Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Смазки теория

На участке d трение жидкостное, значения / определяются на основе гидродинамической теории смазки (см. литературу [35, 361).  [c.239]

В основу этого метода расчета положена гидродинамическая теория смазки, исходя из которой максимально допустимый диаметральный зазор, обеспечивающий жидкостное трение в подшипнике, может быть определен по уравнению  [c.316]

Из основных уравнений гидродинамической теории смазки нельзя делать вывода, что повышение частоты вращения вала и вязкости масла ведет к увеличению несущей способности надежности подшипника, поскольку в эти уравнения входит рабочая вязкость масла, устанавливающаяся в результате взаимодействия между тепловыделение.м и теплоотводом.  [c.362]


КОНТАКТНО-ГИДРОДИНАМИЧЕСКИЙ ЭФФЕКТ ТЕОРИИ СМАЗКИ  [c.147]

Гидродинамическая теория смазки позволяет определить несущую способность масляного клина в зазоре с жесткими стенками, например, в подшипниках скольжения (см. 18.5). Применить эту теорию для объяснения процессов смазки зубчатых передач оказалось невозможно, прежде всего из-за того, что в контакте зубчатых передач возникают очень высокие давления. Величина этих давлений зависит не только от внешней нагрузки и геометрических размеров контактирующих поверхностей, но и от упругих свойств этих поверхностей. Это вынуждает при рассмотрении процессов смазки зубчатого зацепления учитывать как гидродинамические эффекты, происходящие в контакте, так и упругие деформации контактирующих поверхностей. Задача осложняется еще и тем, что эти процессы оказываются взаимозависимыми.  [c.147]

В начале сороковых годов в нашей стране была разработана контактно-гидро-динамическая теория смазки, позволяющая теоретически обосновать процесс смазки зубчатых передач. Принципиальной особенностью этой теории является учет контактной деформации поверхностей, что оказывает существенное влияние на профиль зазора и, как следствие, на распределение давления в зоне контакта.  [c.147]

Это объясняется контактно-гидродинамической теорией смазки. Существует также гипотеза расклинивающего действия масла в микротрещинах. На поверхностях ножек возникающие микротрещины направлены так, что при зацеплении зубьев выход масла из них сначала закрывается, а потом в масле создается гидростатическое давление, способствующее выкалыванию элементов материала.  [c.159]

Истинные давления в подшипниках при отсутствии жидкостной смазки определяются из решения задачи теории упру-  [c.384]

Развитие контактно-гидродинамической теории смазки в применении к вопросам сопротивления заеданию и контактной прочности с охватом неньютоновских масел и пластичных смазочных материалов.  [c.487]

Это справедливо, как и формулы (39), (40), для сухого трения. Случай, когда между телами имеется слой жидкой смазки, требует специального изучения и рассматривается в гидродинамической теории смазки.  [c.65]

Развитию механики машин способствовали работы Н. П. Петрова (1836—1920), заложившего основы гидродинамической теории смазки, В. П. Горячкина (1868—1935), который разработал теоретические основы расчета и построения сельскохозяйственных машин, вся сложность расчета которых заключается в том, что их исполнительные механизмы должны воспроизводить движения руки человека.  [c.7]


Процессы трения рассматривают на моделях, позволяющих оценить молекулярное взаимодействие материалов контактирующих тел с учетом влияния внешней среды (оксиды, пленка, смазка). Первоначально разработанные теории механического сцепления, молекулярного притяжения, сваривания, среза и пропахивания получили значительное развитие в молекулярно-механической теории трения, нашедшей наиболее широкое распространение. Согласно этой теории процесс трения происходит не только на границе раздела твердых тел, но и в некотором объеме поверхностных слоев, физико-механические свойства которых отличаются от свойств материалов в объеме тел. Это связано с деформированием поверхностных слоев, с изменением температуры, с образованием слоев адсорбированных паров влаги или газов, с образованием пленок оксидов, атомов или молекул окружающей среды и т. п.  [c.228]

Кроме того, подшипник должен иметь необходимую несущую способность. Согласно гидродинамической теории смазки, несущая способность смазочного слоя в подшипнике (при его неразрывности) определяется уравнением [13]  [c.213]

