Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трение при скольжении упругих тел

ТРЕНИЕ ПРИ СКОЛЬЖЕНИИ УПРУГИХ ТЕЛ  [c.135]

Следовательно, работа движущей силы при качении упругих тел затрачивается на деформацию, трение скольжения и затухающие колебания, возникающие в зоне контакта колеса и плоскости.  [c.87]

В основу механической теории трения твердых тел положена теория упругих и неупругих механических взаимодействий элементарных неровностей, возникающих на трущейся поверхности при скольжении одного тела по другому.  [c.5]


Рассмотрим работу силы тяжести и линейной силы упругости, изменяющейся по закону Гука, н вычисление работы силы, приложенной к какой-либо точке твердого тела в различных случаях его движения. В качестве простейших примеров движения укажем случаи, когда работа равна нулю. Так, работа любой силы равна нулю, если она приложена все время в неподвижной точке или в точках, скорость которых равна нулю, как, например, в случае, когда сила все время приложена в мгновенном центре скоростей при плоском движении тела или все время в точках, лежащих на мгновенной оси вращения, в случае вращения тела вокруг неподвижной точки. Эти случаи возможны в задачах, когда рассматривают работу силы трения в точке соприкосновения двух тел при отсутствии скольжения одного тела по другому. При этом работа силы трения равна нулю.  [c.315]

Возникновение сопротивления при качении одного тела по другому определяется тем, что поверхностный слой перекатываемых в зоне контакта тел упруго и пластически деформируется (по исследованию Рейнольдса, 1875). Общую площадь или полоску контакта можно разделить на участок сцепления и участок упругого скольжения (рис. 9.5, а, б). На участке сцепления скорости соприкасающихся тел одинаковы, на участке упругого скольжения происходит трение скольжения. В зависимости от формы тел де-  [c.312]

Основную роль в возникновении сопротивления перекатыванию играют силы трения скольжения, всегда возникающие в месте касания катка и плоскости. Благодаря упругости тел Л и S касание их происходит не по прямой линии, как это было бы, если бы эти тела были абсолютно твердыми, а по некоторой поверхности аР (рис. 322), что возможно при условии некоторой деформации катка и плоскости. При этом дуга аР на катке несколько укорачивается, а соответствующий отрезок аР на плоскости удлиняется. Отсюда следует, что процесс деформации обязательно должен сопровождаться относительным скольжением катка и плоскости на поверхности соприкасания их. Это и является источником потерь на трение скольжения. Чем тверже тела А пВ, тем меньше они деформируются в месте взаимного касания, тем меньше поверхность со-  [c.318]

Влияние вида трения. Износ всегда связан с относительным перемещением и может иметь место при трении скольжения, качения и качения с проскальзыванием. Как было показано,, при анализе фрикционных связей для протекания процесса изнашивания необходимо их многократное возникновение и разрушение при относительном смещении микровыступов. Это условие выполняется при относительном скольжении поверхностей. Однако и при чистом качении упругих тел в зоне контакта возникают сложные явления, связанные с напряженным состоянием [80 140] и с проскальзыванием, которые могут привести к их изнашиванию, а не только к усталости поверхностных слоев.  [c.246]


Смазка подшипников. Основное назначение смазки для шарике- и роликоподшипников — обеспечение их долговечности и снижение потерь энергии на трение. Правильно пО добранная смазка должна а) уменьшать трение скольжения между телами качения и кольцами, телами качения и сепаратором, а также между сепаратором и бортами колец уменьшать трение скольжения, возникающее вследствие упругих деформаций рабочих поверхностей (тел качения и желобов) под действием нагрузки при работе подшипника б) способствовать равномерному распределению тепла во всех частях подшипника и отводить от него тепло, развивающееся вследствие работы трения в) предохранять полированные поверхности тел качения и желобов, а также остальные поверхности подшипника от коррозии  [c.610]

