Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Адгезия силы,

Конструкция клеевых соединений подобна конструкции паяных, только припой здесь заменен клеем, а образование соединения выполняют без нагрева деталей. Соединение осуществляется за счет сил адгезии (сил сцепления) в процессе затвердевания жидкого клея. Имеются клеевые составы с избирательной адгезией к каким-либо определенным материалам — это специальные клеи (например, резиновые) с высокой адгезией к различным материалам (например, к металлам, керамике, дереву, пластмассам и др.) — это универсальные клеи (например, БФ).  [c.86]


Рис. III, 24. Зависимость числа адгезии (сила отрыва 390 g) от размеров частиц Рис. III, 24. Зависимость <a href="/info/187457">числа адгезии</a> (сила отрыва 390 g) от размеров частиц
Оценка величины адгезии. Сила адгезии  [c.18]

Теория Б. В. Дерягина и возможность расчета сил адгезии. Силы адгезии можно рассчитать, не прибегая к эксперименту. Для этой цели обратимся к теории Б. В. Дерягина. Основные предпосылки  [c.29]

Трение имеет двойственную, молекулярно-механическую природу. Как уже указывалось, на поверхности тела имеются свободные силы притяжения, которые на фактических площадях контакта начинают взаимодействовать с силами притяжения на поверхности другого тела. При этом поверхности как бы прилипают одна к другой. Это явление называют адгезией. Силы адгезии прямо пропорциональны фактической площади контакта.  [c.273]

То же в полной мере относится к прочности связи между двумя полимерными материалами. Молекулярная адгезия (силы взаимодействия на единицу площади между поверхностными слоями двух разнородных твердых или жидких тел, приведенных в соприкосновение), не может отождествляться с характеристиками механического поля (локальными напряжениями, деформациями, энергиями), определяемыми, например, из анализа напряженного состояния по задаваемым или измеряемым макроскопическим механическим параметрам (силам, перемещениям и др.). Однако именно характеристики напряженно-деформированного состояния (точнее, их предельные значения, вызывающие разрушение на границах многоэлементной системы) являются теми техническими понятиями, аналогичными технической прочности, которые представляют практический интерес для технологов и конструкторов резиновых многослойных изделий.  [c.253]

Прочность этой связи определяют или той силой, которая требуется для разрыва и отделения пленки от поверхности, или работой отрыва (разделения) пленки от единицы поверхности. Эта работа называется работой адгезии. Силу прилипания, т. е. силу притяжения различных тел, зависящую от действия сил между молекулами пленки и молекулами подложки, надо отличать от сил, вызывающих сцепление молекул одного и того же тела.  [c.213]


Склеивание может происходить практически без введения энергии в месте соединения благодаря силам адгезии (прилипания) между жидким клеем и молекулами поверхностных слоев твердого тела, а также химическим реакциям. Способность клея соединять изделия объясняется силами остаточного химического сродства между находящимися на поверхности молекулами клея и склеиваемого материала. Эти силы примерно в 10... 100 раз меньше основных сил химической связи в простых молекулах.  [c.15]

В случае высокомолекулярных соединений, когда мономерная молекула, повторяясь в полимере тысячи раз, образует макромолекулу, силы адгезии возрастают пропорционально росту молекулярной массы. Эти силы, имея электрическую природу, в значительной степени зависят от химической структуры клея и склеиваемого материала.  [c.16]

Полярные группы — карбоксильные, спиртовые, амино-, эпоксидные и другие — значительно увеличивают адгезию клея к полярным материалам. Для увеличения адгезионных сил при склеивании некоторых неполярных материалов последние подвергают термической или химической обработке в целях получения на их поверхности некоторого количества полярных групп. Наличие или отсутствие адгезии клея к склеиваемому материалу легко определить по смачиваемости клеем этого материала.  [c.16]

Однако прочность клеевого соединения определяется не только адгезией, но и когезией, т. е. силами взаимодействия между молекулами самого клея. Силы когезии термопластических клеев имеют ту же природу, что и силы адгезии. У клеев на основе термореактивных связующих когезионные силы внутри клеевого шва после его отвердевания будут усиливаться также благодаря образованию обычных химических связей.  [c.16]

