Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поток термодинамический

При критическом режиме истечения сжимаемой среды, при котором = kpi v , выражение (6.24) обращается в условие М = 1. При изменении давления внутри канала от максимального значения, которое характеризуется достижением скоростью потока термодинамически равновесной скорости звука, до минимального значения на выходе из канала, величина к в соответствии с (6.22) меняется от минимального до максимального значения на выходе из трубы. Определив в каждом конкретном случае максимальное и минимальное значения критического давления, можно с помощью зависимости (6.22) найти соответствующие им значения к, а, разбив найденный промежуток значений к на необходимое количество участков, можно найти, с какой степенью точности выполняется условие (6.24).  [c.126]


Во всех случаях при установке сужающего устройства в канале постоянного сечения происходит уменьшение расхода через канал. При этом в диапазоне 0,595 < d/D < 1 уменьшение расхода связано с уменьшением давления торможения в выходном сечении канала вследствие увеличения диссипативных потерь из-за установки сужающего устройства. При djD < 0,595 определяющим в снижении расхода смеси является наступление кризиса течения в сечении сужающего устройства, через которое вытекает неравновесный двухфазный поток, термодинамическое равновесие в котором не успевает установиться вплоть до выходного сечения трубы.  [c.182]

Потоки Термодинамические силы Перенос при изотермических условиях Величина переноса  [c.12]

Для обратимых равновесных потоков показатель изоэнтропы дает возможность определить соотношение между давлением и плотностью, скорость потока, термодинамическую скорость звука и ряд других газодинамических характеристик. Однако большинство встречающихся на практике процессов течения двухфазных сред происходит неравновесно. Степень неравновесности зависит от многих факторов градиентов скоростей фаз, дисперсности среды, времени процесса, начальных и граничных условий и т. п. Причем в зависимости от размеров и структуры жидкой фракции в процессе расширения двухфазной смеси возможны не только конденсация, но и испарение — подсушка среды. Кроме того, скорости фаз в потоках, как правило, различаются, что приводит к дополнительным потерям на трение, выделение тепла и соответственно рост энтропии, Очевидно, что в этих условиях использовать термодинамический показатель k нельзя и речь может идти лишь о показателе адиабаты, учитываюшем степень неравновесности и необратимости процесса. Если исключить из анализа явления, характерные и для однофазных сред потери в пограничном слое, потери от неравномерности поля скоростей в вязких средах и др., то основными причинами необратимости процессов в двухфазных потоках можно считать потери от механического взаимодействия теплообмена и массообмена при конечной скорости обменных процессов между фазами.  [c.73]

В обогреваемых трубах среднемассовая энтальпия потока непрерывно растет по длине канала. Если поток термодинамически равновесный, то массовое расходное паросодержание л однозначно связано со среднемассовой энтальпией потока  [c.101]


В стационарном состоянии 4 = 0 для потока, термодинамической силы и градиента температуры получаем  [c.86]

По характеру процессов режимы в объектах механизации и автоматизации можно объединить в следуюш,ие группы механические (усилие, крутящий момент, положение в пространстве, путь, время) тепловые (температура, способ нагрева, время, теплоноситель) электрические (напряжение, сила тока, мощность, частота тока) гидродинамические (давление, производительность, скорость, вид потока) термодинамические (давление, температура, производительность, мощность, скорость) химические (состав, свойства используемых материалов, время, агрегатное состояние) диффузионные (скорость, размеры и др.).  [c.274]

Кристаллохимическое строение покрытия, его физико-механические и теплофизические свойства могут значительно отличаться от соответствующих свойств инструментального и обрабатываемого материалов, поэтому покрытие следует рассматривать как своеобразную третью среду , которая, с одной стороны, может заметно изменять поверхностные свойства инструментального материала, с другой влиять на контактные процессы, деформации, силы и температуры резания, направленность тепловых потоков, термодинамическое напряженное состояние режущей части инструмента и т. д. Задавая свойства покрытия путем варьирования его химического состава и строения, можно изменять основные характеристики процесса резания и, в конечном итоге, управлять важнейшими выходными параметрами процесса — износом инструмента и качеством поверхностного слоя обрабатываемых деталей. Кроме того, процесс нанесения покрытия позволяет направленно воздействовать на поверхностные дефекты инструментального материала, что в сочетании с возможностью формирования стабильных характеристик покрытия может способствовать заметному повышению надежности инструмента.  [c.3]

