимуществ и недостатков при анализе поверхностей трения. Совершенно естественно, что в одной книге авторы не могли обсудить и решить все основополагающие вопросы трения и изнашивания, однако попытались привести и проанализировать наиболее важные и перспективные, по мнению авторов, направления анализа структуры и методы изучения поверхностных слоев металла, деформированного трением, и показать в этой связи некоторые специфические особенности. Так, представления о закономерностях структурных изменений при пластическом деформировании рассмотрены с новых позиций развития в объеме и поверхностных слоях материала деструкционного деформирования — накопления микроскопических повреждений в процессе деформирования. Большое внимание уделено диффузионным процессам при трении, как одному из факторов, доступному для управления поведением пар трения. До сих пор фактически нет данных о характере перераспределения легирующих элементов контактирующих материалов, которые кардинально изменяют свойства поверхностных слоев и, следова тельно, механизм контактного взаимодействия. Более того, вообще нет сведений о структурных изменениях в поверхностных, слоях толщиной 10" —10 м, определяющих в ряде случаев поведение твердых тел в процессе деформирования. В связи с этим описан специально разработанный метод анализа слоев металла указанной толщины, а также показана его перспективность при изучении поверхностей трения и, главное, при разработке комплексных критериев процесса трения для создания оптимальных условий на контакте, реализации явления избирательного переноса.  [c.4]


Последовательное рассмотрение процессов упругого деформирования и теплопроводности в их взаимосвязи возможно только на основе термодинамических соображений. Томсон (1855) впервые применил основные законы термодинамики для изучения свойств упругого тела. Ряд исследователей [Л. Д. Ландау и Е. М. Лифшиц (1953) и др.] с помощью методов классической термодинамики получили связанные уравнения термоупругости. Однако в рамках классической термодинамики строгий анализ справедлив лишь для изотермического и адиабатического обратимых процессов деформирования. Реальный процесс деформирования, неразрывно связанный с необратимым процессом теплопроводности, является в общем случае также необратимым. Термодинамика необратимых процессов, разработанная в последние годы, позволила более строго поставить задачу о необратимом процессе деформирования и дать единую трактовку механических и тепловых процессов, нашедшую отражение в работах Био (1956), Чедвика (1960), Боли и Уэйнера (1960) и др. В связи с этим более четко определилась теория термоупругости, обобщающая классическую теорию упругости и теорию теплопроводности. Она охватывает следующие явления перенос тепла теплопроводностью в теле при стационарном и нестационарном теплообмене между ним и внешней средой термоупругие напряжения, вызванные градиентами температуры динамические эффекты при резко нестационарных процессах нагрева и, в частности, термоупругие колебания тонкостенных конструкций при тепловом ударе термомеханические эффекты, обусловленные взаимодействием полей де( юрмации и температуры.  [c.6]

Турбулентная диффузия. В комплексе проблем, связанных с теоретическим рассмотрением процессов тепло-и массопереноса в природной турбу-лизованной многокомпонентной среде, важное значение имеет моделирование распространения малых примесей в атмосфере (в том числе перемешивание воздушных масс с учетом их химической активности). Наряду с газами, в атмосфере присутствуют также аэрозоли различного типа и размеров, частично участвующие в химических превращениях и фазовых переходах. Сюда же относятся радиоактивные примеси, имеющие как естественное (радон, торон и продукты их распада), так и искусственное (производство и испытания ядерного оружия, выбросы при авариях на атомных электростанциях и других объектах) происхождение. В процессе переноса указанных примесей в атмосфере и их перемешивании определяющую роль играет турбулентная диффузия, характер которой зависит от структуры пульсационного поля скоростей и распределения энергии турбулентности между пульсациями различных пространственных масштабов. При описании процессов диффузии в турбулентной атмосфере можно выделить средние значения концентраций примеси Zпульсационные отклонения 2 от  [c.18]