Для предотвращения растрескивания крепежа нефтегазопромыслового оборудования его изготавливают из коррозионно-стойких материалов или применяют защитные покрытия [25]. В условиях ОНГКМ наиболее перспективна защита крепежа с помощью плазменных и диффузионных покрытий или нанесения ингибирующей смазки. Согласно [29], механизм защитного действия ингибирующих смазок заключается в том, что с поверхности металла вытесняется вода, и под действием сил адгезии образуется защитный адсорбционный слой, который предохраняет металл от коррозии благодаря механической изоляции его поверхности от влаги и кислорода воздуха. Пленка покрытия замедляет коррозию и защищает металл в результате формирования на его поверхности хемосорбционных слоев маслорастворимых ингибиторов коррозии.  [c.41]

Были проведены исследования по определению силы адгезии некоторых видов нефтяных пеков к металлическим поверхностям. При этом производилось плавление и отвердение пека на металлической поверхности [98]. В результате адгезионно-когезионного отрыва затвердевшего пека на поверхности проявлялся макроскопический узор в виде одной или нескольких областей округлой формы с размерами порядка 1-5 см (рис. 4.4). Круговые области имели внутренний рисунок спирального типа либо типа концен-  [c.201]

Взаимодействие поверхностей трения может быть механическим и молекулярным. Механическое взаимодействие выражается во взаимном внедрении и зацеплении неровностей поверхностей в совокупности с их соударением в случае скольжения грубых поверхностей. Молекулярное взаимодействие проявляется в виде адгезии и схватывания. Адгезия не только обусловливает необходимость приложения касательной силы для относительного сдвига поверхностей, но и может привести к вырывам материала. Схватывание возникает только при взаимодействии металлических материалов и отличается от адгезии более прочными связями. Оно наблюдается при разрушении масляной пленки и взаимном внедрении поверхностей.  [c.83]

Исходная шероховатость состоит из совокупности различных по величине и геометрическому очертанию неровностей в процессе приработки эти неровности будут подвержены воздействию различных касательных и нормальных напряжений. Значительным интенсивным воздействиям будут подвержены наиболее высокие неровности, которые за счет больших напряжений будут либо срезаться, либо пластически деформироваться. Наиболее пологие неровности также будут испытывать интенсивное воздействие за счет большой адгезии, что приведет к значительному изменению их геометрического очертания. Поэтому в ансамбле неровностей, имеющих различную высоту и радиус закругления, в более благоприятных условиях окажутся промежуточные по своим размерам неровности. Эти неровности будут превалирующими на приработанной поверхности. Для таких приработанных поверхностей сила трения будет иметь минимальное значение. Таким образом, равновесная шероховатость для установившегося процесса соответствует минимальному значению сил трения при прочих равных условиях.  [c.53]


Предлагаемые методы расчета адгезионных характеристик системы двух полубесконечных металлов, разделенных зазором, в большинстве случаев не противоречат один другому, взаимосвязаны и дополняют друг друга. Но они справедливы только для плоских границ, когда взаимодействие предполагается по всей зоне контакта, что не соответствует реальной структуре межфазной границы и заведомо приводит к завышенным значениям энергии и силы взаимодействия двух поверхностей, превышающей предел прочности металлов. При более корректном описании адгезии необходимо учитывать неровности и дислокационную структуру поверхностных слоев.  [c.5]

Зная энергию адгезии как функцию расстояния между контактирующими поверхностями, можно определить их силу взаимодействия [1]  [c.7]

Проведено теоретическое описание адгезионных свойств системы твердое тело—покрытие. Применительно к определенному рельефу поверхности и ее дислокационной структуре с использованием метода функционала плотности найдено выражение для межфазной энергии как функции расстояния между взаимодействующими фазами и произведен ее расчет. Получено выражение для энергии адгезии в ряде систем металл—покрытие и рассчитана сила сцепления покрытия с основой.  [c.235]

В настояш ее время нет единого термина, обозначающего силу связи между основным металлом и покрытием отнесенную к единице их общей поверхности. Наиболее часто используются следующие понятия адгезия, адгезионная прочность, прочность сцепления покрытия с основой, адгезионная прочность соединения с основой и др. Такая неопределенность в терминологии для одной из важнейших характеристик покрытия, разумеется, вносит путаницу как в специальной литературе, так и в технологической документации при исследовании свойств покрытий в производственных условиях.  [c.55]