Задача состоит в том, чтобы получить явные выражения для ёеЗ и 5, представив их в виде функций от экспериментально измеряемых величин. Необратимые процессы допускают описание на языке термодинамических сил и термодинамических потоков. Термодинамические потоки вызываются термодинамическими силами, т. е. потоки возникают как следствия сил. На  [c.97]

Если снять ограничение о постоянной плотности, то термодинамическое уравнение состояния примет вид соотношения между плотностью, давлением и температурой. Появление температурной переменной требует, чтобы одновременно решалось и уравнение баланса энергии (первый закон термодинамики), которое в свою очередь вводит две новые переменные — тепловой поток и внутреннюю энергию. Закон Фурье (связывающий тепловой поток с распределением температуры) и энергетическое уравнение состояния замыкают систему уравнений, приведенную в табл. 1-2.  [c.14]

Как указывалось выше, под открытыми понимаются термодинамические системы, которые кроме обмена теплотой и работой с окружающей средой допускают также и обмен массой. В технике широко используются процессы преобразования энергии в потоке, когда рабочее тело перемещается из области с одними параметрами (pi, t i) в область с другими (р2, V2). Это, например, расширение пара в турбинах, сжатие газов в компрессорах.  [c.43]

Если в потоке мысленно выделить замкнутый объем рабочего тела и наблюдать за изменением его параметров в процессе перемещения, то для описания его поведения будут пригодны все полученные выше термодинамические соотношения и, в частности, первый закон термодинамики в обычной записи q = = Ди + /.  [c.44]

В условиях вынужденной конвекции критерии Nu и Nud зависят не только от характера потока (Re) и физических свойств среды (р и Ргд), но и от термодинамических свойств среды (Gu). Термодинамический критерий испарения Gu характеризует аккумулирующую способность парогазовой смеси к поглощению пара жидкости.  [c.511]

При наличии конечных связей между термодинамическими силами X и термодинамическими потоками j величину а можно рассматривать как диссипативную функцию X или /. На основе (1.4.7)—(1.4.9) можно предлагать, например, линейные соотношения между ними типа соотношений Онзагера, частным случаем которых п являются (1.3.12), (1.3.13), (1.3.27) и в некоторых случаях первая формула (1.3.19).  [c.45]


В отличие от прямоточной закрученная струя практически всегда трехмерна. Вектор скорости V имеет три компоненты радиальную аксиальную, или осевую и тангенциальную Кроме того в закрученных струях всегда имеются радиальный и осевой градиенты давления, а также достаточно сложный характер распределения полной и термодинамической температуры, во многом определяемый конструктивными особенностями устройства, по проточной части которого движется поток. Все многообразие закрученных потоков целесообразно разбить на две группы свободно затопленные,струи различной степени закрутки офаниченные закрученные потоки, протекающие по каналам различной конфигурации.  [c.20]

Вихревые термотрансформаторы Ранка, или вихревые трубы получили, пожалуй, самое большое распространение несмотря на достаточно низкую по сравнению с изоэнтропным детандером термодинамическую эффективность процесса перераспределения энергии между свободным и вынужденным вихрями. Прикладные вопросы расчета, проектирования и технического приложения вихревых холодильно-нагревательных аппаратов разработаны достаточно широко, хотя и не в полном объеме. Многочисленные работы, опубликованные в основном в периодических изданиях, несколько монографий по вихревому эффекту, патентная информация открывают большие возможности для совершенствования традиционных и освоения новых областей применения вихревого эффекта в целом и вихревых труб в частности. Успехи практического применения вихревого эффекта снизили интерес исследователей к более глубокому изучению этого чрезвычайно сложного явления газодинамики, физическая природа которого, а, следовательно, и исчерпывающий комплекс характерных особенностей, остаются пока до конца неизученными. Особенно мало публикаций по вихревому эффекту, связанных с изучением микро- и макроструктуры потока с использованием современных средств диагностики закрученных потоков. В определенной степени это объясняется не совсем правильным сло-  [c.28]