При исследовании задачи о скольжении цилиндра по границе вязкоупругого основания в 3.3 установлено, что сопротивление движению цилиндра существует даже при отсутствии тангенциальных напряжений в области контактного взаимодействия. Для упругих тел при сохранении предположения об отсутствии сил трения на площадке контакта, как известно, сопротивление их относительному скольжению равно нулю (см. 3.2). Причина этого явления заключается в обратимости упругих деформаций, в силу чего область контакта и контактные давления для упругих тел распределены симметрично относительно оси симметрии движущегося цилиндра. Не так обстоит дело при взаимодействии вязкоупругих тел. Как показано в 3.3, центр площадки контакта и точка, в которой контактные давления достигают своего максимального значения, сдвинуты по направлению к переднему краю области взаимодействия. Именно в силу такого характера распределения напряжений и возникает сопротивление при относительном скольжении вязкоупругих тел.  [c.174]

При перекатывании одного тела, имеющего криволинейную поверхность, по другому телу с плоской или криволинейной поверхностью возникает сопротивление, которое называется трением качения. Природа трения качения несходна с трением скольжения. Сопротивление перекатыванию зависит от упругих свойств материалов соприкасающихся тел, кривизны соприкасающихся поверхностей и величины нормальной силы, действующей между телами. Рассмотрим два тела, цилиндр 1 и плоскость 2 (рис.  [c.126]

Эти способы упрочнения основаны на получении поверхностных сжимающих напряжений за счет неоднородной упруго-пластической де< юрмации (растяжения поверхностных слоев детали) в зоне контакта детали и цилиндрического или сферического инструмента (ролика, шарика, дорна и т. п.) или рабочего тела (например, дроби). Деформирование поверхностных слоев облегчается при скольжении или качении прижатого инструмента по поверхности детали, так как за счет сил трения увеличивается интенсивность напряжений в зоне контакта. Для повышения стойкости инструмента его изготовляют из более прочного материала, чем обрабатываемая деталь. Эффективным оказывается использование материалов с высоким модулем упругости. Дробь изготовляют и из менее прочного материала (чугун, стекло, неметаллы и др.), так как в момент соударения она работает в условиях сжатия.  [c.645]

Одно приложение. Укажем здесь одно интересное приложение формулы (7) 108, данное Д. И. Шерманом [14]. Пусть дано упругое тело, представляющее собой пластинку, с некоторым числом отверстий и пусть в эти отверстия вставлены сплошные шайбы из того же материала, контуры которых при ненапряженном состоянии были несколько отличны от контуров соответствующих отверстий. Предполагается при этом, что контуры вставляемых шайб и соответствующих отверстий приводятся в соприкосновение без зазоров и спаиваются между собою (или удерживаются от скольжения друг по другу силами трения).  [c.388]

Переход от статического трения (коэффициент трения покоя) к трению кинетическому происходит обычно скачкообразно. Вследствие упругости контакта двух тел, скользяш,их одно относительно другого, возникают резкие изменения (скачки) силы трения, объясняемые периодически повторяющимися процессами возникновения и последующего исчезновения упругих напряжений (релаксационные колебания). Эти скачки возникают только в том случае, если сила трения покоя превышает силу трения при установившемся движении. Величина скачков (амплитуда релаксационных колебаний) определяется интенсивностью роста силы трения покоя при увеличении времени неподвижного контакта при совместном движении соприкасающихся тел, а также интенсивностью увеличения силы трения скольжения с увеличением скорости относительного движения. В ряде случаев эти колебания отрицательно влияют на процесс торможения, нарушая нормальную работу всей машины.  [c.337]


Переход от статического контакта к движению осуществляется не сразу. Существует явление предварительного сдвига или смещения. При этом происходит обратимая (упругая) и необратимая (пластическая) деформации участков контакта, образовавшихся в статических условиях. Разрыв связей происходит в начале движения — скольжения сопряженных тел. Явление предварительного смещения открыто А. В. Верховским [10] и И. С. Ренкиным [111]. Оно представляет важный элемент общей теории взаимодействия поверхностей при трении. Характеристики предварительного  [c.102]