Адгезия (прилипание, слипание, схватывание) и производные от этого слова не всегда корректно характеризуют те многообразные причины, которые приводят к соединению основного металла с покрытием. На наш взгляд, более правильным термином, описывающим удельную силу этой связи, является прочность соединения покрытия с основным металлом , или прочность соединения покрытия с основой .  [c.55]

Оптимальное сочетание высокой прочности и вязкости разрушения в композитах. Так как сильная адгезия на поверхности раздела приводит к повышению прочности композитов, а слабая — к увеличению вязкости разрушения, то для создания композитов с оптимальным сочетанием высокой прочности и вязкости разрушения необходимо исследовать возможность образования химической связи между полимером и наполнителем через эластичные силаны. Такая связь в свою очередь должна способствовать релаксации напряжений по поверхности раздела.  [c.10]

ПРОМЫШЛЕННЫЕ СИЛАНЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ УЛУЧШЕНИЯ АДГЕЗИИ НА ПОВЕРХНОСТИ РАЗДЕЛА В ПОЛИМЕРНЫХ КОМПОЗИТАХ  [c.147]

Контроль адгезии (силы сцепления покрытий) лакокрасочного покрытия производится адгезиметром в трех местах на одной из пяти изолированных труб.  [c.364]

Условия удаления прилипшего слоя пыли можно выразить следующим образом силы отрыва должны превышать силы адгезии. Силы отрыва при отряхивании электродов равны [317]  [c.368]

Явления адгезии по-разному объясняются существующими теориями. Распространенная за рубежом адсорбционная теория адгезии (Дебройн, Мак-Ларен) объясняет адгезию силами меж-молекулярного взаимодействия между молекулами лакокрасочной пленки и поверхностью металла.  [c.83]

Процесс образования нароста схематично можно представить следующим образом. На ювенильных (химически чистых) поверхностях стружки и инструмента при определенных температуре и давлении создаются условия для адгезионного схватывания (соединения) материалов стружки и инструмента. В результате сил адгезии (сил молекулярного прилипания) происходит прочное присоединение контактного слоя стружки к передней поверхности и образование заторможенного слоя, служащего фундаментом для нароста. При скольжении стружки по заторможенному слою происходит аналогичное схватьша-ние и образование следующего слоя нароста, приводящее к увеличению его высоты. Вследствие большей шероховатости образовавшегося слоя создаются благоприятные условия для проникновения кислорода воздуха и его диффундирования в поверхностные слои материала. Окисные пленки уменьшают трение между стружкой и поверхностью нароста, а поэтому каждый следующий нарощенный слой становится короче предыдущего и нарост приобретает клиновидную форму. Высота нароста растет до тех пор, пока его прочность становится недостаточной для восприятия нагрузки со стороны стружки, и нарост разрушается. Разрушению нароста способствует и то, что после достижения им определенной высоты стружка не полностью облегчает нарост, а между наростом, стружкой и поверхностью резания появляются зазоры, в результате чего тело нароста перестает находиться в условиях всестороннего сжатия.  [c.108]

Если помимо сил сцепления между отдельными частицами водяного пара (когезия) появляются более высокие силы сцеиле-ния молекул воды с твердой поверхностью (силы адгезии), то увеличивается возможность коиденсации молекул водяного пара именно на поверхности такого твердого тела. Адсорбционная конденсация, т. е. образование тончайшего слоя молекул НгО, связанных с поверхностью металла силами адсорбции, предшествует процессу капельной коидепсацпи и может ироисходить при относительной влажности ниже 100%. В зависимости от состояния металлической поверхности, при влажности немного ниже  [c.174]

Другим примером процесса агломерации является адгезия твердых частиц на твердой поверхности. Показано [1291, что на адгезию влияют такие факторы, как силы Лондона — Ван-дер-Ваальса, влажность, качество поверхности, изменение проходного сечения канала, время контакта, статическое электричество, вязкие свойства покрытия, температура и т. д. Многими авторами, в том числе Бредли [68, 691, рассматриваются силы Лондона — Ван-дер-Ваальса между частицами, а также между частицей и поверхностью. Влияние влажности изучалось на примере небольшого содержания жидкости между поверхностями [661. Влияние п.лощади контакта, размеров и формы частиц исследовалось в работе [4261. Время, требуемое для полной адгезии, определялось в работе [661. Визуально нетрудно убедиться в том, что адгезия и силы Лондона — Ван-дер-Ваальса имеют электрическую природу. Этот вопрос будет рассмотрен в гл. 10.  [c.267]