Обычно внутренняя поверхность соплового ввода, формирующего закрученный поток, профилируется по спирали Архимеда с минимальным радиусом, равным минимальному радиусу камеры энергетического разделения. Такова наиболее распространенная конструкция классической разделительной вихревой трз ы с цилиндрической камерой энергоразделения. Раскручивающая крестовина, впервые предложенная А.П. Меркуловым, позволила существенно снизить относительную длину камеры энергоразделения от 20 и более калибров /= /d > 20, до / = 9 при сохранении энергетических и термодинамических характеристик по эффективности процесса.  [c.42]

Очевидно, сложное поведение зависимостей ti, = /(л ) и ti, = = /(/, ) на докритических режимах связано с ростом скорости истечения на входе в сопло, а следовательно, с увеличением уровня относительных сдвиговых скоростей в камере энергоразделения и плотности потока кинетической энергии масс газа. Действительно, с ростом степени расширения в вихревой трубе О < < л < л р происходит рост скорости истечения, а следовательно, и рост снижения термодинамической температуры. Несмотря на рост абсолютных эффектов охлаждения при изоэнтропном расширении в соответствии с зависимостью (2.18) температурная эффективность возрастает в результате более интенсивного роста эффектов охлаждения, обусловленного ростом падения термодинамической темпе >атуры потока на выходе из сопла закручивающего устройства  [c.53]

На рис. 3.6-3.7 приведены характерные профили распределения термодинамических параметров для различных сечений и относительных долей охлажденного потока. Избыточное статическое давление ЛР = /, - Р, где P — статическое давление на срезе сопла закручивающего устройства Р — текущее значение статического давления, возрастающее с ростом относительной доли охлажденного потока. Имеется зона пониженного статического давления (вакуумирования), обеспечивающая организацию вторичного рециркулирующего вихря в сечении отверстия диафрагмы.  [c.109]

Особое место в экспериментальных исследованиях интенсивно закрученных вихревых офаниченных течений, в том числе и в камере энергоразделения вихревых труб, занимает изучение пульсаций термодинамических параметров и, в частности, давления, формирующего звуковое поле, излучаемое вихревыми трубами. В соответствии с санитарно-гигиеническими требованиями этот отрицательно влияющий на окружающих фактор должен быть максимально снижен. В то же время должна присутствовать очевидная взаимосвязь взаимодействия акустических колебаний с турбулентной микроструктурой потока, а, следовательно, и со всеми явлениями переноса, ответственными в коне-  [c.117]

Взаимосвязь турбулентности потока в вихревых трубах с ее геометрией и термодинамическими характеристиками  [c.170]

Процесс энергоразделения неотделим от процесса диссипации части механической энергии в тепло, возникающего из-за совершения работы по преодолению турбулентных напряжений. Вследствие энергетической изолированности течения в предположении незначительности абсолютной величины гидравлических потерь преодоление потоком турбулентного трения однозначно связано со снижением давления в потоке. Это снижение давления, трактуемое как потеря энергии, вызывает снижение эффекта температурного разделения в вихревой трубе по отношению к эффекту, который возникал бы в случае идеального течения без трения. Поэтому термодинамическая эффективность процесса энергоразделения в вихревой трубе может быть оценена внутренним адиабатным КПД  [c.182]

Система записанных уравнений позволяет найти температуру в интересующих сечениях, глубину захолаживания, долю холодного потока, термодинамическую эффективность процесса. Расчеты режимов работы ВХА для входной температуры Т = 298 К, и при повышении температуры воздуха, затрачиваемого на обеспечение необходимого теплосъема Д7 =4 К, недорегенерации Д7 = 10 К, показаны в виде наиболее характерных графических зависимостей для одного из давлений на входе (рис. 5.12, 5.13).  [c.246]