Расчет подшипников при жидкостной смазке выполняют на основе гидродинамической теории смазки . Эта теория показывает, что гидродинамическое давление может развиваться только в клиновом зазоре. Толщина/I масляного слоя (рис. 3.152, разделяющий цапфу 2 и вкладыш / слой масла показан толстой черной линией) зависит от угловой скорости и вязкости масла. Чем больше значения этих величин, тем больше /г. С увеличением радиальной нагрузки  [c.415]

Жидкостное трение. При жидкостном трении в кинематических парах элементы трущихся поверхностей разделены слоем смазки и сила трения определяется сопротивлением сдвигу слоев жидкости. Жидкостное трение имеет ряд преимуществ малый износ трущихся поверхностей, лучший отвод тепла от них, а также возможность работы при больших скоростях. Впервые теория жидкостного трения разработана в 1883 г. акад. Н. П. Петровым и развита в работах Н. Е. Жуковского и С. А. Чаплыгина. К основным положениям этой теории относятся условия жидкостного трения.  [c.73]

Расчет подшипников скольжения сводится в основном к определению диаметра ц и длины / цапфы вала, а следовательно, и соответствующих размеров вкладыша. Существуют два основных метода расчета а) расчет на основе гидродинамической теории трения и смазки б) условный расчет.  [c.380]

Из других выдающихся работ Н, Е. Жуковского получили всемирное признание и распространение видоизменение метода Кирхгофа для решения задач струйного обтекания тел, гидродинамическая теория фильтрации, решение задач гидродинамической теории смазки, теорема о подъемной силе и теория присоединенных вихрей, гидродинамическая теория гребного винта, теория решеток и ряд других исследований.  [c.200]

Николай Павлович Петров (1836—1920) — выдающийся русский инженер и ученый, почетный член Петербургской академии наук, выполнял ряд исследований по гидродинамике вязких жидкостей, вискозиметрии, создал основы гидродинамической теории смазки.  [c.300]

Трущиеся поверхности деталей машин и механизмов во многих случаях разделены тонким слоем вязкой жидкости или газа, в котором развивается давление, предотвращающее соприкосновение поверхностей. Закономерности движения такого тонкого вязкого слоя составляют содержание гидродинамической теории смазки, основы которой были заложены в трудах О. Рейнольдса, Н. П. Петрова, И. Е. Жуковского, С. А. Чаплыгина.  [c.306]

Значительную ценность представляют работы академика Л. С. Лейбен-зона, занимавшегося дальнейшим развитием гидродинамической теории смазки, теории гидравлического удара в трубах и гидравлики нефти. Крупные исследования турбулентного режима движения жидкостей, выполненные А. Н. Колмогоровым, М. А. Великановым, Г. А. Гуржиенко и др., являются также ценным вкладом в дело развития современной гидравлики.  [c.8]


В то же время, преследуя краткость курса, нам пришлось опустить некоторые разделы, иногда включаемые в курсы гидравлики перенос потоком взвешенных частиц (влечение донных наносов и гидротранспорт), теорию турбулентных струй, течение двухфазных жидкостей (эргазлифты, движение пароводяных смесей), теорию трения при смазке, теорию поверхностных волн и др.  [c.8]

В этом разделе изучается влияние свойств тонкого поверхностного слоя на характеристики контактного взаимодействия при качении упругих тел, разделённых жидким смазочным материалом. Давление, возникающее в слое жидкости при относительном движении поверхностей, и толщина плёнки смазки в этом случае зависят от геометрии контакта и вязких свойств жидкости (гидродинамическая смазка), а также от упругих свойств взаимодействующих тел (эластогидродинамическая смазка). Теории гидродинамической и эластогидродинамической смазки изложены в монографиях [22, 60, 81, 162, 185]. Эти теории, базирующиеся на ньютоновской модели жидкости, удовлетворительно предсказывают толщину плёнки смазки в зазоре между телами. Однако при высоких давлениях и низких скоростях относительного проскальзывания наблюдается различие в предсказываемых теорией величинах силы трения и диссипации с наблюдаемыми в экспериментах. Для получения более достоверных результатов рассматривались модели, учитывающие эффект изменения вязкости от температуры и неньютоновское поведение жидкости при высоких давлениях (см. [190, 230]).  [c.284]

