Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система автоматического движением

Автоматическая роторная линия — комплекс рабочих машин, транспортных устройств, приборов, объединенных единой системой автоматического управления, в котором одновременно с обработкой заготовки перемещаются по дугам окружностей совместно с воздействующими на них орудиями. Наиболее распространены автоматические роторные линии для операций, выполняемых посредством прямолинейного рабочего движения (штамповка, вытяжка, прессование, сборка, контроль).  [c.91]


Устройства стабилизации летательного аппарата реагируют на его угловые отклонения и обеспечивают устойчивость заданного невозмущенного движения. В условиях непрерывно действующих возмущений это устройство должно выдерживать с необходимой точностью заданный режим полета. При полете в плотных слоях атмосферы продольная и боковая стабилизация беспилотных летательных аппаратов может осуществляться и без специальных устройств путем обеспечения у аппаратов статической устойчивости при помощи аэродинамических средств. В некоторых случаях такая аэродинамическая стабилизация может обеспечиваться и по крену, однако для большей части летательных аппаратов предусматриваются специальные системы автоматической стабилизации.  [c.49]

При исследовании движения одноосного гиростабилизатора на неподвижном и вращающемся основаниях в первом приближении пользуемся уравнениями прецессии гироскопа, считая, что условия устойчивости одноосного гироскопического стабилизатора как системы автоматического регулирования выполнены и нутационные колебания гироскопа с течением времени эффективно затухают.  [c.327]

При рассмотрении вопросов устойчивости силового одноосного гиростабилизатора (см. гл. II) показано, что для обеспечения устойчивости гиростабилизатора как системы автоматического регулирования целесообразно цепь разгрузочного устройства формировать с использованием запаздывающих звеньев. Если предположить, что свободное движение силового гиростабилизатора представляет собой колебания относительно высокой частоты, то разгрузочное устройство не будет оказывать существенного влияния на характер этих колебаний.  [c.446]

Для работы на вредных производствах применяют копирующие манипуляторы, т. е. механические системы, копирующие движения рук. В манипуляторах с автоматическим управлением, имеющих  [c.13]

Устойчивость процесса регулирования заключается в том, что после возмущающего воздействия, отклоняющего машину от заданного ей закона движения, регулятор возвращает систему к требуемому режиму. В результате возмущающего воздействия и последующего восстанавливающего действия регулятора в машине возникает переходный процесс. Этот неустановившийся процесс можно описать системой дифференциальных уравнений движения системы автоматического регулирования (регулятор — машина). Число этих уравнений равно общему числу степеней свободы системы, пришедшей в состояние неустановившегося движения.  [c.395]


Пример 2. Разберем задачу оптимального синтеза системы автоматического управления транспортирующей системой или конвейером. Условия работы системы заключаются в том, что при подаче изделий из количества п транспортных ручьев х ,Хз,х ..., х движение ленты конвейера начинается, после того как на нее попадает не менее к изделий.  [c.496]

На фиг. 174, в представлена еще одна система автоматического восстановления величины отхода фрикционных дисков от металлического тормозного диска по мере износа трущихся поверхностей [84]. Через стенки корпуса 3 тормоза проходят два болта 11, на которых установлены фрикционные сегменты 6 и 8, армированные металлическими пластинами 5 я 9. Между фрикционными сегментами расположен тормозной диск 7, а также сжатая размыкающая пружина 10. В центральное отверстие корпуса 3 вставлена фасонная гайка 4 с пилообразным профилем резьбы вследствие этого резьба при направлении движения в одну сторону является самотормозящей. В гайку 4 ввернут полый винт 2, внутрь которого вставлен палец /4 на конец пальца 14 надета крышка 1, закрепленная гайкой 15. Ъ кольцевые расточки на наружной поверхности гайки 4 и крышки 1 вставлены уплотняющие кольца 12 и 13. При подаче жидкости под давлением в полость между этими уплотняющими кольцами гайка 4 перемещается влево и, нажимая на сегмент 6, производит торможение. При снятии усилия с педали управления пружина 10 возвращает систему в исходное положение, но расстояние между фрикционными сегментами 6 я 8 становится меньше на величину, равную износу фрикционного материала вследствие относительного смещения витков резьбы. Отход фрикционных сегментов от тормозного диска при размыкании тормоза обеспечивается наличием соответствующих зазоров между витками резьбы гайки 4 я винта 2.  [c.267]