Рейнольдс [Ш] объяснил возникновение силы трения качения при качении абсолютно упругого тела по абсолютно упругому основанию относительным скольжением соприкасающихся тел вследствие их деформации.  [c.320]

Предположим, например, что тело движется или катится под действием силы тяжести, соприкасаясь в одной точке с неподвижной поверхностью, которая либо абсолютно шероховатая, либо абсолютно гладкая, так что трения скольжения нет. Пусть тело каким-либо образом приходит в движение, и нам известна живая сила в начальный момент. Живая сила уменьшается или увеличивается в зависимости от того, поднимается или опускается центр тяжести по сравнению с его первоначальным положением. В то время как тело движется, давление его на поверхность изменяется, оно может обраш,аться в нуль и изменять знак. В последнем случае тело покидает поверхность. Тогда, согласно п. 79, центр тяжести будет описывать параболу, а угловая скорость тела относительно его центра тяжести будет постоянной. Вскоре тело, возвращаясь, может удариться о поверхность, но до тех пор, пока не произойдет такой удар, уравнение живых сил остается неизменным. Дело обстоит совершенно иначе, когда тело возвратится на поверхность. Чтобы пояснить это утверждение, предположим, что Р — реакция поверхности, А — точка тела, к которой приложена эта сила, а Р (11 ее элементарная работа (см. п. 138). Тогда, если тело катится по поверхности, то й/ равно нулю, а если тело покидает поверхность, то Р равно нулю, так что во время движения тела до удара элементарная работа Р с1( равна нулю по той или иной причине. Следовательно, реакция в уравнение живых сил не входит. Но если тело возвращается на поверхность, то точка А вжимается в поверхность, и реакция Р препятствует движению точки А, так что ни Р, ни не равны нулю. Здесь реакцию Р измеряют точно таким же образом, как и в начальный момент движения, считая ее весьма большой силой, резко изменяющей скорость точки А за очень короткое время (см. п. 84). В течение времени сжатия сила Р оказывает сопротивление движению точки А, и, стало быть, живая сила тела уменьшается. Но за время восстановления сила Р помогает перемещению точки А, и следовательно, живая сила увеличивается. В дальнейшем будет показано, что при ударе живая сила уменьшается, за исключением предельного случая абсолютно упругих тел, и будет исследована величина ее потери.  [c.128]

Сухое трение. При сухом трении между трущимися поверхностями смазки нет (рис. 89, а). Поверхности тел, даже очень хорошо отшлифованные, имеют неровности — углубления и выступы. При движении одной поверхности по другой выступы их соприкасаются. Вследствие упругости материала скольжение сопровождается смятием выступов, а при сильном нажатии одной поверхности на другую в некоторых случаях и разрушением поверхностей.  [c.194]

Ниже рассматривается задача, которая с качественной точки зрения подобна исследованной в предыдущем параграфе и заключается в кручении двух сжатых постоянной нормальной силой упругих тел вокруг оси, совпадающей с их общей нормалью, под действием переменного скручивающего момента. Нетрудно представить возникающую при этом физическую картину контактного взаимодействия. Нормальное сжатие приводит к формированию области контакта и распределения нормальных давлений, определяемых теорией Герца. Действие скручивающего момента обусловливает поворот на малый угол [3 вокруг оси 2 одного тела относительно другого. Усилия трения, действующие по поверхности контакта, препятствуют скольжению. Каждое тело с точки зрения вычисления его упругих деформаций рассматривается как упругое полупространство. Под действием пары скручивающих моментов Мг в каждом теле реализуется напряженное состояние, соответствующее чистому кручению, когда все нормальные компоненты напряжений равны нулю (см. 3.9). В случае контакта шаров напряженно-деформированное состояние является осесимметричным т е и Тге — ненулевые компоненты напряжений, а ив — единственная отличная от нуля компонента перемещения.  [c.265]