Профессор Н. П. Петров является осиовоноложнпком гидродинамической теории смазки (теории работы масляного слоя между трущимися поверхностями). В настоящее время эта теория является не только основой расчета подшипников скольжения, но распространяется на зубчатые и червячные передачи, роликовые подшипники и другие детали, работающие со смазкой.  [c.9]

Гидродинамическая смазка. Теория гидродинамич. смазки разработана иа основе экспериментальных данных Петрова, Рейнольдса, Зоммерфельда [ ], а также Гюмбеля [ ]. При условии постоянной Г,и вязкости С.в., а  [c.152]

ФИЗИКА И ТЕХНОЛОГИЯ ТРЕНИЯ В МАШИНАХ. 1) Гидродинамическая теория смазки. Теория трения хорошо смазанных тел (гл. обр. шипа в подшипниках) была создана русскими учеными. Первенство в этом деле принадлежит П.П. Петрову,военному инженеру, к-рый в 1883 г. напечатал капитальное исследование о трении и смазке и положил начало гидродинамич. теории трения. Его идеи были значительно развиты и получили новую с математической стороны разработку трудами П. Е. Жуковского и С. А. Чаплыгина. В иностранной литературе после Петрова выступил Осборн Рейнольдс (1887 г.) далее Зоммерфельд (1904 г.), давший приближенное решение гидродинамических уравнений движения вязких жидкостей в ответ на эту работу и была напечатана работа Н. Е. Жуковского и Чаплыгина (1904 г.), даЬэщая полное (в пределах возможности интегрирования уравнений) решение соответственных уравнений.  [c.412]

Из теории смазки (см. гл. 16) известно, что наиболее благоприятным условием для образования жидкостного трения является перпендикулярное направление скорости скольжения (рис. 9.8) к линии контакта (г))=90°). В этом случае смазка аатяги-пается под тело А. Между трущимися телами А и Б) образуется непрерывный масляный слой сухое трение металлов заменяется жидкостным. При направлении скорости скольжения вдоль линии контакта (il> 0) масляный слой в контактной зоне образоваться не может здесь будет сухое и полусухое трение. Чем меньше угол ijj, тем меньше возможность образования жидкостного трения.  [c.180]

При расчете неподвижных посадок подбиранзт посадку с натягом из условий при наименьшем натяге соединение должно передавать действующие нагрузки, а при наибольшем натяге — в материале соединяемых деталей не должны возникать остаточные деформации. При расчете подшипников скольжения зазор между цапфой и вкладышем подшипника определяют из расчета, основанного на гидродинамической теории смазки. Зазор в опоре должен обеспечивать полное разделение маслом трущихся поверхностей при заданном режиме работы опоры. По расчетному значению зазора подбирают стандартную посадку.  [c.77]

В дальнейшем важнейшим расчетом червячных передач. /чп.пжен стать расчет на износ и заедаь ие с использованием кон-тактно-гидро. ,инамической теории смазки. Последняя, принципиально утг.чняя расчет несущей способности масляного слоя с учетом изменения формы зазора от контактных деформаций, дает подход к оценке предельной безызносной нагрузки, заедания, темпа изнашивания.  [c.238]

Для подшипников при жидкостной смазке условные расчеты применяют как предварительные для подшипников, работающих при полужидкостпой смазке, ввиду отсутствия соответственной теории расчета как основные.  [c.384]

Гидродинамическая теория смазки описывает идеализированные модели под-П1ИПНИК0В скольжения. Теория износа еще не позволяет оценивать долговечность деталей с необходимой точностью с учетом реальных условий эксплуатации.  [c.473]

Правильные геометрические формы подшипников качения позволили точное рассмотрение механики подигипников. Разработан подбор и расчет подшипников на ЭВМ. Успешно применяется контактно-гидро/шьгамическан теория смазки. Проведены работы по оптимизащш про( )иля подшипников качения. Большие работы проводят по повышению быстроходности  [c.487]