Системы автоматического управления движением с обратными связями широко используются в современных машинах как одно из наиболее эффективных средств повышения точности и быстродействия. Системами стабилизации угловой скорости снабжаются практически все энергетические агрегаты и цикловые технологические машины с развитием станков с программным управлением, автоматических манипуляторов и роботов широкое распространение получают системы позиционирования, обеспечивающие точное перемещение рабочих органов, все чаще используются контурные системы управления, контролирующие и корректирующие законы движения исполнительных механизмов.  [c.5]

Для автоматического управления технологическим оборудованием и регулирования хода технологического процесса применяют различные автоматизирующие устройства. Автоматическое управление станка воздействует на его рабочий орган, предназначенный для выполнения движения с целью получения готового изделия без ручного вмешательства. Система автоматического управления станка состоит из механизмов и устройств, обеспечивающих точное и согласованное во времени взаимодействие рабочих и вспомогательных узлов и агрегатов станков-авто-матов и автоматических линий по заданному циклу. При выборе процесса автоматического управления следует исходить из основного критерия — производительности автоматической машины.  [c.101]

На специализированных заводах тракторного и сельскохозяйственного машиностроения производительность труда сборщиков значительно увеличивается в результате широкого применения в сборочных цехах средств механизации и автоматизации. Наиболее высокие темпы роста производительности труда и выпуска изделий обеспечиваются при комплексном решении всех проблем сборочного производства (механизации и автоматизации сборочных процессов, средств транспортирования, контроля, испытания и хранения продукции, движения деталей, собранных агрегатов и машин). В этой отрасли эффективно решены вопросы выбора рациональной схемы сборки и правильного расчленения операций по сборочным постам, применения передового технологического механизированного и автоматизированного сборочного оборудования, создания механизированных комплектовочных складов с системами автоматического учета величины задела, комплектования деталей в тару и т. п. Например, в сборочном цехе Волгоградского тракторного завода существующая система кран-балок заменяется системой монорельсов с автоматическим адресованием тельферов.  [c.245]


В приводах современных металлорежущих станков, в том числе и прецизионных, как правило, используются двигатели постоянного тока. Их механические характеристики, а также схемы управления не всегда обеспечивают необходимую устойчивость движения. Очевидно, что исследование равномерности перемещения узла на направляющих необходимо проводить с учетом динамики привода. Последнее особенно важно для узлов, направляющие которых оснащены системой автоматической стабилизации контактного сближения.  [c.85]

Для эффективного решения указанной задачи может быть рекомендовано создание автоматизированной системы управления движением. Эта система обеспечивает автоматическую смену сигналов в светофорах в зависимости от условий движения автомобильного транспорта на обслуживаемых проездах. В настоящее время электронные автоматические системы регулирования уличного движения уже созданы и планируются к вводу в строй во многих городах мира [5, 7, 9]. В 1971 году в Москве вступит в строй аналогичная система, которая будет обслуживать центральные районы города. Исследования, проведенные в СССР, а также за рубежом, в частности Дорожной исследовательской лабораторией в Англии [4], показали, что затраты на усовершенствование регулирования движения транспорта через один перекресток окупятся в течение года, если время простоя транспорта на перекрестке снизится в результате модернизации всего лишь на 10%. Повышение средних эксплуатационных скоростей движения автомо-  [c.411]

