Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Наполнители армирующие

Наполнители адсорбируют на своей поверхности масла, при этом повышаются теплостойкость и твердость мастики. По виду наполнители делят на пылевидные (измельченный тальк, магнезит, известняк, доломит, мел, цемент, золы твердых видов топлива) и волокнистые (асбест, минеральная вата и др.). Волокнистые наполнители, армируя материал, увеличивают его сопротивление изгибу.  [c.266]

Композиционные материалы, полученные объемным сочетанием пластичного компонента с прочным и жестким наполнителем, обладают более высокими характеристиками, чем каждый из компонентов. Наполнитель (армирующий) часто имеет волокнистое ориентированное строение, подобное ориентированной структуре древесины.  [c.3]


Возрастающее значение таких материалов и строгость требований, предъявляемых к их качеству, позволяют включить создание соответствующих СО в число приоритетных направлений. По-видимому, потребуются СО для контроля химического состава основ (матриц) — полимерных, углеродной, карбидных, а также наполнителей, армирующих матрицы,— высокомодульных полимеров и неорганических (стеклянных, углеродных, нитридных, металлических).  [c.58]

По способу контактного формования (рис. 268) наполнитель (армирующий материал) укладывают в форму 1 и смачивают кистью или из пульверизатора жидким связующим 2 (иногда в несколько слоев), после чего композицию покрывают целлофановым листом 3 и прикатывают роликом к стенкам формы для удаления воздуха, выравнивания изделия и обеспечения тесного контакта связующего и наполнителя. Далее идет процесс отверждения связующего, содержащего для этого отвер-дитель, при комнатной температуре или при некотором нагреве.  [c.373]

Стеклопластики состоят из связующего (синтетической смолы) и стекловолокнистого наполнителя (стеклянных нитей, жгутов, лент, тканей). Наполнитель — армирующий элемент, который и воспринимает основные нагрузки. Связь отдельных волокон наполнителя в общую систему и равномерное распределение на-грузки обеспечивается связующим составом. Наиболее перспективными являются композиционные материалы, в которых в качестве наполнителя используются металлические элементы вследствие этого повышаются механические характеристики.  [c.128]

Мощность источника теплоты эффективная 34, 35 Нагрев лазерный 56 Наполнители армирующие 494—497 Напыление 468—469  [c.523]

Наполнители уменьшают расход каучука, улучшают эксплуатационные свойства деталей. Наполнители подразделяют на порошкообразные и тканевые. В качестве порошкообразных наполнителей применяют сажу, тальк, мел и др. К тканевым наполнителям относят хлопчатобумажные, шелковые и другие ткани. В некоторых случаях для повышения прочности деталей их армируют стальной проволокой или сеткой, стеклянной или капроновой тканью. Количество наполнителя зависит от вида выпускаемых деталей.  [c.436]

Условия хранения и транспортирования изоляционных материалов систематически проверяют. Рулонные изоляционные, оберточные, армирующие материалы, жировые смазки, грунтовки, растворители, пластификаторы, наполнители и т. п. следует хранить в закрытых складских помещениях.  [c.193]

Следует отметить, что если современный уровень развития методов и средств контроля готовых изделий достаточно высок, то в отношении контроля технологических параметров полимерных материалов и изделий в процессе производства достижения еще незначительны. Наиболее важными технологическими параметрами, которые необходимо контролировать в процессе производства изделий, являются такие, как влажность всех компонентов, вязкость связующего, кинетика твердения, плотность материала на всех стадиях его изготовления, упругие и прочностные характеристики армирующего наполнителя и готового изделия, геометрические характеристики армирующего наполнителя (диаметр волокон, толщины слоев) и готовых изделий, а также наличие различных дефектов.  [c.253]


В достаточно малых объемах практически любой материал можно рассматривать как упрочненный частицами композит. В предельном случае этот подход можно распространить на атомы примеси в кристалле, совершенном в остальных отношениях. Здесь будут рассмотрены лишь те композиты, в которых размер армирующих частиц составляет не менее 1 мкм. Если не принимать во внимание композитов с упрочнителем макроскопического размера — таких, как бетон на основе цемента или битума, — то к наиболее употребительным композитам, упрочненным частицами, следует отнести дисперсионно-твердеющие металлы, а также пластмассы, содержащие наполнитель или модификатор.  [c.302]

Смола армирующего наполнителя поверхности волокна ) в исходном состоянии после кипячения (2 ч) прочности %  [c.272]

Марка смолы Структура армирующего наполнителя Обработка поверхности волокна Значения т кгс/мм2 Изменение прочности, %  [c.273]