Коэффициенты трения покоя и движения зависят от многих факторов природы материала и наличия пленок на его поверхности (смазка, окисел, загрязнение), продолжительности неподвижного контакта, скорости приложения сдвигающего усилия, жесткости и упругости соприкасающихся тел, скорости скольжения, температурного режима, давления, характера соприкосновения, качества поверхности и шероховатости При прочих равных условиях  [c.68]

При упругом ненасыщенном контакте в вычислениях используют сферическую модель шероховатой поверхности, которую считают абсолютно жесткой, а поверхность менее жесткого тела — абсолютно ровной. Предполагается, что в зонах касания деформирование происходит в соответствии с теорией Герца взаимным влиянием отдельных контактирующих зон на процесс деформации пренебрегают в связи с тем, что расстояние между зонами значительно больше их диаметров. Результаты, полученные на основании такой модели, удовлетворительно совпадают с экспериментом. Деформационная составляющая силы трения при упругих деформациях в зонах фактического касания обусловлена гистере-зисными потерями, возникающими при скольжении микронеровностей по поверхности упруго деформируемого тела.  [c.192]


Различают внутреннее трение (вязкость), т. е. противодействие относительному перемещению частиц внутри твердого тела при его упругом или пластическом деформировании или в газах и н идкостях, и внешнее трение, т. е. сопротивление перемещению двух соирикасающих твердых тел (деталей) вдоль иоверхностп иеремещепия. Последнее разделяют на трение качения и трение скольжения.  [c.212]

Более сложные модели системы учитывают специфику влияния колебательной упругой системы станка, имеющей много степеней свободы. Схема одной из таких моделей показана на рис. 9, а. Система представлиется имеющей две степени свободы в плоскости действия силы трения, перпендикулярной поверхности скольжения. Главные оси жесткости системы, несущей скользящее тело, не совпадают с направлением силы трения и нормальной нагрузки. Суммирование колебаний по направлениям главных осей жесткост и, происходящих со сдвигом по фазе, дает эллиптическую траекторию движения трущегоси тела. Если система неустойчива, то при колебательном движении (рис. 9, б) в сторону действия силы трения (положения 1—3) тело сильнее прижимается к направляющим, и сила трения возрастает, а при движении против р"- трения (положения 4 — в)—давление меньше, и сила трения уменьшается. 1 абота силы трения за цикл колебания (рис. 9, в), пропорциональная площади эллипса перемещений, идет на поддержание колебаний незатухающими, т. е. определяет существование автоколебаний. При этом нормальная сила изменяется (рис. 9, г) ак консервативная упругая сила.  [c.127]

Почти все изложенные ниже результаты могут быть применены для определения контактных характеристик взаимодействующих тел и силы сопротивления их относительному перемещению по крайней мере на двух масштабных уровнях. Макромасштаб - это некоторая расчётная схема реального сопряжения. На этом уровне изучается распределение номинальных напряжений внутри номинальной области контакта в зависимости от макроформы и свойств контактирующих тел и условий взаимодействия. Микромасштаб - это модель элементарного (на данном структурном уровне) фрикционного контакта (например, контакт двух неровностей). Это позволяет использовать полученные результаты для расчёта контурных и фактических площадей контакта, сближения тел под нагрузкой, распределения контактных и внутренних напряжений при качении и скольжении. Кроме того, представленные в этой главе результаты позволяют определить те области изменения параметров, при которых учёт трения и несовершенной упругости приводит к существенному изменению конечных зависимостей по сравнению с упрощёнными постановками.  [c.131]