Показано существенное влияние неравномерности скорости вращения электродвигателя на устойчивость движения ползуна. Установлено, что применение системы автоматической стабилизации контактного сближения поверхностей направляющих повышает устойчивость системы электропривод — ползун , особенно в зоне малых скоростей скольжения, сокращает время переходных процессов пуска и торможения и снижает энергетические затраты на перемещение ползуна в среднем на 33%.  [c.427]

В цепи обратной связи в результате вибрационных перемещений частей тела, вызовет сигналы корректировки, поступающие по эфферентным путям. Интересно выяснить частотный диапазон описываемой системы автоматического регулирования, т. е. определить, в пределах каких частот возмущающего сигнала возможны компенсаторные движения частей тела при воздействии вибрации большой амплитуды.  [c.33]

Ускоренные ресурсные испытания проводятся на круговом виражном полигоне в режиме разгон — установившееся движение — торможение с использованием системы автоматического управления трактором. Методикой предусмотрено одновременное проведение ресурсных испытаний шин ведущих колес и др.  [c.36]

Система автоматического управления робота служит для выработки закона управления приводами двигательной системы на основе сигналов обратной связи от информационной системы. Другая важная функция системы автоматического управления — это планирование действий, программирование движений и принятие целенаправленных решений. Система автоматического уп-правления роботов обычно реализуется на базе микроЭВМ или микропроцессоров, имеющих большой ассортимент входных (аналого-цифровых) и выходных (цифроаналоговых) преобразователей и каналов связи. По этим каналам прямой и обратной связи, число которых колеблется от нескольких десятков до нескольких тысяч, могут передаваться непрерывные (аналоговые) и дискретные (цифровые) сигналы. Управляющие ЭВМ для роботов строятся в малогабаритном транспортабельном исполнении и обладают повышенной надежностью. Адаптационные возможности и интеллектуальные способности робота определяются главным образом тем, какое алгоритмическое и программное обеспечение заложено в его систему управления.  [c.18]

Двигательная система определяет динамические свойства робота, в частности, его способность совершать разнообразные движения, диктуемые технологическим процессом. Управляющие сигналы, формируемые системой автоматического управления, поступают на исполнительные приводы двигательной системы и фактически отрабатываются ею. Тем самым обеспечивается возможность автоматизации широкого класса технологических операций, возлагаемых на РТК-  [c.18]

Роботы второго поколения — это роботы с адаптивным управлением. Они отличаются от программных роботов, во-первых, существенно большим ассортиментом сенсорных устройств, особенно датчиков внешней информации (телевизионные или оптические системы искусственного зрения, тактильные, силовые, локационные датчики и т. п.) и, во-вторых, более сложной системой автоматического управления. Последняя уже не сводится к простому устройству для запоминания и отработки жесткой программы движения, как у роботов первого поколения, а требует для своей реализации управляющей ЭВМ.  [c.21]

Гибкость транспортных средств обеспечивается в основном возможностью изменения транспортных маршрутов и скоростей перемещения грузов. При этом маршруты движения задаются либо путем предварительной прокладки трассы, либо программируются с помощью ЭВМ. Транспортировка грузов по заданному маршруту и регулирование скорости осуществляются системой автоматического управления.  [c.183]

ВТИ были проработаны конструкции насоса-дозатора известкового молока с эксцентриковым механизмом и шнека-дозатора сухого каустического магнезита с механическим вариатором, а также системы автоматического управления ими (рис. 4-32), Каждым дозатором управляет электронный регулятор, поддерживающий заданное соотношение между расходами обрабатываемой воды и дозируемого реагента. Шнековый дозатор сухого каустического магнезита приводится в движение кулисно-планетарным механизмом и обгонными муфтами, а плунжерный насос известкового молока — эксцентриковым механизмом. Эти устройства позволяют изменять скорость  [c.157]


