Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение уравнения в частных производных методом разделения переменных

Решение уравнения в частных производных методом разделения переменных. У нас нет какого-либо общего метода решения уравнений в частных производных. Однако при некоторых особых условиях оказывается возможным найти полный интеграл уравнения Гамильтона — Якоби. Этот специальный класс задач сыграл важную роль в развитии, теоретической физики, так как оказалось, что ряд основных задач теории атома Бора принадлежит к этому классу. В таких задачах одно уравнение в частных производных с п переменными может быть заменено п обыкновенными дифференциальными уравнениями с одной независимой переменной, которые полностью интегрируются. Такие задачи называются задачами с разделяющимися переменными .  [c.275]


Попытаемся найти решение этого уравнения с частными производными методом разделения переменных, представляя решение в форме  [c.63]

Метод разделения переменных, сводящий решение уравнения в частных производных к решению нескольких обыкновенных дифференциальных уравнений, при определенных условиях может быть применен и для решения краевых задач. Попытаемся решить задачу о стационарном распределении температуры в круглой пластинке радиуса а с различными краевыми условиями на границе 5 пластинки.  [c.170]

Для решения уравнения в частных производных (2-111) воспользуемся методом разделения переменных. Предположим, что = у)= х) у)- Тогда уравнение (2-111) приводится к виду  [c.60]

Большинство методов решения уравнений в частных производных основано на приведении их тем или иным путем к некоторой совокупности обыкновенных дифференциальных или алгебраических уравнений. Среди таких методов одним из наиболее важных для линейной теории является метод Фурье разделения переменных и его обобщение — интегральные преобразования, которым и посвящена данная глава.  [c.44]

Теорема 13 установлена Якоби в 1837 г. Следует заметить, что обратная теорема о том, что решение уравнения с частными производными типа Гамильтона приводится к решению системы обыкновенных дифференциальных уравнений (дифференциальных уравнений характеристик), имеющей в рассматриваемом случае форму Гамильтона, высказана Пфаффом и Коши в развитие еще более ранних исследований Лагранжа и Монжа, еще до того как Гамильтон и Якоби начали заниматься вопросами динамики (Э. Уиттекер [57]). Наиболее эффективный прямой метод решения уравнения Гамильтона— Якоби — это метод разделения переменных полный интеграл есть сумма слагаемых, каждое из которых зависит только от одной из переменных Ж1,. .., ж , I.  [c.77]

Может возникнуть вопрос почему решение уравнения (4.114) ищется в виде произведения (4.115) с разделенными переменными. Объясняется это тем, что если такие решения существуют, то определение функций (i), (х) должно свестись к интегрированию обыкновенных дифференциальных уравнений, т. е. к задаче на порядок более простой, чем задача интегрирования уравнения в частных производных. Итак, для того, чтобы предложенный метод отыскания решения задачи (4.114), названный методом разделения переменных или методом Фурье, удалось реализовать, необходимо  [c.155]


Рассмотрим теперь решение уравнения (8-29) при указанных граничных условиях. Уравнение (8-29) является линейным и однородным. Дифференциальные уравнения в частных производных такого типа всегда могут быть решены методом разделения переменных. Предположим, что решение уравнения (8-29) можно представить в виде произведения  [c.155]

Одномерные и квазиодномерные задачи механики описываются системами обыкновенных диф ренциальных уравнений. К одномерным можно отнести задачи о деформировании стержней, балок, а также круглых пластин и оболочек вращения при осесимметричном нагружении. В ряде случаев для трехмерных и двумерных задач теории упругости можно применить метод разделения переменных и решать задачу в рядах Фурье или методом Канторовича. Задачи, для которых тем или иным способом возможно приближенно перейти от уравнений в частных производных к обыкновенным уравнениям, называются квазиодномерными. Для расчетов на ЭВМ наиболее удобной формой представления разрешающих дифференциальных уравнений является система дифференциальных уравнений первого порядка, или каноническая система. Для таких систем разработаны стандартные программы интегрирования, а также различные вычислительные приемы, обеспечивающие достаточную точность решения краевых задач [20, 33].  [c.85]

Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]