Среди работ А.Ю. Ишлинского важное место занимают публикации, посвя-ш,енные изучению трения и особенностей его проявления при разных видах пере-меш,ения тел. Им построена теория трения качения жесткого катка по упругому и вязкоупругому основанию [1-3], позволившая изучить влияние относительного проскальзывания поверхностей в пределах плош,адки контакта (этот источник диссипации энергии при качении впервые был обнаружен О. Рейнольдсом [4]), и несовершенной упругости реальных материалов (см. [5]) на сопротивление перекатыванию тел. Эти исследования, проведенные на упрош,енных стерженьковых моделях упругого и вязкоупругого материала, позволили, в частности, объяснить немонотонную зависимость силы трения качения от скорости, установить зависимость сопротивления качению от коэффициента трения скольжения взаимодействующих тел, определить все контактные характеристики (распределение нормальных и тангенциальных напряжений, величину относительного проскальзывания, момент трения качения и т. д.). В дальнейшем развитие теории трения качения шло по пути усложнения моделей взаимодействующих тел, одновременного учета нескольких факторов, влияющих на сопротивление перекатыванию. Подробный обзор работ в этом направлении можно найти в монографиях [6-8].  [c.279]

Неполная сила трения покоя соответствует очень малым, частично обратимым перемещениям, величина которых зависит от приложенной силы. Перемещение, соответствующее неполной силе тренпя и называемое предваришельпым смещением, складывается из объемного и контактного смещений первое обусловлено деформацией сдвига объема трущихся тел под действием приложенной нагрузки, второе — деформацией неровностей — контактным предварительным смещением. Это смещение при упругом контакте обусловлено упругим деформированием контактной зоны, при пластическом — перераспределением фактической площади касания в момент сдвига [31]. Неполная сила трения имеет место в тех случаях, когда трение нспользуется для предотвращения относительного скольжения двух тел. Сила трения покоя — это максимальное значение неполной силы тренпя, когда предварительное смещение переходит в скольжение. Сила трения покоя соответствует максимальному значению предварительного смещения. Сила трения движения соответствует большим необратимым отБОСптельным перемеще-  [c.7]

При упругом контактировании отдельные контактирующие выступы имеют значительно большую жесткость в тангенциальном направлении, чем в нормальном. Поэтому под влиянием контрвыступа отдельный выступ вминается, увлекая за собой прилежащие области материала. Далее он выпрямляется под влиянием сил упругости, и совершая колебания, сталкивается вновь с другими выступами. В результате возникают звуковые колебания, характеризующиеся достаточно широким спектром частот. С увеличением нагрузки частота колебаний снижается. С увеличением скорости скольжения частота колебаний возрастает. Частота колебаний в основном определяется частотой вынужденной силы, которая обусловлена шагом пятен касания и скоростью скольжения. Упругая сила трения скольжения обусловлена работой, затрачиваемой на колебание (гистерезисными потерями) и работой, затрачиваемой на разрушение мостиков сварки между пленками, покрывающими твердые тела. Так как модуль упругости и плотность незначительно меняются от температуры, то можно ожидать независимости сИлы трения скольжения от скорости в условиях упругого контактирования. Практически указанное имеет место при трении различных минералов, графита и др. материалов, не меняющих своих свойств от температуры (фиг. 24).  [c.198]

Сила трения, возникающая между твердыми телами при их относительном скольжении, зависит от напряженного состояния в зонах фак-ги-ческого касания взаимодействующих тел (см. гл. 1). Действующие нормальные напряжения (контурное давление), микротопография поверхностей вала и вкладыша, механические характеристики материала вкладыша определяют в зонах фактического касания (вид возникающих деформаций — упругие, упругопластические или пластические).  [c.161]