Соотношение (Х.11) представляет собой обобщенное уравнение многосвязной системы автоматического регулирования, осуществляющей функции автоматической стабилизации по величине <р и следящей системы по величине X. Из этого уравнения следует, что в общем случае условия автономности будут неодинаковы, они зависят от того, чем вызвано движение системы. В частности, если отсутствуют изменения нагрузки (А, = 0) и управляющие воздействия (я ) = 0),то уравнение (Х.11) описывает свободные колебания (собственные движения) системы.  [c.179]

Следящий привод по перемещению можно рассматривать как частный случай замкнутой системы автоматического регулирования линейных или угловых перемещений по требуемому закону. В следящем приводе регулирующим элементом вместо регулятора является следящая система Следящее движение является результатом воздействия задающих команд без непосредственной механической принудительной связи между задающими и исполнительными устройствами.  [c.383]

Среди многочисленных и разнообразных вариантов конструкций автоматических гидросистем, применяемых в различных отраслях техники, широко используются гидравлические следящие устройства специального назначения. Из большого количества систем специального назначения рассматриваем в настоящей главе следящие приводы для копировальной обработки при больших скоростях слежения, автоматические системы для поддержания требуемых устойчивых постоянных скоростей движений либо же переменных скоростей по заданным программам с управлением по пути, времени, давлению — нагрузке, скорости, либо же с комбинированным управлением и системы синхронизации движений, которые все шире применяются в машиностроении.  [c.235]

Рекомендации по численному решению задач свободной конвекции в емкостях приведены в [14, 34, 71, 94]. Решения получены до значений чисел Релея 10 . Возможность получения решений при больших числах Релея была показана в (34 ) путем введения автоматической коррекции разностного оператора. Установлено, что при больших числах Релея, когда схемные коэффициенты переноса превосходят молекулярные, для сохранения устойчивости решений и равномерной сходимости следует опустить в уравнениях диффузионные члены. Подход к численному решению уравнений в замкнутой области можно проиллюстрировать па примере свободной конвекции жидкости в горизонтальной трубе. Математическая модель задачи описывается системой уравнений движения, энергии и неразрывности  [c.187]

К преимуществам управляемых элементов в виде струйной трубки, способствовавшим их применению в системах автоматического регулирования, можно отнести простоту, эксплуатационную надежность (исключается возможность облитерации) и малое усилие, необходимое для задающего движения.  [c.36]

На основании дифференциальных уравнений элементов системы регулирования составляется дифференциальное уравнение движения системы автоматического регулирования в целом.  [c.347]

Так как в общем случае система автоматического регулирования в момент возмущения может находиться в движении, то в качестве начальных условий должны быть определены или заданы сро — безразмерное начальное отклонение, — безразмерная начальная  [c.535]

В связи с повышением производительности машин и скоростей движения отдельных их органов, а также в связи с требованиями к высокому качеству изделий человек стал испытывать непреодолимые затруднения в управлении машинами, контроле технологических процессов, выполняемых машинами, измерении отдельных параметров выпускаемой продукции и т. д. В прежних, более примитивных машинах реакция человека была достаточной для того, чтобы изменить режим движения и работы машины, если эти режимы и работа отклонялись от нормальных. Теперь, когда продолжительность многих рабочих процессов измеряется весьма малыми долями времени, когда многие процессы являются непрерывными, физиология человека лимитирует его непосредственную реакцию на отклонение рабочего процесса от нормального Поэтому человек стал создавать искусственные средства управления, контроля и измерения. Такими средствами, хорошо известными в технике, являются различные регуляторы и системы автоматического регулирования рабочих процессов, приборы контроля и измерения параметров этих процессов и т. д. В некоторых случаях стало целесообразным создание специальных машин для управления процессами и их контроля. Так, например, для автоматизации контроля размеров поршневых колец, пальцев, шариков для шарикоподи]ипников и многих других объектов стали создаваться контрольно-измерительные машины, которые производят не только обмер деталей, но и их сортировку по размерам и другим показателям. В современные автоматические линии встраиваются различные контрольно-измерительные машины и приборы, которые не только контролируют процесс, но и управляют им, сигнализируя и автоматически корректируя этот процесс в процессе работы автоматических линий и систем. Такие машины называются контрольно-управляющими.  [c.13]