Большинство авторов, написавших отдельные главы этой книги, основное внимание уделяют стеклопластикам или металлокерамическим композициям. Объясняется это прежде всего большим опытом, основанным на многолетнем массовом производстве и эксплуатации стеклопластиков в самых различных областях техники. Стеклопластики — один из наиболее дешевых, экономичных и технологичных материалов, имеющихся в распоряжении инженеров и конструкторов. Разработан большой ассортимент армирующих наполнителей и связующих смол, сочетание которых позволяет получить материал, удовлетворяющий самым разнообразным требованиям конструкций.  [c.5]

Книга содержит много полезных сведений о свойствах армированных пластиков и более современных композиционных материалов и дисперсных систем, номенклатуре выпускаемых промышленностью исходных компонентов (армирующих наполнителей, связующих смол), технологическим приемам изготовления деталей и узлов конструкций, объемам их производства и применения, перспективам роста применения композиционных материалов и ожидаемой технико-экономической эффективности от их использования. Несомненный интерес представляет конструкторская и технологическая проработка ряда узлов и деталей, используемых в космических летательных аппаратах (гл. 3), авиационной технике (гл. 2, 4), транспортном машиностроении (гл. I и V), судостроении (гл. 7), промышленном строительстве (гл. 8, 9) и др.  [c.6]

Минеральные наполнители, такие, как песок, кремнезем, мелкий гравий, мраморная крошка и т. д., смешиваются со смолой и помещаются в форму. Получаемые таким образом бетоны могут армироваться стальными сетками или прутками, стекловолокнами в виде матов, тканей или и тем и другим. Иногда применяют различные виды поверхностной обработки, например обнажение заполнителя или текстурирование опалубкой. В состав смеси могут вводиться красители или окрашенные наполнители.  [c.275]

Композиционные материалы появились в природе вследствие эволюции органических материалов. Многие машиностроительные материалы представляют собой тот или иной вид композиционных материалов. Для получения более высоких физико-механических свойств полимеров термопласты и термореактивные полимеры, применяемые в химической промышленности, упрочняют армиру-юп] ими наполнителями.  [c.309]

В качестве армирующих наполнителей применяют стекловолокно, асбестовые, углеродные, джутовые, органические и металлические волокна, однако наибольшее распространение получило стекловолокно. Композиционные материалы обладают высокой удельной прочностью и химической стойкостью в диапазоне температур от 121° С (при воздействии влажной среды) до 149° С (в отсутствии влаги) такие материалы применяют для изготовления труб, емкостей, воздуховодов, вентиляторов, вентиляционных труб и технологического оборудования.  [c.309]

Исследования, проведенные в Англии, привели к разработке армирующих листов и проволоки, которые использовались для изготовления трубопроводов. Для улучшения абразивной и химической стойкости стеклопластиков часто совместно со стекловолокном применяют органическое волокно. При воздействии ще.лоч-ных сред могут быть использованы полиакриловые, полиэфирные и полипропиленовые волокна. Некоторые органические волокна незаменимы при циклическом воздействии на слоистый пластик давления и температуры, так как они обеспечивают высокую совместимость армирующего наполнителя со связующим. Полипропиленовое волокно можно использовать в конструкциях из армированных пластиков, в качестве армирующего материала для перегородок. Хотя оно не обладает прочностью стекловолокна, оно успешно использовалось в конструкциях емкостей из армирован-  [c.312]


Контактное формование — напыление. Ручная подготовка та же, что и для процесса контактного формования с выкладкой армирующего наполнителя вручную. Специальный пистолет — распылитель подает на поверхность формы смолу с катализатором, смолу с ускорителем и рубленое стекловолокно. Стекловолокно пропитано смесью двух смол. Этот метод менее трудоемок, однако требует высокой квалификации оператора. С помощью этого метода могут быть изготовлены крышки емкостей, обечайки, корпуса лодок, кожухи, трубопроводы и т. п.  [c.315]

Тип и структура армирующего наполнителя Содержание стекловолокна, % Характеристика Область применения  [c.318]