После передачи рукописи в издательство стали известны результаты опытов Г. А. Салтанова, проведенных в Московском эпер-гетическо м институте [Л. 41 ]. При изучении движения водяного пара в соплах с расчетным значением числа М и 2 на выходе, в некоторых режимах течения наблюдался повторный скачок конденсации, заметно более слабый нежели первый. Эти наблюдения показывают, что при интенсивном разгоне потока термодинамически равновесное расширение, отмечающееся за фронтом первого скачка конденсации, может на некотором расстоянии от него вновь нарушиться. Вопрос об условиях и степени повторного нарушения термодинамического равновесия фаз нуждается в дополнительном изучении.  [c.94]

Подчеркнем, что в (8.2.70) производится усреднение только но фазовым неременным частиц. Входящие в выражения для потоков термодинамические параметры берутся в точке г.  [c.173]

Стационарные состояния. В замкнутых системах, находящихся под действием постоянных или слабопеременных внешних воздействий, возникают обобщенные потоки термодинамических переменных J . Если J пропорциональны обобщенным силам Р , т. е. У, = = аР в общем случае нескольких сил = то возни-  [c.103]

Вторая группа уравнений представляет запись определенных физических законов, описывающих поведение конкретных материалов. Вид этих уравнений зависит от класса рассматриваемых материалов значения параметров, появляющихся в уравнениях, зависят от конкретного материала. Имеются в основном четыре уравнения этой группы. В недавнем весьма общем подходе Коле-мана [1—3]рассматриваются уравнения, в точности определяющие следующие четыре зависимые переменные внутреннюю энергию, энтропию, напряжение и тепловой поток. Этот подход будет обсуждаться в гл. 4. На данном этапе мы предпочитаем значительно менее строгий подход, в котором используются понятия, взятые из классической термодинамики. При таком упрощенном подходе по-прежнему используютсячетыреуравнения, описывающие поведение рассматриваемых материалов термодинамическое уравнение состояния, которое представляет собой соотношение между плотностью, давлением и температурой реологическое уравнение состояния, связывающее внутренние напряжения с кинематическими переменными уравнение для теплового потока, связывающее тепловой поток с распределением температуры уравнение, связывающее внутреннюю энергию с существенными независимы-  [c.11]

Проиллюстрируем это на следующем примере. Представим себе, что в аппарат поток рабочего тела входит с удельной эксергией е, а выходит из него с эксер-гией б2, причем в аппарате рабочее тело совершает техническую работу /тех. Насколько совершенно протекает термодинамический процесс в аппарате  [c.55]

Эксергетический и термический коэффициенты полезного действия позволяют оценивать термодинамическое совершенство протекающих в тепловом аппарате процессов с разных сторон. Термический КПД, а также связанный с ним метод теи1ловых балансов позволяют проследить за потоками теплоты, в частности рассчитать, какое количество теплоты превращается в том или ином аппарате в работу, а какое выбрасывается с неиспользованным (например, отдается холодному источнику). Потенциал этой сбрасываемой теплоты, ее способность еще совершить какую-либо полезную работу метод тепловых балансов не рассматривает.  [c.56]

Частные случаи йыражения (1-46) а) при термодинамическом равновесии Д(5х.и=0 AQh=0 б) при луче-прозрачной среде (например, двухатомные газы, сухой воздух без 02)AQh=0, т. е. в этом случае перенос лучистой энергии через элемент дисперсного потока АУц и изменение за счет его общей энергии может происходить лишь путем лучистого взаимодействия дискгретных частиц.  [c.43]

При течении газа у поверхности какого-либо тела вследствие сил внутреннего трения происходит торможение потока, что вызывает увеличение температуры тела. Температура адиабатно изолированного тела, помещенного в поток газа, называется собственной, или равновесной. Собственную температуру можно определить неподвижным теплоизолированным термометром, находяш,имся в потоке перемещающейся жидкости. Термодинамическую температуру можно определить термометром, который перемещается вместе с газом. Разность между собственной и термодинамической температурой равна  [c.439]