Путем осреднения фундаментального тождества Гиббса, справедливого для микродвижений многокомпонентной смеси, получена субстанциональная форма баланса средневзвешенной удельной энтропии для подсистемы осредненного движения турбулизованного континуума. Найден явный вид для осредненного молекулярного и турбулентного потоков энтропии, связанных с соответствующими потоками диффузии и тепла, а также для скорости локального производства осредненной энтропии, обусловленной необратимыми процессами внутри подсистемы осредненного молекулярного хаоса, и скорости обмена энтропией между подсистемами пульсационного и среднего движения. С помощью постулирования соответствующего тождества Гиббса введены параметры состояния для подсистемы турбулентного хаоса, такие, как температура и давление турбулизации. Проанализировано эволюционное уравнение баланса для энтропии турбулизации и найдены выражения для потока пульсационной энтропии, а также локального производства и стока энтропии подсистемы турбулентного хаоса. С использованием эволюционного уравнения переноса для полной энтропии турбулизованного континуума получены уточненные реологические соотношения для турбулентных термодинамических потоков в многокомпонентных средах.  [c.233]

Выбор закона теплообмена очага пожара со строительными конструкциями в условиях объемного пожара зависит от ориентации строительных конструкций относительно очага и стадий объемного пожара. При определении огнестойкости конструкций выделяются две ориентации основных строительных конструкций горизонтальные и вертикальные несущие и ненесущие конструкции. Ориентация строительных конструкций определяет характер теплового и гидродинамического взаимодействия их с очагом пожара. Характер теплообмена зависит от оптических характеристик газовой среды, определяюш,ей процесс переноса лучистой энергии. Процесс сложного теплообмена в условиях оптически прозрачной и оптически плотной газовых сред в условиях пожара подробно рассмотрен в гл. 4 и 3. Основной областью применения моделирования на уровне усредненных параметров являются практические задачи, характерные для развитой стадии объемных пожаров. Основным процессом переноса тепла для объемных пожаров является сложный теплообмен в оптически плотных газовых средах. Эти процессы характерны для газовых сред с критерием Ви>1, что соответствует определенным значениям температур в очаге пожара 7 >Гви=1. При значении Ви<1, что соответствует значениям температур 7 < <Гец=1, процесс сложного теплообмена является аддитивным относительно лучистой и конвективной составляющих. Поскольку расчет температурного режима пожара начинается с нормальных условий, когда Г<7 ви=1, то в начальные моменты времени основные законы для оптически плотных сред применять нельзя. В начальной стадии пожара, ограниченной временем 0модель оптически прозрачного газа, и в развитой стадии пожара используется модель оптически плотного газа при значениях Т> >7 ви=1. Между этими двумя режимами теплопередач существует переходная область, связанная с конечными скоростями перехода режимов теплопередачи из одного в другой. По значению среднеобъемной температуры переходная область лежит в диапазоне зна-чснии температур Т исп <7 <7 ви=1. Используя линейную экстраполяцию изменения коэффициента теплообмена в переходной области горения, его можно определить как  [c.235]

Проблема распространения промышленных примесей (включая и аэрозоль) не ограничивается микро- и макромасштабными процессами в атмосфере, рассмотренными выше. Длительное пребывание, исчисляемое месяцами и годами, обеспечивает перенос промышленных примесей на огромные расстояния, включая трансграничный перенос. В этом случае при математическом моделировании необходим учет мезометеорологических процессов, т. е. совместное решение уравнений динамики атмосферы и переноса примесей. Общая постановка и примеры решения задач, связанных с мезометеорологическими процессами и переносом промышленных примесей содержатся в [13] в связи с проблемой размещения промышленных предприятий при сохранении допустимых норм загрязнения природной среды. Современные математические модели для оценки и прогноза распространения промышленных примесей на большие расстояния приводятся также в [7] в связи с проблемой кислотных дождей.  [c.114]

Эта гипотеза также встречается с серьезными трудностями. В самом деле, энергия магнитного поля, удовлетворяющая условию (7,15), намного-превышает кинетическую энергию маломасштабных пульсаций. Это значит, что максвелловы натяжения магнитного поля значительно превосходят гидродинамические силы, вызывающие движение в малых масштабах турбулентности и, следовательно, полностью определяют движение в этих масштабах. Если обратиться к уравнению движения среды (1,22), то иа условия (7,15) следует, что натяжения магнитного поля в среднем компенсируют действие нелинейного инерциального члена (уУ)у, с которым связан основной для турбулентного движения процесс переноса кинетической энергии от больших масштабов движения к меньшим. Таким образом, в том случае, когда энергия магнитного поля сравнима с кинетической энергией жидкости, говорить о турбулентном движении в обычном смысле уже нельзя. Магнитное поле подавляет движение в малых масштабах и, следовательно, нарушает нормальный процесс диссипации энергии в стационарной турбулентности. Это значит, что при постоянном притоке-энергии извне необходим какой-либо иной механизм диссипации энергии для того, чтобы было возможным стационарное состояние.  [c.49]