Несмотря на тщательную обработку рабочих поверхностей подшипника, все же при его работе некоторая часть движущей энергии тратится на преодоление трения, которое возникает между кольцами и телами качения в результате их упругого вмятия в местах контакта под действием нагрузки. Неизбежно также трение скольжения между телами качения и сепараторами, бортами колец и торцами роликов и самими телами качения в случае отсутствия сепаратора. Кроме уменьшения трения, назначение смазки состоит в предохранении деталей подшипника от образования коррозии в равномерном отводе тепла в облегчении осевого перемещения наружного кольца в корпусе или внутреннего на валу при удлинении последнего от нагрева, а также при регулировании осевого зазора в подшипнике в снижении шума при работе подшипника в более эластичной передаче нагрузок от одной детали подшипника к другой, за счет упругих свойств масляного слоя, способного поглощать энергию удара в заполнении зазора между вращающимися деталями и уплотнительными устройствами, что предохраняет подшипниковый узел от попадания пыли, влаги, газов и других посторонних веществ.  [c.157]


При возникновении упругого насыщенного контакпш, когда имеет место взаимное влияние контактных зон, общая сила трения при относительном скольжении взаимодействующих твердых тел  [c.99]

Процесс трения скольжения весьма сложен и его описание с учетом всех сопутствующих ему явлений весьма затруднено. Учитывая, что определяющим процессом формирования сил трения является деформирование шероховатостей при их соударении, характеризуемое реологическими свойствами материалов (упругими и диссипационными), относительное скольжение твердых тел для упрощения математической задачи будем рассматривать ниже при неизменных законах молекулярного взаимодействия поверхностных сил.  [c.107]

К середине XX века было установлено, что во многих смазанных тяжело нагруженных или неприработанных узлах трения при контакте неконформных или легкодеформируемых тел (в зубчатых или цепных передачах, в подшипниках качения, в полимерных или тяжело нагруженных подшипниках скольжения, при обработке металлов давлением) при определенных условиях наблюдается жидкостная смазка, хотя толщина смазочного слоя, рассчитанная по уравнению Рейнольдса, не превышала суммарной высоты неровностей контактирующих тел. Это препятствовало корректному расчету таких узлов трения. Эластогидродинамическая (ЭГД) теория смазки позволила распространить классическую гидродинамическую теорию смазки на условия контакта, при которых реализуются высокие давления, вызывающие упругие деформации контактирующих тел и увеличивающие вязкость смазочного материала в пленке жидкости, разделяющей эти тела. ЭГД-теория смазки учитывает эти явления и адекватно описывает процесс смазки тяжело нагруженных узлов трения либо узлов трения с легко деформируемыми деталями [30,  [c.210]

Оценить возможность потери устойчивости заданного движения, вьфаженной в форме релаксационных автоколебаний (периодического движения с остановками) (см. кривую i на рис. 1.4.15), можно путем статического расчета ЭУС с учетюм наличия координатных (упругих) связей в плоскости скольжения. Принципиальная сторона методики расчета изложена в работе [14 . Предлагаемый подход базируется на различии законов трения покоя и скольжения. Сила трения покоя равна по величине и противоположна по направлению сдвигающему усилию, которое формируется в результате де рмации УС при неподвижном контакте трущихся тел. При скольжении контакт подвижен, и сила трения получает направление, противоположное скорости скольжения (см. рис. 1.4.14, а). В состоянии покоя контакт неподвижен, и при определенных условиях может возникать статическая неопределимость УС, исчезающая при скольжении.  [c.77]

Было показано ( 8.2), что микропроскальзывание в области контакта имеет место при контакте качения тел с различными упругими постоянными. Сопротивление, возникающее по этой причине, зависит от разницы упругих постоянных, выражаемой параметром 3 (см. уравнение (5.3)), а также коэффициента трения скольжения (л. Сопротивление качению достигает максимума  [c.349]


Смотреть страницы где упоминается термин Трение при скольжении упругих тел : [c.551]    [c.454]    [c.58]    [c.26]    [c.236]    [c.375]    [c.59]    [c.188]    [c.89]    [c.459]   
Смотреть главы в:

Механика фрикционного взаимодействия  -> Трение при скольжении упругих тел



ПОИСК



Скольжение упругое

ТРЕНИЕ Трение скольжения

Трение скольжения

Трение скольжения при несовершенной упругости



© 2025 Mash-xxl.info Реклама на сайте