Рис. 1. Конструкция трубы из полиэфирного стеклопластика, изготовленная методом контактного формования с выкладкой армирующего наполнителя вручную Рис. 1. Конструкция трубы из <a href="/info/280048">полиэфирного стеклопластика</a>, <a href="/info/667713">изготовленная методом</a> <a href="/info/39049">контактного формования</a> с выкладкой армирующего наполнителя вручную
Увеличение показателей модуля упругости и прочности при растяжении. В настоящее время модуль Юнга большинства изделий, изготовленных методом формования с выкладкой армирующего наполнителя вручную, составляет 700 кгс/мм . Для конструкций, полученных методом намотки, этот показатель может достигать 2000—2800 кгс/мм Для того чтобы армированные пластики использовались в химической промышленности для изготовления сосудов большего диаметра, например 3000—3600 мм (в настоящее время изготовляют сосуды диаметром 1500 мм), эксплуатирующихся под избыточным давлением до 7 кгс/см или полном вакууме, модуль упругости должен достигать 7000 — 8400 кгс/мм при хорошей химической стойкости материала. Имеются данные, что материал, отвечающий этим требованиям, может быть изготовлен методом пропитки под давлением специального армирующего стеклонаполнителя.Такие характеристики также могут быть достигнуты при использовании графитовых волокон в сочетании с эпоксидным связующим, однако в настоящее время большинство экзотических армирующих наполнителей не могут даже отдаленно конкурировать с материалами, применяющимися в химической промышленности.  [c.361]

Нагревостойкость 37, 38 Наполнители армирующие 175 неволокнистые 175 специальные 175 Напряжение перекрытия в газах 54, 57 Нити асбестовые 2Й  [c.358]

Стеклянное волокно нашло большое применение в электротехнике и радиотехнике, в производстве гибкой изоляции (стеклошпоны, стеклолакоткани, стеклобумаги, стек-лочулки) и слоистых пластмасс (стеклотекстолиты, стеклопластики, стекломаты). Оно используется как наполнитель, армирующий материал, придающий изделию высокую механическую прочность. Для электротехнических целей применяют стекловолокно из бесщелочного стекла, т. е. в шихте этого стекла содержится не более 2% щелочных компонентов.  [c.224]

Композиционные материалы (композиты) представляют собой гетерофазные системы, полученные из двух или более компонентов с сохранением индивидуальности каждого из них. В строении композита выделяют наполнитель армирующий компонент) и связующее матрицу). Определяющее влияние на свойства композита оказывает наполнитель, распределенный в связующем. Матрица связывает композицию (обеспечивает непрерывность), позволяет изготовить неЬбходимую инженерную конструкцию и передавать внешние нагрузки к несущему упрочняющему компоненту. Наполнитель является разделенным компонентом и играет усиливающую или армирующую роль.  [c.410]

Стеклотекстолиты относятся к волокнистым материалам па основе различных связующих, главным образом поликондеы-сационных смол (фенол о-форм альдегидных, полиэфирных, эпоксидных и др.) в качестве наполнителей применяются стекловолокнистыс материалы в виде ориентированных элементарных волокон, стекложгутов, неориентированных пучков нитей, стеклотканей различных переплетений и др. Стеклонаполнитсли играют роль упрочняющего, армирующего элемента, который воспринимает иа себя основные нагрузки в эксплуатационных условиях.  [c.401]

Особую группу наполнителей составляют армирующие материалы на основе стекловолокна, стекложгута, стекломата, которые могут обеспечить изготовление деталей, по прочности не уступающих стали (табл. П.З) .  [c.43]

Одной из главных задач при создании углерод-углеродных композиционных материалов является [юдбор по свойствам армирующих наполнителей и их укладка. Данные (табл. С.4) по исследованию этого вопроса не дают однозначного ответа они получены при изменении свойств волокон и их укладки в плоскости Модификация осуществлялась за счет поворота на 45° при укладке каждого последующего слоя низкомодульной графитовой ткани типа W A и заменой исходной ткани " СА другими типами, в основном из высокомодульных волокон их характеристики содержатся в табл. 6.5. Армирующие каркасы для всех материалов, за исключением 30, получали прошивкой по оси 2 пакета слоев высокомодульной графитовой нитью. Каркас мате-  [c.173]

Максимальная реализация свойств полимерной матрицы и армирующего наполнителя в композитах возможна при наличии оптимальной адгезии, условия получения которой установить довольно трудно. Известно, что адгезия, обусловленная только плотным контактом между органическим полимером и гидрофильным минералом, не обеспечивает образования водостойкого соединения. Такое соединение не может быть образовано и посредством прямых химических связей, так как органический полимер с устойчивыми ковалентными и минерал с ионными связями являются слишком разнородными материалами. Хорошая адгезия между такими разнородными материалами может быть получена в результате иапользования третьего материала в виде промежуточного слоя между матрицей и наполнителем.  [c.9]