Выполненный анализ зарождения и роста пор позволяет сформировать подход к рассмотрению кавитационного межзе-ренного разрушения в случае интенсификации развития повреждения теми или иными факторами, в частности агрессивной средой. Известно, что влияние агрессивной среды может проявляться в виде двух основных процессов. Первый обусловлен непосредственным взаимодействием среды с металлом и разрушением продуктов взаимодействия под действием напряжений. Второй процесс связан с переносом к границам зерен различных элементов среды (например, кислорода, водорода и др.), ускоряющих тем или иным способом межзереннсе разрушение материала. Для объяснения этого нетрадиционного механизма влияния среды на характеристики разрушения предложены различные модели [240, 286, 306, 329, 334, 424]. В частности, охрупчивающее влияние кислорода может быть связано с ограничением подвижности границ зерен и увеличением их проскальзывания, приводящего к росту межзеренных повреждений [240]. Рассматривался также клиновой эффект, возникающий  [c.166]


Результаты исследований позволяют объяснить эффект безызнос-ности на основе законов неравновесной термодинамики и теории образования структур при неравновесных процессах. Согласно термодинамике неравновесных процессов новые структуры могут появляться в природе в тех случаях, ко1 да выполняются следующие четыре необходимых условия I) система является термодинамически открытой, т.е. может обмениваться веществом и (или) энергией со средой 2) динамические уравнения системы нелинейны 3) отклонение от равновесия превышает критическое значение 4) микроскопические процессы происходят коопе-рированно (согласованно) (59, 71] Названные условия могут быть реализованы в некоторых трибосистемах, которые при определенных условиях обладают свойствами открытых термодинамических систем, а микроскопические физико-химические процессы при трении происходят коопериропанно и ведут к возникновению и самоорганизации структур, связанных с производством отрицательной энтропии и увеличением упорядоченности системы. Установлено, что свойства открытой термодинамической системы и самоорганизация структур присуп и трибо-системам в условиях избирательного переноса при трении,  [c.142]

Согласно современным представлениям, механизм защитного действия неметаллических покрытий связан как с изолирующим действием, так и с влиянием на электрохимические процессы, протекающие под неметаллической пленкой. Экранирующее действие неметаллических покрытий обусловлено их способностью замедлять диффузию и перенос через покрытие компонентов коррозионно-активной среды к поверхности металла и определяется в значительной степени пористостью покрытий. Проникновение электролита через поры покрытия или через межмо-лекулярные несовершенства пленкообразующего вещества (в процессе теплового движения) происходит под действием капиллярных сил. Осмотическое давление, возникающее вследствие перепада концентрации электролита на поверхности капиллярной пленки, контактирующей с внешней средой, прилегающей к защищаемому металлу, способствует диффузии среды через покрытие. При осмотическом перемещении влаги через пленку давление может быть больше, чем сила адгезии пленки к металлу, в результате чего происходит локальный отрыв пленки от поверхности металла, что приводит к образованию вздутий и пузырей, являющихся первоначальным очагом коррозионного поражения металлической основы.  [c.128]


Смотреть страницы где упоминается термин ПРОЦЕССЫ ПЕРЕНОСА В СВЯЗАННЫХ СРЕДАХ : [c.43]    [c.34]    [c.132]    [c.50]    [c.688]    [c.183]    [c.298]    [c.223]    [c.294]   
Смотреть главы в:

Процессы переноса в неоднородных средах  -> ПРОЦЕССЫ ПЕРЕНОСА В СВЯЗАННЫХ СРЕДАХ



ПОИСК



Мод связанность

Переносье

Процессы переноса

Р связанное

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте