Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамическая теория необратимых процессов

Несмотря на эффективность термодинамического метода отдельные технические задачи не могут быть решены методами классической термодинамики. Поэтому в настоящее время все более широкое применение получает термодинамическая теория необратимых процессов, основные положения которой были сформулированы Л. Онзагером и развиты в трудах И. Пригожина, К. Ден-бига, де Гроота, Г. Казимира. Одним из главных вопросов этой теории является понятие о микроскопической обратимости, подробно рассмотренное в первой части. Таким образом, теория необратимых процессов могла бы войти в содержание настоящей работы. Однако ее применение к вопросам техники глубокого охлаждения пока что не может быть проиллюстрировано.  [c.178]


Термодинамическая теория необратимых процессов является разделом термодинамики, быстро развивающимся за последнее время. Интерес и внимание, проявляемые к этой отрасли науки, вполне понятны, если учесть, что практически все процессы, протекающие в природе и технике, являются необратимыми процессами.  [c.8]

Будучи еще молодой наукой, термодинамическая теория необратимых процессов уже нашла много применений, о которых нет возможности подробно рассказать в этой небольшой книге. Поэтому я попытался отобрать наиболее характерные и поучительные примеры, но не стремился дать исчерпывающего изложения предмета. Таким путем, я надеюсь, можно достичь цели, поставленной перед этой книгой, а именно — ознакомить читателя с последними достижениями в этой обширной области термодинамики и побудить его более глубоко заняться этим предметом.  [c.17]

Термодинамическая теория необратимых процессов предполагает, что основные уравнения термодинамики обратимых процессов (1.3.2) и (1.3.5) сохраняются справедливыми и для локально равновесных макроскопически малых частей системы [3, 10].  [c.23]

Термодинамическая теория необратимого процесса термоупругого деформирования изотропного тела базируется на трех основных положениях.  [c.25]

Термодинамическая теория необратимых процессов термоупругого деформирования изотропных тел базируется на трех основных положениях.  [c.121]

Термодинамическая теория необратимых процессов  [c.198]

Хотя второй закон термодинамики, сформулированный в середине XIX в., содержал принципиальную возможность приложения термодинамического подхода к описанию неравновесных процессов, основное применение термодинамики до недавнего времени ограничивалось исследованием равновесных свойств вещества. В последние десятилетия ведется интенсивное развитие неравновесной термодинамики, представляющей макроскопическую теорию необратимых процессов, протекающих в природе.  [c.3]

Впрочем, место и значение термодинамических методов в области необратимых явлений можно по-настоящему оценить только путем сравнения с более фундаментальными статистическими методами. На протяжении последних лет мы являемся свидетелями того, как заново формулируются задачи статистики, что, весьма возможно, приведет к более удовлетворительной молекулярной теории необратимых процессов. Без сомнения, эти изменения отразятся на термодинамических методах и приведут к новым и плодотворным идеям в этой области.  [c.15]

Теорию флуктуаций можно рассматривать в различных аспектах, из которых особенное значение имеет выяснение связи с необратимыми процессами. Но не следует забывать, что флуктуации и связанные с ними физические явления должны исследоваться и в теории равновесных систем. Можно, пожалуй, сказать, что теория флуктуаций образует мост между теорией термодинамического равновесия и теорией необратимых процессов. В этих лекциях главное внимание мы уделяем флуктуациям в системах, находящихся в равновесных состояниях 1). Связь с теорией необратимых процессов будет рассмотрена только поверхностно.  [c.36]


Неравновесная термодинамика является сравнительно молодым и интенсивно развивающимся разделом теоретической физики. Она возникла в результате обобщения классической термодинамики на область малых отклонений системы от равновесия, когда проявляется линейная связь между причиной и следствием того или иного необратимого процесса, как например пропорциональность теплового потока градиенту температуры при теплопроводности. Начало построения термодинамической теории линейных неравновесных процессов принадлежит Л. Онзагеру (1931). В настоящее время эта теория получила статистическое обоснование и широко используется при изучении различных физических явлений.  [c.7]

Таким образом, в области линейности необратимых процессов производство энтропии играет такую же роль, как и термодинамические потенциалы в теории равновесных систем.  [c.21]

В настоящее время нет никаких оснований для проведения резкой грани между термодинамикой и статистической физикой тем не менее определенное преимущество термодинамики и особенность ее методов диктуют важность отдельного изложения термодинамики с привлечением необходимых качественных молекулярных представлений. Она позволяет с помощью своих начал легко учитывать наблюдаемые на опыте закономерности и получать из них фундаментальные следствия. Именно на этом пути в свое время было предсказано вырождение газов при низкой температуре, развита теория фазовых переходов второго рода, формируется термодинамическая теория кинетических явлений в физических системах неравновесная термодинамика или термодинамика необратимых процессов).  [c.10]

При малых отклонениях системы от равновесия проявляется линейная св,. ь между причиной и следствием того или иного необратимого процесса, как, например, пропорциональность теплового потока градиенту температуры при теплопроводности. Начало построения термодинамической теории линейных неравновесных процессов принадлежит Л. Онсагеру (1931). В настоящее время эта теория получила статистическое обоснование и широко используется при изучении различных физических явлений.  [c.263]

Свойство энтропии возрастать в необратимых процессах, да и сама необратимость находятся в противоречии с обратимостью всех механических движений и поэтому физический смысл энтропии не столь очевиден, как, например, физический смысл внутренней энергии. Максимальное значение энтропии замкнутой системы достигается тогда, когда система приходит в состояние термодинамического равновесия. Такая количественная формулировка второго закона термодинамики дана Клаузиусом, а ее молекулярно-кинетическое истолкование Больцманом, который ввел в теорию теплоты статистические представления, основанные на том, что необратимость тепловых процессов имеет вероятностный характер.  [c.76]

Термодинамика необратимых процессов в том виде, какого она достигла в настоящее время, является приближенной феноменологической теорией. Тем не менее и в настоящем своем состоянии она позволяет значительно глубже осветить сущность различных физических явлений, чем это удавалось раньше, и выяснить недоступные для обычного термодинамического анализа детали реальных процессов изменения состояния тел.  [c.331]

В то же время основной задачей теории изнашивания является установление критериев, с помощью которых можно было бы предсказать скорость (или интенсивность) изнашивания, наступление предельного состояния поверхностных слоев, переходы от одного вида изнашивания к другому. Наиболее общим и перспективным в исследовании и описании процессов изнашивания является термодинамический подход, в основе которого лежат законы сохранения энергии и принцип увеличения энтропии при необратимых процессах (первое и второе начала термодинамики). Целесообразность такого подхода также объясняется тем, что в основе современных теорий прочности твердых тел и строения вещества лежат энергетические концепции, а процесс трения всегда сопровождается диссипацией энергии. При этом совокупность происходящих физико-химических процессов, обусловливающая изменение структуры материала, энтропии трибосистемы и ее изнашивание (разрушение), может быть описана с помощью законов неравновесной термодинамики и термодинамических критериев (энерге-  [c.111]


Результаты и методы теории упругости не всегда достаточны для оценки прочности конструкций и для разрешения многих важных практических вопросов. На практике часто требуется уметь учитывать механические и тепловые свойства твердых тел, связанные с нелинейной упругостью, электродинамическими эффектами и с термодинамической необратимостью процессов деформирования, требуется рассматривать пластичность, ползучесть и релаксацию, усталость и т. д. Для учета и описания подобных явлений необходимо вводить другие теоретические модели сплошных сред.  [c.410]

Таким образом, в настоящее время второе начало в формулировке Клаузиуса-Томсона и его следствие — существование функции состояния энтропии поменялись местами. Конечно, при этом практическая термодинамика никак не пострадала, а теория теплоты получила более законченный вид. Однако значение, указанных уточнений этим не ограничивается, они имеют значительную теоретическую и практическую ценность для дальнейшего развития термодинамического метода и особенно в применении к анализу необратимых процессов.  [c.45]

В последнее время в теории и технике сушки начинает широко применяться термодинамический метод анализа и расчета, поэтому классическая термодинамика и термодинамика необратимых процессов также являются базой теории суш,ки.  [c.6]

Явления переноса в мембранах являются в основном процессами диффузионного типа, связанными со взаимным наложением явлений (в частности, явлений гидродинамики пористой среды) и протекающими со сравнительно малыми скоростями. Поэтому наиболее естественным аппаратом для описания этих явлений представляется термодинамическая теория необратимых процессов, большим преимуществом которой является отсутствие необходимости использовать модельные представления при анализе явлений [8—10]. Этот аппарат нашел широкое применение при анализе различных явлений тепло- и массопереноса и был исПбльзован, в частности, для исследования некоторых мембранных явлений [3]. Наиболее общей в этом отношении является работа Ставер-мана [И], теоретически рассмотревшего различные характеристики мембранных явлений (диффузионный потенциал, электрокинетйческие явления и т. п.) в изотермических условиях.  [c.269]

Гречаный О.А. Статистическая теория необратимых процессов в системах, далеких от термодинамического равновесия. Киев Наук, думка, 1988. 210 с.  [c.367]

Глава I является вводной к курсу. В главе II изложены принципы классической и квантовой статистики. Глава III посвящена основным положениям статистической термодинамики. В главе IV рассмотрено каноническое распределение и его применение для вычисления термодинамических величин. Далее (главы V—VIII) излагаются некоторые приложения статистической физики и термодинамики. В последней главе рассмотрены элементы теории необратимых процессов.  [c.4]

Квазитермодинамическая теория флуктуаций явилась основой развития термодинамики необратимых процессов. Она позволяет рассматривать флуктуации в системе как флуктуацию ее термодинамического состояния, т. е. как переход системы из равновесного состояния в неравновесное. Это неравновесное состояние системы представляется (как это мы делали в 26 при обсуждении термодинамической устойчивости) как новое равновесное ее состояние с большим числом параметров bi,..., bk и соответствующих им фиктивных сопряженных сил Ai,...,Ak, удерживающих систему в равновесии.  [c.298]

В учебном пособии изложены основы термодинамической теории многокомпонентных гомогенных н гетерогенных систем и ее приложения к растворам неэлектролитов. Рассмотрена термодинамическая теория идеальных, бесконечно разбавленных и неидеальных растворов. Даны основы термодинамической теории фазовых равновесий, коллнгативных свойств растворов, термодинамической теории устойчивости. Описаны теория флуктуаций, влияние флуктуаций на свойства растворов и их взаимосвязь с необратимыми процессами. Рассмотрены элементы термодинамики неравновесных процессов.  [c.2]

Характерной особенностью развитой Т. Де Донде термодинамической теории сродства и способа изложения химической термодинамики является то, что он рассматривает химическую реакцию как необратимый процесс. Такой подход позволил ему разрешить ряд затруднений, с которыми приходится сталкиваться при рассмотрении химических реакций с помощью методов, развитых, с одной стороны, в работах Гиббса и его последователей, а с другой,— школой Вант-Гоффа—Нернста.  [c.9]

Проблема Вольтерра, касающаяся сосуществования видов, естественно, выходит за рамки термодинамики необратимых процессов и относится скорее к общей теории нелинейных циклических процесеов. Применение понятия еродетва, а также других термодинамических терминов здесь чисто условно. Поэтому лучше избегать здесь пользоваться ими. — Прим. ред.  [c.116]

Рассмотрены фундаментальные проблемы, возникающие нрн применении второго лакона термодинамики к аналилу систем на макроскопическом и микроскопическом уровнях. Пока.чано, что неравновесность состояния системы может стать причиной возникновения в ней порядка и что необратимые процессы могут приводить к возникновению нового типа динамических состояний материи, названных диссипативными структурами . Кратко изложена термодинамика диссипативных структур. Дано определение необратимых процессов, в основе которого лежат свойства систем, проявляющиеся на микроскопическом уровне, и разработана теория преобразований, позволяющая ввести неунитарные уравнения движения, в явной форме обнаруживающие необратимость системы и ее приближение к термодинамическому равновесию. Дан краткий об.чор исследований, проведенных в данной области группой исследователей, работающих в Брюссельском университете. По мере развития теоретической химии и физики в данном направлении термодинамические концепции, по-видимому, будут играть в них все более важную роль.  [c.123]


Чтобы при помощи преобраловапия Л получить функцию Ляпунова (уравнение (36)), необходимо тщательно исследовать сингулярности резольвенты, соответствующей оператору Лиувилля (21). Можно показать, как это недавно сделали Теодосопулу и др. [24], что при небольших отклонениях от термодинамического равновесия функционал Ляпунова И (уравнение (36)) сводится к макроскопической величине S" S (уравнение (9)). Кроме того, при этом во времени эволюционируют только величины, удовлетворяющие закону сохранения. Это означает, что нам удалось в самой общей форме, по крайней мере для онзагеров-ской области, установить взаимосвязь между термодинамикой необратимых процессов и статистической механикой. Следует подчеркнуть, что, по существу, это означает дальнейшее расширение применимости результатов, давно полученных в рамках теории Больцмана, справедливой для разреженных газов (25).  [c.152]


Смотреть страницы где упоминается термин Термодинамическая теория необратимых процессов : [c.206]    [c.210]    [c.216]    [c.222]    [c.228]    [c.232]    [c.97]    [c.2]    [c.338]    [c.124]    [c.125]   
Смотреть главы в:

Термодинамика и статистическая физика Т.3 Изд.2  -> Термодинамическая теория необратимых процессов



ПОИСК



Необратимость

Процессы необратимые

Процессы термодинамические

Теория необратимых процессов

Теория процесса

Термодинамическая теория

Термодинамические процессы необратимые



© 2025 Mash-xxl.info Реклама на сайте