Со второй половины XIX столетия наряду с продолжающимися строгими и изящными аналитическими исследованиями в механике под влиянием чрезвычайно быстрого роста техники возникает и все более и более интенсивно разрастается другое направление, связанное с решением реальных практических задач при этом важным методом исследования в механике наряду с математическим анализом и геометрией становится эксперимент. Выдающимися представителями этого направления являются творец теории вращательного движения артиллерийского снаряда в воздухе Н. В. Майеаский (1823—1892) основоположник гидродинамической теории трения при смазке И. П. Петров (1836—1920) отец русской авиации Н. Е. Жуковский (1847—1921) создатель основ механики тел переменной массы, нашедшей важные приложения в теории реактивного движения, И. В. Мещерский (1859—1935) известный исследователь в области ракетной техники и теории межпланетных путешествий К. Э. Циолковский (1857—1935) автор выдающихся трудов во многих областях механики, непосредственно связанных с техникой, основоположник современной теории корабля А. Н. Крылов (1863—1945) один из крупнейших отечественных ученых автор ряда фундаментальных работ по аналитической механике и аэродинамике, создатель основ аэродинамики больших скоростей С. А. Чаплыгин (1869—1942) и многие другие ).  [c.16]


Силы трения при сухом трении и трении со смазкой (полусухое, граничное, полужндкостное) определяют с помощью коэффициентов трения. Силы трения при жидкостном трении, когда трущиеся поверхности полностью разделены слоем смазки, определяют по гидродинамической теории смазки.  [c.43]

Сеотношение (4) достаточно хорошо отвечает наблюдениям при трении сухих или слабо смазанных тел теория трения при наличии слоя смазки, созданная Н. П. Петровым и О. Рейнольдсом, представляет собой специальный раздел гидродинамики вязкой жидкости.  [c.76]

Расчет подшипников скольжения в условиях жидкостной смазки выполняется на основе 1Идродинамической теории, основоположником которой является русский ученый  [c.227]

Гипотеза Ньютона была по.дтверждена лишь 100 лет спустя опытами Кулона (1736— 1806), а затем точнейшими опыта.ми в 1883— 1885 гг. основоположника гидролн 1амической теории смазки Н. П. Петрова и стала, таким образом, законом внутреннего трения жидкости при ламинарном движении.  [c.19]

В конце XIX и начале XX века существенный вклад в развитие гидравлики внесли русские ученые и инженеры Н. П. Петров (1836—1920) разработал гидродинамическую теорию смазки и теоретически обосновал гипотезу Ньютона Н. Е. Жуковский (1849— 1921) создал теорию гидравлического удара, теорию крыла и исследовал многие другие вопросы механики жидкости, он же явился основателем известного всему миру Центрального аэрогидродина-мического института (ЦАРИ), носящего его имя Д. И. Менделеев (1834—1907) опубликовал в 1880 г. работу О сопротивлении жидкостей и о воздухоплавании , в которой были высказаны важные положения о механизме сопротивления движению тела в жидкости и даны основные представления о пограничном слое. Теория пограничного слоя, являющаяся одной из основополагающей при изучении турбулентных потоков в трубах и обтекании тела жидкостью, в XX веке получила большое развитие в трудах многих ученых (Л. Прандтль, Л. Г. Лойцянский).  [c.5]

Формулы (8.19) и (8.20) первоначально использовались для расчетов трения в подшипниках скольжения, пока не была разработана более точная гидродинамическая теория смазки, учи-тываюш,ая эксцентричность расположения вала в подшипнике. Основы этой теории будут рассмотрены ниже. Тем не менее формулы (8.19) и (8.20), предложенные Н. П. Петровым в 1883 г., сохраняют свое значение и в наше время, поскольку во многих конструкциях машин используются вращение соосных цилиндров. Кроме того, эти формулы описывают предельный случай вращения вала в подшипнике при больших скоростях.  [c.300]


Смотреть страницы где упоминается термин Смазки теория : [c.618]    [c.59]    [c.305]    [c.275]    [c.276]    [c.10]    [c.10]    [c.10]    [c.147]    [c.89]   
Гидродинамика при малых числах Рейнольдса (1976) -- [ c.76 , c.112 ]