По существу промышленное производство армированных пластиков началось в 1940 г., когда в качестве упрочняющего наполнителя было использовано стеклянное волокно. Первые попытки изготовить армированные стекловоло1Кном фенольные и меламиновые композиты путем преосования под высоким давлением не-имели успеха. В 1941 г. Д. Гайд получил армированные стекловолокном композиты на кремнийорганической основе, которые-оказались прекрасным теплостойким электроизоляционным материалом, но слишком дорогим для использования в конструкционных целях. В 1941 г. Л. Кинг изготовил первые полиэфирные стеклопластики из смолы на основе аллилгликоля карбоната (СР-3). В 1942 г. стали доступны полиэфирные смолы на основе малеи-натов, отверждаемые при НиЗ Ких давлениях. Уже к началу 1944 г.. эти смолы применялись в военной промышленности для производства защитных шлемов, при строительстве самолетов и подводных лодок. Появление эпоксидных смол в начале 50-х годов вызвало-бурное развитие стеклопластиков. До 1970 г. практически все конструкционные пластики армировались стекловолокном. История развития полимерных композитов изложена в работе Д. Росато [41]  [c.12]


Стеклопластики нашли широкое применение в конструкциях разработанных и построенных в США маломестных транспортных средств. Примеры таких транспортных средств представлены на рис. 2 и 4. На рис. 2 показан вагон Старкар корпорации АЫеи. Вагоны этой системы имеют следующие характеристики длина 4,2 м, ширина 2 м, высота 2,7 м, масса 1,6 т, номинальная мощность 60 л.с., максимальная скорость 48 км/ч, ускорение при изменении скорости от 0 до 40 км/ч 1,2 м/с . Конструкция такого вагона и его оборудование описаны корпорацией АЫеи [1]. Кабина вагона выполнена из армированной стекловолокном полиэфирной смолы, обладающей огнеупорными свойствами. В качестве армирующего наполнителя использовалась рубленая ровница из стекловолокна, так же как и при изготовлении корпусов автомобилей, лодок и т. д. Выбор такого материала обусловлен следующими факторами способностью материала поглощать энергию ударов, что позволяет кабине вагона выдерживать интенсивную эксплуатацию без существенной деформации качеством отделки, сравнимым с качеством отделки лучших автомобилей вследствие объемной окрашенности и гладкой поверхности минимальными затратами па обслуживание.  [c.183]

На эти материалы существуют стандарты, установленные, как правило, более 15 лет назад. Технологические методы изготовления армированных пластиков включают контактное формование с выкладкой вручную армирующего наполнителя, напыление, прессование, намотку. Биполимерные слоистые пластики, сочетающие в себе термопласты и реактопласты, делают композиционные системы более универсальными. Соединение изделий из этих материалов осуществляется либо склеиванием, либо при помощи фланцев, соединительных муфт, стыковых накладок.  [c.309]

Для армирования наиболее широко используют термореактив-ные полимеры (например, полиэфиры, смолы на основе сложных виниловых эфиров, эпоксидные, фурановые), а в качестве армирующего наполнителя — стекловолокно из стекла Е, С, К, 8. Используют также асбестовые волокна. Это не значит, однако, что другие волокна не находят применения в качестве армирующих, например такие, как борные, керамические, углеродные, джутовые волокна, металлическая проволока или листы, полиакриловые, полипропиленовые, кварцевые волокна, нитевидные кристаллы сапфира. Многие из перечисленных материалов, например нитрид бора, углеродные, кварцевые волокна и нитевидные кристаллы сапфира использовались в основном в авиационно-космической технике и, несмотря на их привлекательность, имеют ограниченное применение в осуществлении программы по предотвращению коррозии в химической промышленности вследствие их высокой стоимости. Углеродные или графитовые волокна являются армирующим наполнителем, обладающим наибольшей потенциальной возможностью снижения стоимости.  [c.312]

Контактное формование или выкладка вручнут. ш оле широко используемым методом изготовления оборудования для химической промышленности является контактное формование с выкладкой армирующего наполнителя вручную. Приготовляют и полируют стальную форму. На формующую поверхность наносят антиадгезиоиное покрытие или оборачивают ее пленкой Майлар или целлофаном. После нанесения слоя покрытия из связующего и выкладки облицовочных стекломатов марки С укладывают последовательно слои стекломатов с массой 32 г, пропитанных связующим. Зате.м укладывают слои ровничной ткани и маты из рубленного стекловолокна до достижения заданной толщины изделия. При необходимости определенные участки изделия упрочняют и устанавливают металлические вкладыши. Однако оснащение патрубками и люками, как правило, осуществляют после изготовления оболочки. Внешняя поверхность образуется матами с покрытием, наносимым методом горячего окунания.  [c.315]