Разделение переменных. Кроме специальных методов, заключающихся в нахождении функции потенциала или функции тока, соответствующей данным граничным условиям, существует несколько способов, основанных на решении уравнения Лапласа как обычного дифференциального уравнения в частных производных. Вследствие широкого использования в прикладной математике это уравнение подвергалось глубокому изучению, в результате чего было разработано несколько общих методов его решения. Три из них — разделение переменных, отражение и распределение особенностей — будут рассмотрены в данном разделе.  [c.97]

Для решения дифференциальных уравнений в частных производных (3.1.2), (3.1.3) применяются методы разделения переменных методы, основанные на интегральных преобразованиях методы, использующие наложение решений для источников теп-  [c.56]

С математической стороны расчет оболочек сводится к решению системы уравнений в частных производных восьмого порядка с переменными коэффициентами и малыми множителями при старших производных. Граничные условия (условия периодичности, конечности решения) содержат производные от искомых функций до третьего порядка включительно. В ряде случаев при помощи метода разделения переменных задачу удается свести к решению систем обыкновенных дифференциальных уравнений того же типа.  [c.652]


Применяемый здесь прием нахождения полного интеграла уравнения в частных производных первого порядка есть тот и<е метод разделения переменных , который мы использовали уже в теории притяжения для нахождения частных решений уравнения Лапласа.  [c.314]

Метод построения автомодельных решений можно рассматривать как обобщение метода разделения переменных. Известно, что если искомые функции пространственной координаты х и времени t, удовлетворяющие некоторой системе уравнений в частных производных, представимы в виде  [c.9]

Согласно методу разделения переменных решение дифференциального уравнения в частных производных, например, в двумерном случае разыскивается в виде произведения двух функций, каждая из которых зависит от одной из независимых переменных. Для уравнений (3.1) — (3.3) имеем  [c.28]

Отметим, что формулы (2.92) совпадают с соответствующими формулами для осесимметричного случая без закрутки и позволяют определить функции Гоо(5), Doo(i) и /7io(s) ПО конечным соотношениям или путем дифференцирования известных функций Uo(s) н po(s). Важным свойством уравнений в частных производных (2.93) является линейность, что позволяет применить для решения метод разделения переменных Фурье, с помощью которого, однако, не удается построить решение основной нелинейной системы урав-  [c.77]

Частные решения получают с помощью методов отыскания автомодельных решений, симметрических решений, разделения переменных. Полезными являются методы исследования инвариантно-- групповых свойств дифференциальных уравнений и построения инвариантных решений различного ранга. В этих случаях система уравнений в частных производных сводится к системе уравнений с меньшим количеством независимых переменных. Если удается свести систему уравнений с частными производными к системе обыкновенных дифференциальных уравнений, то далее можно воспользоваться хорошо разработанным аппаратом аналитических численных или приближенно-аналитических методов. Полученные частные решения связаны с исходной системой уравнений, поэтому доказательства существования и единственности решения основаны именно на частных решениях.  [c.174]

Решение задач методом Гамильтона — Якоби опирается на разделение переменных в левой части уравнения Гамильтона —Якоби, что позволяет записать полный интеграл при помощи квадратур. Якоби, решая задачу о движении планеты вокруг Солнца (задачу Кеплера), ввел сферические координаты и применил метод разбиения уравнений в частных производных на несколько уравнений, каждое из которых содержит только одну независимую переменную и производную искомого полного интеграла по этой переменной ([38], двадцать четвертая лекция). Далее Якоби распространил метод разбиения на любое число переменных. Вслед за Якоби методы разделения переменных развивали многие авторы, с чем можно познакомиться в [19], т. II, ч. 2, [37]. Однако метод разбиения Якоби является и до настоящего времени основным для интегрирования уравнений в частных производных первого порядка.  [c.331]

Одним из основных методов решения линейных уравнений с частными производными является метод разделения переменных, согласно которому исходное уравнение разбивается на несколько обыкновенных, содержащих по одному независимому переменному. Разделение переменных возможно лишь в некоторых криволинейных системах координат. Рассмотрим произвольную криволинейную систему координат (gi, I2, ёз), связанную с прямоугольными координатами соотношениями [68]  [c.47]