В результате действия сил адгезии суспензия прилипает к поверхности моделей и точно воспроизводит их поверхность и форму, а обсыпочный песок внедряется в слой суспензии, смачивается ею и фиксирует суспензию на поверхнскти модели в виде тонкого слоя. Зернистый материал (песок и др.) со 5дает также скелет оболочки и утолщает ее. Создаваемая песком шероховатая нерабочая поверхность способствует хорошему сцеплению псспедующего слоя суспензии с предыдущим слоем.  [c.200]

Установлено, что трение твердых тел имеет молекулярно-механическую природу. На участках фактического контакта поверхностей, как показано в главе 1, действуют силы межмолекулярного притяжения, которые проявляются на расстояниях, в десятки раз превы-и1ающих межатомное расстояние в кристаллических решетках. При отсутствии либо наличии промежуточной вязкой прослойки (влага, загрязнение и т.п.) между контактирующими поверхностями молекулярные силы вызывают адгезию на площадках фактического контакта и поверхности как бы "прилипают" друг к другу. Строго говоря, адгезия имеет сложную природу. Поэтому наряду с молекулярной теорией существует несколько других теорий адгезии.  [c.65]

Силы адгезии, как и молекулярные силы, прямо пропорциональны площади фактического контакта. Приложенное усилие (давление) влияет на эти силы косвенно, через площадь фактического контакта. Выражение для силы трения Т. обусловленной 1еханическими и молекулярными взаимодействиями, можно записать в виде  [c.68]

Согласно современным представлениям, механизм защитного действия неметаллических покрытий связан как с изолирующим действием, так и с влиянием на электрохимические процессы, протекающие под неметаллической пленкой. Экранирующее действие неметаллических покрытий обусловлено их способностью замедлять диффузию и перенос через покрытие компонентов коррозионно-активной среды к поверхности металла и определяется в значительной степени пористостью покрытий. Проникновение электролита через поры покрытия или через межмо-лекулярные несовершенства пленкообразующего вещества (в процессе теплового движения) происходит под действием капиллярных сил. Осмотическое давление, возникающее вследствие перепада концентрации электролита на поверхности капиллярной пленки, контактирующей с внешней средой, прилегающей к защищаемому металлу, способствует диффузии среды через покрытие. При осмотическом перемещении влаги через пленку давление может быть больше, чем сила адгезии пленки к металлу, в результате чего происходит локальный отрыв пленки от поверхности металла, что приводит к образованию вздутий и пузырей, являющихся первоначальным очагом коррозионного поражения металлической основы.  [c.128]

Влияние физико-химических и теплофизиче ск их свойств теплоотдающей поверхности. При за рождении паровых пузырьков затрачивается энергия на соверше ние работы против сил адгезии (работа, обусловленная образова нием на твердой стенке поверхности раздела между фазами, зави сящая от физико-химических свойств поверхности и свойств кипя щей жидкости). Поэтому при прочих равных условиях интенсив ность теплоотдачи к жидкости, кипящей на поверхностях нагрева выполненных из разных материалов, может быть различной. Од нако для таких поверхностей, как нержавеющая сталь, латунь хромированная медь, интенсивность теплообмена оказывается практически одинаковой i[15, 88].  [c.200]

Налипание на поверхность посторонних частиц происходит в результате процессов адгезии, когезии, адсорбции, диффузии в результате молекулярных взаимодействий, проявления раз личных химических связей и действия сил электрического про исхождения. Типичным примером интенсивных дгезионных про цессов является наростообразование на режущих поверхностях инструментов в процессе обработки металлов. В результате дей ствия в зоне резания высоких температур и давлений облегча ется молекулярное взаимодействие между материалами инстру мента и сбегающей стружки и на поверхности инструмента (на пример, резца) образуется характерный нарост (см. рис. 24, к) который изменяет режущие свойства инструмента и оказывает решающие влияния на его стойкость (долговечность). Нарост часто проявляется в виде загрязнения фильтров (рис. 22, а), внутренних стенок корпусов редукторов, открытых поверхностей (рис. 22, б).  [c.88]