Также весьма важным фактором является высокая технологичность обрабатываемой детали. Унифицируются отдельные элементы деталей, упрощается форма детали, вводятся единые конструкторские базы и др. Особые требования предъявляются к режущему инструменту в связи с концентрацией операций и автоматической сменой его. Существенной особенностью разработки технологического процесса для станков с ЧПУ является необходимость точной размерной увязки траектории автоматического движения инструмента с системой координат сганка, фиксированной исходной точкой обработки и положением заготовок.  [c.157]

Прецессионное движение гиростабилизатора как системы автоматического регулирования оказывается устойчивым при = Во, = 0. Если предположить, что АМ = = AMoSшvi, то  [c.299]

В гидроприводе экскаватора предусмотрена система автоматической блокировки, которая при включении золотника распределителя 8 на копание рукоятью (гадро-цилиндры 40) блокирует гидроцилиндры ковша 39 и стрелы 38, при включении золотника на копание ковшом (гид-роцилиндр 39) блок фует гидроцилиндры стрелы и рукояти, а при подъеме стрелы (гидроцилиндр 38) блокируются гидроцилиндры рукояти и ковша. Это обеспечивает жесткость рабочего оборудования при выполнении технологических операций. Система блокировки выполнена таким образом, что при повороте платформы движение стрелы не блокируется, то есть возможно совмещение движений.  [c.67]

Системы автоматического управления манипуляторами строятся обычно по принципу программного управления, причем эти системы могут работать в двух режимах режиме обучения и рабочем режиме. На рис. 148 показана блок-схема манипулятора с программным управлением, который состоит из исполнительного механизма, снабженного системой сервоприводов, датчиков положений звеньев и вычислительной машины. В режиме обучения (ключ 1 замкнут, ключи. 2 и < разомкнуты) оператор с помощью дополнительной обучающей системы проводит исполнительный механизм через требуемую последовательность рабочих положений. Информация об этой последовательности, получаемая от датчиков положений звеньев, кодируется (шифруется) и поступает в запоминающее устройство. В рабочем режиме (ключ 1 разомкнут, ключи 2 и 3 замкнуты) манипулятор работает автоматически по введенной ранее в запоминающее устройство программе, которая декодируется (расшифровывается) и преобразуется в заданные движения звеньев исполнительного механизма. Кроме того, вычислительное устройство по сигналам от датчиков положений звеньев производит коррекцию работы манипулятора через управляющее устройство.  [c.266]


К концу 1966 г. намного увеличилась протяженность линий, оборудованных совершенными средствами автоматики и телемеханики. Если еще в 1958 г. устаревшие (жезловая и телефонная) системы сигнализации и связи использовались более чем на двух третях железнодорожной сети, то в 1966 г. они оставались лишь на 17% общей длины сети в пределах малодеятельных линий и ветвей, уступив место полуавтоматической блокировке, автоматической блокировке и диспетчерской централизации. С 1958 г. сначала на подмосковном участке Кунцево—Усово и затем на кольцевой линии Московского метрополитена и на 90-километровом участке Москва—Клин ведется отработка электронных систем автоматического управления локомотивами и моторвагонными секциями. В 1961 г. успешно прошла эксплуатационные испытания установка автоматического роспуска составов и торможения на станционных сортировочных горках и подгорочных путях с использованием радиолокационных и счетно-решающих устройств. Наконец, в последнее время готовится к вводу в опытную эксплуатацию система автоматического диспетчерского регулирования движения поездов, основанная на применении электронных вычислительных машин и имеющая назначением оптимальное решение задач регулирования при нарушениях установленного графика движения [16, 23].  [c.214]