Облицовочный стекломат, тип С 0,50—0,63 Стекломат толщиной 0,25 мм обычно используют для повышения прочности и стабильности поворхностп изделия с высоким содержанием связующего содержит около 10% стекловолокна и 90% связующего В сочетании с армирующим наполнителем и полиэфирным связующим для оборудования, используемого на химических заводах, в частности, емкостей, трубопроводов и т. а.  [c.317]

Для получения требуемых толщины стенки трубы и прочности на него накладывают последовательно слои армирующего наполнителя, пропитанные связующим. В тех случаях, когда в соответствии со спецификацией на конструкцию трубы требуется применение стеклоткани, тканой стеклоровницы или аналогичных  [c.322]

Цилиндрические емкости. Цилиндрическая конструкция емкостей получила наиболее широкое распространение. Емкости изготовляют в соответствии со стандартом Р8 15—69. В табл. 11 приведены размеры цилиндрических емкостей и толщины стенок в соответствии с этим стандартом. Обычно они изготовляются либо методом контактного формования с выкладкой армируют,его наполнителя вручную, или одним из многочисленных методов намотки. Иногда при изготовлении цилиндрических емкостей используют стальную вращающуюся оправку, на которую намотана пленка Майлар . Выкладку армирующего наполнителя производят на эту пленку. По мере вращения крупной стальной оправки на него наносят стекловолокно и связующее до получения готового изделия. Как правило, стоимость егакостсй, изготовленных методом намотки, ниже стоимости емкостей, полученных контактным формованием, что объясняется более низкими трудовыми затратами.  [c.345]

Ориентировочная стоимость емкостей из армированных пластиков. В табл. 13 приведены данные по стонностн емкостей из стеклопластиков. Эти цифры следует рассматривать как оценочные, так как стоимость емкостей изменяется в зависимости от их размеров, формы, сложности соединительных частей трубопроводов. Например, в соответствии с таблицей, емкость объемом 37,8 м , изготовленная либо методом намотки, либо методом контактного формования с выкладкой армирующего наполнителя вручную, может быть куплена за 4000 долларов. Однако ее цена может увеличиться до 6500 долларов при добавлении еше нескольких выходных патрубков или в случае необходимости транспортировки ее двумя частями и монтажа на месте установки. Стоимость также может быть увеличена за счет использования наклонного днища, состоящего из двух частей, которое позволяет осуществлять полное удаление кристаллов из емкости. Стоимость той же емкости объемом 37,8 м мсжет достигать 9000—14 СОО долларов при использовании ее в качестве кристаллизатора (в данном случае требуется большое число патрубков для крепления труб из тефлона и мешалка). Разумеется, это необычный случай, когда сосуд используется не по прямому назначению, и от него требуется выполнение более сложных функций.  [c.352]

Стоимость многих перспективных армирующих материалов составляет сотни долларов за килограмм. Можно представить, что цена на графитовые волокна будет быстро снижаться от 245 долларов, за кг (при закупке небольших партий) до 55 дол-лар/кг, затед на протяжении нескольких лет будет медленно снижаться, достигнув 22—33 долларов за кг. Возможно, что стоимость углеродных волокон (отличающихся от графитовых) будет еще ниже в течение последующих пяти лет. Углеродные волокна имеют более низкий модуль сдвига, чем графитовые. Тем не менее возможность использования графитовых волокон в качестве армирующего наполнителя в определенных областях представляется заманчивой. Графитовые волокна, обла-  [c.361]


Смотреть страницы где упоминается термин Наполнители армирующие : [c.151]    [c.23]    [c.455]    [c.106]    [c.276]    [c.49]    [c.323]    [c.323]    [c.360]    [c.370]    [c.798]    [c.799]   
Углеродные волокна (1987) -- [ c.16 ]

Справочник металлиста Том2 Изд3 (1976) -- [ c.583 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.2 , c.583 ]

Справочник по электротехническим материалам Т1 (1986) -- [ c.175 ]

Сварка и свариваемые материалы Том 1 (1991) -- [ c.494 , c.497 ]



ПОИСК



Гетинакс Расположение армирующего наполнителя

Композиты на основе различных армирующих волокнистых наполнителей (АВН)

Наполнитель

Направляющие Расположение армирующего наполнителя

Однонаправленные армирующие наполнители

Слоистые армирующие наполнители с хаотическим распределением волокон в плоскости (маты)

Слоистые тканые армирующие наполнители

Стенки деталей 53—60 — Расположение слоев армирующего наполнителя

Шкивы Расположение армирующего наполнителя



© 2025 Mash-xxl.info Реклама на сайте