Термодинамическому потоку у, определяющему скорость или кинетику фазовых превращении, соответствует термодинамическая сила Xj,. Чтобы проиллюстрировать физический смысл этой силы рассмотрим частный случай смеси — однокомпонентную смесь иесл имаемой жидкости (первая фаза. Pi = onst) и ее пара (вторая фаза). Введем обозначения аналогично (1.4.10)  [c.207]

Практически все рассмотренные выще закручивающие устройства создают течения с центральным квазитвердым ядром. Окружная скорость в таких потоках равна нулкз на оси симметрии. Максимум окружной скорости для полностью вынужденного вихря расположен на его внещней фанице, для ограниченных течений практически вблизи внутренней поверхности канала. Для свободного (потенциального) вихря он расположен на более низкой по ращ1усу позиции, ближе к оси, но никогда не может совпадать с осью, ибо в этом случае окружная скорость должна была бы быть равной нулю. Более того, существует еще более жесткое термодинамическое офаничение по максимально допустимой окружной скорости, которая определяется полной температурой газа на входе в закручивающее устройство Г, и показателем изоэнтропы газа к  [c.23]

Формула (2.43) более корректна, так как учитывает особенности процесса производства полезной работоспособности за счет затраченной в процессах сжатия масс газа основного и дополнительного потоков. При этом можно обойти и другую неточность выражения (2.43), состоящую в том, что эта зависимость не учитывает термодинамическую ценность процесса охлаждения, зависящей от температурного уровня. Так как /, , то и значения температуры конца процессов изоэнтропного расширения существенно различны, если давление в конце предполагается одинаковым Р = idem,  [c.84]

Влияние масштабного фактора, проявляющееся в зависимости термодинамической эффективности процесса энергоразделения от диаметра камеры энергоразделения, было обнаружено Хил-шем [229], а впоследствии подтверждено многочисленными опытными результатами других авторов [40,68,112,116]. Все экспериментаторы отмечают рост эффективности энергоразделения вихревых труб с увеличением диаметра камеры энергоразде-ления. Этот вывод справедлив для вихревых труб с различными диаметрами, даже при разном конструктивном исполнении. Такая устойчивая зависимость не может быть однозначно объяснена с позиций термогазодинамики закрученного потока, тем не менее опыты (рис. 2.32) подтверждают ее существование. В [116] показано, что данные различных авторов для труб разных диаметров при одной и той же степени расширения в вихревой трубе хорошо укладываются на одну прямую, а следовательно, могут быть описаны линейной зависимостью  [c.93]

Результаты эксперимента показали, что при постепенном увеличении 1 происходит скачкообразное изменение спектрального состава излучаемых трубой звуковых волн. При этом подобным образом изменяются и термодинамические параметры работы вихревой трубы. Видно (см. рис. 3.32), что при достижении ц = 0,85 происходит резкое уменьшение адиабатного КПД и абсолютных эффектов подогрева и охлаждения (по модулю). Это явление сопровождается уменьшением интенсивности низкочастотных колебаний и соответственно увеличением высокочастотной акустической составляющей. Динамика низкочастотных колебаний в зависимости от ц аналогична поведению адиабатного КПД, т. е. максимуму КПД соответствует и максимум звукового давления, приходящегося на частоту 1300 Гц. Можно сделать вывод, что в процессе энергопергеноса в вихревой трубе наиболее активную роль играют низкочастотные возмущения и перспектива в использовании интенсификации тепломассообмена в вихревой трубе связана с применением для этого низкочастотных колебаний, соответствующих диапазону 1000—3000 Гц. Между акустическими характеристиками и эффективностью работы вихревой трубы существует четкая корреляция. Таким образом, на основе представленного обзора и результатов некоторых экспериментальных исследований макро- и микроструктуры вихревого потока вьщелим наиболее характерные и принципиальные его свойства  [c.141]