ПОИСК



Введение в гидродинамическую теорию смазки Режимы смазки

Внешнее трение и смазка Внешнее трение. Гидродинамическая теория смазки Петрова — Рейнольдса

Вопросы теории и изучение трения, смазки и износа Я- Климов, член-корр. АН СССР. Теория движения масляного потока в нерабочей полости подшипника

Г идродинамическая теория смазки

Г рубин. Гидродинамическая теория смазки архимедовых червячных передач в простейших предположениях

Гидродинамическая теория смазки

Гидродинамическая теория смазки - Неизотермическая задача

Гидродинамическая теория смазки основное уравнение

Гидродинамическая теория смазки цилиндрического скользящего подшинника

Гидродинамическая теория смазки. Плоский цилиндрический и пространственней сферический подшипники. Сферический подвес

Глава тринадцатая. Основы гидродинамической теории смазки

Жуковского теория смазки

Контактно-гидродинамический эффект теории смазки

Куца ев. Теория смазки подшипника ограниченной длины при центробежной нагрузке

Материалы, применяемые для изготовления подшипниРежимы трения скольжения. Основы гидродинамической теории трения и смазки подшипников скольжения

Основы гидродинамической теории смазки

Основы гидродинамической теории трения и смазки

Плоские и пространственные задачи контактно-гидродинамической теории смазки. М. Я. Пановко

Подшипники Расчет на основе теории смазки

Подшипники скольжения жидкостного трения — Коэффициент трения — Определение 522 Проверка по гидродинамической теории смазки

Приложение гидродинамической теории смазки к расчету опорного подшипника

Приложение гидродинамической теории смазки к расчету упорного подшипника

Пространственное движение вязкой несжимаемой жидкости между двумя близкими параллельными плоскостями. Гидродинамическая теория смазки. Плоский цилиндрический и пространственный сферический подшипники. Сферический подвес

Различные виды трения скольжения понятие о гидродинамической теории смазки подшипников проф Петрова

Расчет подшипников на основе контактно-гидродинамической теории смазки

Смазка Гидродинамическая теория Уравнение в масляной ванне

Смазка Гидродинамическая теория Уравнение водой

Смазка Гидродинамическая теория Уравнение индивидуальная

Смазка Гидродинамическая теория Уравнение кольцами

Смазка Гидродинамическая теория Уравнение подшипников скольжения

Смазка Гидродинамическая теория Уравнение подшипников скольжения — Подача

Смазка Гидродинамическая теория Уравнение посредством роликов

Смазка Гидродинамическая теория Уравнение при помощи подушек

Смазка Гидродинамическая теория Уравнение разбрызгиванием

Смазка Гидродинамическая теория Уравнение с периодически действующим распределителем

Смазка Гидродинамическая теория Уравнение самозасасыванием

Смазка Гидродинамическая теория Уравнение струйная

Смазка Гидродинамическая теория Уравнение тонкораспыленным маслом

Смазка Гидродинамическая теория Уравнение точечная

Смазка Гидродинамическая теория Уравнение точечная под принудительным давлением

Смазка Гидродинамическая теория Уравнение точечная ручного действия

Смазка Гидродинамическая теория Уравнение фитильная подшипников

Смазка Гидродинамическая теория Уравнение централизованная

Смазка Гидродинамическая теория Уравнение центробежная

Смазка Гидродинамическая теория Уравнение цепных передач

Смазка Гидродинамическая теория Уравнение цилиндрическая зубчатых переда

Смазка Гидродинамическая теория Уравнение червячных передач

Смазка двигателей Теория смазки подшипников

Смазка — Гидродинамическая теория Уравнение 259 — Расход — График 263 — Способы — Классификация

Теория смазки подшипника

Теория смазки шариковых и роликовых подшипников

УРАВНЕНИЯ - УСИЛИЯ гидродинамической теории смазк

УРАВНЕНИЯ гидродинамической теории смазк

Узлы трения - Расчёт на основе гидродинами ческой теории смазки

Уравнения гидродинамической теории смазки

Чаплыгина теория смазки

Эксперименты Хеле-Шоу. Теория смазки пример

Элементы гидродинамической теории смазки



© 2025 Mash-xxl.info Реклама на сайте