Рис. 10. Функциональная схема системы с х инематическим управлением Д — основной двигатель, ВД — вспомогательный двигатель, ДМ — дифференциальный механизм, ИМ — исполнительный механизм, САУ — система автоматического управления движением. Рис. 10. <a href="/info/153901">Функциональная схема системы</a> с х инематическим управлением Д — основной двигатель, ВД — <a href="/info/400681">вспомогательный двигатель</a>, ДМ — <a href="/info/164">дифференциальный механизм</a>, ИМ — <a href="/info/54011">исполнительный механизм</a>, САУ — <a href="/info/29643">система автоматического управления</a> движением.
В задачах синтеза, связанных с обеспечением устойчипости системы автоматического регулирования скорости или других параметров движения машинного агрегата, обобщенный скалярный критерий эффективности принимают в форме (15.10), придав ему следующий вид  [c.258]

Поступающий в ствол молотка по резиновому шлангу сжатый воздух заставляет поршень-боек стремительно двигаться вперед и ударять по выступающему в ствол хнсстовику рабочего инструмента (зубилу или обжимке). Возвратное движение порн1ень-боек совершает под действием воздухораспределительной системы, автоматически переключающей поступление сжатого воздуха под поршень-боек то с одной, то с другой его стороны.  [c.428]

Таким образом, неизбежная на практике вариативность и неопределенность условий функционирования ГАП порождает специфическое требование к их системе управления и, в частности, к системе управления РТК, заключающееся в том, что эти системы обязательно должны быть адаптивными. Более того, в ряде случаев возникает необходимость в том, чтобы системы управления РТК были не только адаптивными, но и обладали определенными элементами искусственного интеллекта. РТК с такими системами автоматического управления относятся ко второму и третьему поколениям. Они принципиально отличаются от РТК первого поколения способностью адаптироваться к непредсказуемо изменяющейся рабочей обстановке и решать технологические задачи интеллектуального характера. Среди этих задач важнейшими являются следующие планирование операций и выбор оптималь-jjux технологических маршрутов обработки изделий автоматическое программирование и оптимизации движений исполнительных механизмов РТК распознавание деталей в рабочей зоне и определение их геометрических характеристик диагностика состояния оборудования (в частности, инструмента) РТК.  [c.31]

При разработке конкретного М. д. м. необходимо обратить внимание на то, как алгоритм передаёт нек-рые важные свойства имитируемой динамич. системы, напр. сохранение интегралов движения. Полная энергия консервативной динамич. системы полн должна сохраняться. Легко построить М. д. м., в к-рых < папн сохраняется автоматически. Однако обычные алгоритмы интегрирования дифференц. ур-ний приводят к зависимости полн( Д<), к-рая служит для грубого контроля за правильностью вычислении. Несохраневие полн свидетельствует либо об ошибке в выборе Д , либо о непригодности численной схе.мы. В нестационарных задачах М. д. м. этот критерий вообще бесполезен. Если в рассматриваемой системе интегралом движения является импульс, то М. д. м. обычно автоматически сохраняет эту величину, т. к. при вычислении межмолекулярных сил явно используется третий закон Ньютона.  [c.197]


Смотреть страницы где упоминается термин Система автоматического движением : [c.11]    [c.396]    [c.377]    [c.236]    [c.412]    [c.277]    [c.310]    [c.15]    [c.168]   
Динамика управляемых машинных агрегатов (1984) -- [ c.6 ]



ПОИСК



Движение системы

Дифференциальные уравнения возмущенного движения систем автоматического регулирования

Понятие о работе системы автоматического управления движением поезда (САУ — автомашиниста)

Система автоматического регулирования скорости движения поездов

Система автоматического управления движением поездов

Системы автоматические

Уравнении движения систем автоматического регулирования

Уравнения движения звеньев систем автоматического регулирования

Уравнения движения элементов систем автоматического регулирования двигателей



© 2025 Mash-xxl.info Реклама на сайте