Основываясь на результатах работы [223], можно предположить, что использование устройств, раскручивающих охлажденный и подогретый составляющие потоки, покидающие вихревые трубы, может повысить эффееты энергоразделения вследствие увеличения степени расширения в вихре. Это предположение получило экспериментальное подтверждение в работах А.П. Меркулова и его учеников, а также в работах В. И. Метенина и других исследователей из различных научных центров как в нащей стране, так и за рубежом [40, 112, 116, 137, 222, 226, 243, 245, 260, 262, 263, 270]. Экспериментально и теоретически подтверждено влияние на качество процесса теплофизических характеристик рабочего тела, в том числе и показателя адиабаты [35—40, 112, 116, 152, 153]. Частично получил опытное подтверждение вывод о пропорциональности абсолютных эффектов охлаждения от температуры газа на входе в сопло-завихритель [112,137]. Однако существенные расхождения теоретических предпосылок с результатами экспериментальных исследований не позволяют сделать вывод о достоверности рассматриваемой физико-математической модели процесса энергоразделения. Прежде всего расхождение заключается в характере распределения термодинамической температуры по поперечным сечениям камеры энергоразделения вихревых труб. В гипотезе рассмотрен плоский вихрь, поэтому объективности ради следует сравнить эпюры температуры для соплового сечения. Согласно [223], распределение полной температуры линейно по сечению, причем значение максимально на поверхности трубы. Эксперименты свидетельствуют о существенном удалении максимума полной температуры от поверхности, причем это отклонение не может быть объяснено лищь неадиабатностью камеры энергоразделения [17, 40, 112, 116, 207, 220, 222, 226, 227-231, 245, 251, 260, 262, 263, 267, 270]. Опыты показывают, что эффективность энергоразделения существенно зависит от геометрии трубы и длины ка-  [c.154]

К сожалению, в [197] не дано полное качественное разъяснение физической стороны явления. К числу жестких следует отнести допущение о пренебрежении осевой составляющей скорости. Для расчета профиля температуры необходимо знать характер распределения окружной скорости, который зависит не только от термодинамических параметров потока газа на входе в камеру энергоразделения вихревой трубы, но и от ее геометрии, а также от давления среды, в которую происходит истечение. Остановимся менее подробно на теоретических концепциях Шепе-ра [255] и А.И. Гуляева [59—61], рассматривавших процесс энергоразделения как результат обмена энергией в противоточном теплообменнике класса труба в трубе. Сохранив в принципе основные идеи представителей третьей фуппы гипотез, Шепер рассматривал ламинарный теплообмен. А.И. Гуляев, сохранив основные моменты физической картины Шепера, заменил лишь конвективно-пленочный коэффициент теплопередачи турбулентным обменом. Эти рассуждения не выдерживают критики по первому критерию оправдания, так как предполагают фадиент статической температуры, направленный от оси к периферии, что противоречит экспериментальным данным [34—40, 112, 116]. Однако опыты Шепера [255] и А.И. Гуляева [59-61] позволили сделать некоторые достаточно важные обобщения по макроструктуре потоков в камерах энергоразделения вихревых труб  [c.167]


Смотреть страницы где упоминается термин Поток термодинамический : [c.200]    [c.339]    [c.362]    [c.41]    [c.30]    [c.44]    [c.264]    [c.164]    [c.417]    [c.45]    [c.207]    [c.207]    [c.19]   
Механика сплошной среды Часть2 Общие законы кинематики и динамики (2002) -- [ c.287 ]

Современная термодинамика (2002) -- [ c.97 , c.104 , c.105 ]



ПОИСК



Взаимосвязь турбулентности потока в вихревых трубах с ее геометрией и термодинамическими характеристиками

Линейная термодинамика необратимых процессов Термодинамические силы и потоки. Соотношения Онсагера

Линейные феноменологические соотношения между термодинамическими силами и потоками

Метод расчета термодинамических сил и потоков переноса

Нетер (Е.Noether) термодинамический поток

Способы определения потоков и термодинамических сил

Термодинамическая доступность энергии И. Применение к стационарным потокам

Термодинамические 5.2. Уравнение первого закона термодинамики основы анализа для потока вещества

Термодинамические методы анализа Эксергетический метод (метод потоков эксергии)

Термодинамические потоки и силы

Уравнения баланса, обобщенные термодинамические силы и потоки

Уравнения притока тепла фаз в условиях термодинамического равновесия фаз и скоростного равновесия в ядре потока



© 2025 Mash-xxl.info Реклама на сайте