Теплоотдача при капельной конденсации пара. Если конденсат не смачивает поверхность охлаждения, то конденсация пара приобретает капельный характер. На поверхности образуются и растут отдельные капли конденсата. Скоростная киносъемка показывает, что рост возникающих капелек в начальный период идет с очень высокой скоростью. Затем по мере увеличения размера капель скорость их роста постепенно снижается. При этом одновременно наблюдается непрерывно идущий процесс взаимного слияния капель. В итоге, когда отдельные капли достигают размера примерно одного или нескольких миллиметров, они скатываются с поверхности под влиянием силы тяжести. Общая плотность капель на поверхности конденсации увеличивается по мере возрастания температурного напора At = Наблюдения показывают, что при малых капельки конденсата зарождаются в основном на разного рода микроуглублениях и других элементах неоднородности поверхности (причем в первую очередь на тех, для которых локальные условия смачивания и работа адгезии имеют повышенное значение). При увеличении на поверхности конденсации может возникать, кроме того, очень тонкая (около 1 мкм и менее) неустойчивая жидкостная пленка. Она непрерывно разрывается, стягиваясь во все новые капельки, и восстанавливается вновь. При этом число капель на поверхности резко увеличивается.  [c.158]

Обработка стекловолокна силаном ухудшает, а не активирует смачивание его смолой. Лэд и Нельсон [26] показали, что стекло, обработанное аминопропилсиланом, плохо смачивается эпоксидной смолой, однако временнйя устойчивость адгезионной связи на поверхности раздела в присутствии воды в 200 раз выше, чем для необработанного волокна. Изучая многочисленные органосодержащие силаны как потенциальные аппретирующие добавки для полиэфирных смол, Плюдеман [37] не обнаружил никакой связи между полярностью силана или смачиваемостью стекла, обработанного силаном, и их поведением в полиэфирном слоистом пластике. Тем не менее Лотц и др [29], сравнивая аппреты для эпоксидных смол, обнаружили, что при иопользовании силанов, обладающих максимальным критическим поверхностным натяжением Ус, получаются наилучшие слоистые пластики. Очевидно, вначале механизм образования адгезионного соединения с помощью аппретирующих добавок не связан со смачиваемостью поверхности. Только после соблюдения основных требований получения надежной адгезии дальнейшее увеличение ее прочности может быть достигнуто в результате улучшения смачиваемости стекловолокна, обработанного смолой.  [c.35]

Однако теория химической связи не может объяснить некоторые хорошо известные факты. Так, например, с точки зрения теории оцепления совершенно не ясно, почему некоторые силаны оказываются эффективными в повышении прочности адгезии, хотя входящие в их состав органофункциональные группы не взаимодействуют со смолой. Далее, согласно теории химической связи, способность силанов повышать влагостойкость адгезионной связи в значительной мере обусловлена образованием гидролитическя стабильных связей — 3 —О—3 — со стеклом.  [c.113]


Тем не менее силаны успешно используются для улучшения адгезии не только стекла, но и металлов. Кроме того, теория химической связи чрезмерно упрощает представление о структуре связующего и адсорбированной силановой пленки, которая рассматривается как мономолекулярный слой адсорбированного силанового мономера. В действительности пленка редко представляет собой монослой и обычно адсорбируется в виде силоксанового полимера.  [c.113]


Смотреть страницы где упоминается термин Адгезия силы, : [c.71]    [c.386]    [c.231]    [c.503]    [c.90]    [c.70]    [c.138]    [c.147]    [c.225]    [c.274]    [c.113]   
Адгезия пыли и порошков 1967 (1967) -- [ c.0 ]



ПОИСК



Адгезивы

Адгезии сила (force of adhesion)

Адгезия

Влияние внешней среды на силы адгезии

Влияние размеров частиц на силы адгезии в жидких средах

НЕКОТОРЫЕ СВОЙСТВА ПОВЕРХНОСТИ. СИЛЫ СВЯЗИ АДГЕЗИЯ Некоторые свойства металлической поверхности

Определение адгезионной прочности под действием силы, направленной тангенциально к площади контакта адгезива и субстрата

Оценка величины адгезии. Сила адгезии

Сила адгезии частицы



© 2025 Mash-xxl.info Реклама на сайте