Явное решение гамильтоновых уравнений в канонической форме в большинстве случаев может быть получено с помощью метода разделения переменных [183]. В этом случае задача интегрирования для п-сте-пенной гамильтоновой системы сводится к отысканию решения уравнения Гамильтона-Якоби в частных производных  [c.77]

В данной главе рассматриваются свободные и вынужденные установившиеся гармонические колебания стержневых систем. Как и в статике, точные дифференциальные уравнения гармонических колебаний стержней являются нелинейными. Упрощая задачи динамики, нелинейные уравнения линеаризуют. Точность решений линейных уравнений удовлетворяют требованиям инженерных расчетов при //г > 10, поэтому они используются в инженерной практике. Линейные дифференциальные уравнения содержат частные производные по координате х и времени t. Методом Фурье разделения переменных уравнения с частными производными сводятся к уравнениям с обычными производными, описывающими перемещения стержня в амплитудном состоянии. Принцип Д Аламбера, используемый при выводе дифференциальных уравнений, позволяет рассматривать задачи динамики как задачи статики. Поэтому ниже применены предложенные правила знаков для амплитудных значений граничных параметров и нагрузки в 1.2, 1.4.  [c.91]

Основная трудность в решении краевой задачи при изучении волноводных мод в оптическом волокне связана с интегрированием уравнения в частных производных методом разделения переменных. Хотя для волокон со ступенчатым профилем показателя преломления эта задача оказывается не столь уж сложной, удобно все-таки ввести некоторые приближения, для того чтобы получить простые выражения для интересующих нас величин. Таким образом, предположим, например, что оболочка простирается на бесконечно большое расстояние такое предположение правомерно благодаря экранирующей роли оболочки и экспоненщ1альному затуханию волноводных мод с расстоянием р от оси волокна. Кроме того, особое внимание уделим случаю, когда показатели преломления сердцевины и оболочки отличаются всего на несколько процентов (А -4 1, случай слабонаправляющих во-локон), что часто имеет место на практике, так как малость А ограничивает искажения, вносимые волокном в распространяющийся импульсный сигнал, при сохранении волноводных свойств волокна.  [c.586]


Разделение переменных в уравнении Гамильтона — Якоби. Из содержания предыдущего параграфа может показаться, что метод Гамильтона — Якоби не имеет практических преимуществ, так как вместо решения 2п обыкновенных дифференциальных уравнений он требует решения дифферециального уравнения в частных производных, что, как известно, сложнее. Однако при некоторых условиях переменные уравнения Гамильтона — Якоби можно разделить, и тогда решение задачи удается свести к квадратурам. Именно в этом случае метод Гамильтона — Якоби становится полезным в практическом отношении.  [c.312]

Задача 1. Решить уравнение в частных производных Гамильтона — Якоби методом разделения переменных для случая однородного гравнтацнонного поля (см. задачу 2, п. 5). Из этого решения получить lF-функцию Гамильтона и показать, что результат совпадает с прежним результатом, когда U -фyнкция строилась на основе полученного предварительно полного решения уравнений движения.  [c.301]

Ui = onst, то для решения дифференциальных уравнений в частных производных можпо использовать классический способ разделения переменных. Таким ь1етодом фактически и воспользовался Мн для решения упоминавшейся выше задачи о сфере, обладающей конечной проводимостью. В этом случае решение краевой задачи имеет вид бесконечного ряда и его ценность зависит от легкости вычисления необходимых функций, а также от скорости, с которой ряд сходится. Этот метод применялся в различных случаях (помимо задачи со сферой) особенно надо отметить его использование в случае дифракции на круглом диске или отверстии [5]. Следует, однако, замерить, что ли1иь некоторые из этих работ относятся к чисто скалярным задачам типа задач, встречающихся в теории звуковых волн малой амплитуды дальше будет показано, что двумерные задачи в электромагнитной теории принадлежат в основно.м к этому типу, но в других случаях векторная природа электромагнитного поля приводит к дополнительным осложнениям.  [c.514]

Метод решения, описанный в этом разделе, развивался многими авторами [21, но описан наиболее полно Кейзом [3], поэтому его часто называют методом Кейза. В некоторых отношениях он аналогичен методу разделения переменных, обычно используемому для решения дифференциальных уравнений в частных производных. В обоих случаях ищется полная система элементарных решений, а затем такая их комбинация, которая удовлетворя-  [c.54]

Заметим, однако, что, хотя эти методы в своей основной форме довольно ограничены по типу граничных условий задачи, при известной модификации их можно применять и к более общим задачам. Рассмотрим сначала случай прямоугольной области с граничным условием Дирихле = f x,y), где всюду f ф 0. Введем вспомогательную функцию я] , которая определяется как точное решение уравнения с граничными условиями я] = О на всей границе. Затем введем вторую вспомогательную функцию i] , которая определяется как точное решение конечно-разностного уравнения Лапласа = О с граничным условием я] = f x,y). Точное решение получается при помощи метода разделения переменных, разработанного для дифференциальных уравнений в частных производных (см., например, Вейнбергер [1965]) и применяемого к конечноразностному уравнению. (Необходимые разложения по собственным функциям уже известны из разложения, которое требуется при решении уравнения Пуассона.) Тогда в силу линейности задачи окончательное решение получается суперпозицией. Поскольку у2я з> = и У я] " = О, имеем у2(я15 + я] ) = и, поскольку на границах ф == О и я " = f (х, (/), имеем я15 + я15 = = f(x,y). Поэтому функция я15 = я]з я удовлетворяет уравнению у2я з = и граничному условию я] = f(x,y).  [c.205]

Однако более простым и поучительным является применение бесселевых функций 2 для рассмотрения задач о потенциалах с осевой симметрией. В то же самое время мы остановимся на основных положениях одного из наиболее современных методов классического рещения диференциальных уравнений в частных производных математической физики, а именно методе разделения переменных. Этот метод обеспечивает систематическую процедуру при выводе элементарных рещений уравнения Лапласа, так как применявщиеся до сих пор элементарные решения уравнения Лапласа, как 1п г (гл. IV, п. 2), п в (гл. IV, п. 5), / (X + iy) (гл. IV, п. 8) 1/г (гл. V, п. 2) и (гл. VII, п. 4) при построении распределения давления или  [c.355]

Исторически одним из первых методов, нашедших ншрокое применение при решении краевых задач для уравнений с частными производными, явился метод разделения переменных или, как его еще называют, метод Фурье, заключающийся в построении набора частных решений, каждое из которых разыскивается в виде произведения функций меньшего числа переменных (как правило, функций одного переменного). В ряде случаев оказывается, что такое представление не вступает в противоречие с исходным дифференциальным уравнением (тогда говорят, что уравнение допускает разделение переменных) и приводит, в зависимости от размерности задачи, к нескольким обыкновенным дифференциальным уравнениям, содержащим один и тот же числовой параметр. В зависимости от характера области, в которой решается краевая задача, граничных и начальных  [c.117]

По-видимому, бросается в г.таза отсутствие дифференциального уравнения Гамильтона —Якоби с частными производными в его обычной форме, имеющей особое значение для решения проблем, которые допускают разделение переменных. Мы предпочитаем подчеркнуть преимущества более общей формы этого уравнения, предложенной Цейпелем, которая была специально задумана, чтобы служить фундаментом мощного метода теории возмущений. Этот метод содержит метод Делонэ как частный случай. Лица, интересующиеся другими аспектами этого вопроса, найдут многочисленные дополнительные сведения в Аналитической динамике Уиттекера и других руководствах.  [c.8]


Смотреть страницы где упоминается термин Решение уравнения в частных производных методом разделения переменных : [c.486]    [c.26]    [c.8]    [c.355]    [c.324]   
Смотреть главы в:

Вариационные принципы механики  -> Решение уравнения в частных производных методом разделения переменных



ПОИСК



К п частный

Метод разделения переменных

Метод разделения фаз

Метод решения уравнений

Методы переменные

Производная

Производная частная

Разделение

Разделение переменных

Решение уравнений в частных производных

Решения метод

Уравнение в частных производных

Уравнение метода сил

Частные производные

Частные производные , по переменным

Частные решения



© 2025 Mash-xxl.info Реклама на сайте