Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Токарные Механизмы

Силы сопротивления делятся на силы полезных (производственных) сопротивлений, для преодоления которых построен данный механизм, например сопротивление резанию в токарном станке и т. п., и силы вредных (непроизводственных) сопротивлений, например силы трения и т. п. (см. 1.51).  [c.303]

Однако в ряде механизмов и станков рабочее движение, а также движение отдельных деталей должно быть поступательным или возвратно-поступательным. Так, например, резцы строгальных станков должны двигаться возвратно-поступательно, суппорты токарных станков, поршни двигателей внутреннего сгорания и паровых машин совершают такое же движение. Процесс всасывания в поршневых насосах осуществляется за счет создания разрежения перед поступательно движущимся поршнем, а процесс нагнетания (выпуска) — за счет избыточного давления, возникающего при возвратном движении поршня.  [c.185]


Механизм шестерня — рейка применяется в некоторых токарных станках для перемещения суппорта, в домкратах для подъема грузов, в топливных насосах для регулирования количества подаваемого топлива и в ряде других станков и механизмов.  [c.186]

Таким образом, винтовой механизм может быть применен как для преобразования вращательного движения в поступательное, так и обратно. На рис. 194, а показано устройство параллельных тисков, в которых винт 2, вращаясь в неподвижной гайке /, будет двигаться поступательно, т. е. будет ввинчиваться в гайку или вывинчиваться из нее. Винт 2 передает движение подвижной части тисков 3. Передача движения суппорту токарно-винторезного станка производится гайкой 1 (рис. 194, б), которая находится в направляющем пазу и перемещается при вращении винта 2. Ведущим звеном в обоих рассмотренных механизмах является винт.  [c.187]

Зубчатые механизмы для ступенчатого регулирования скорости ведомого вала широко распространены в настоящее время в транспортных машинах и станках. Обыкновенно указанные механизмы помещаются в закрытых коробках, вследствие чего они получили название коробок скоростей. Схем и конструкций коробок скоростей очень много в них применяются и обыкновенные и планетарные зубчатые механизмы с различными числами ступеней регулирования. Например, в легковой машине Волга Горьковского автозавода для связи двигателя с карданным валом применена коробка скоростей с тремя ступенями прямого и одной ступенью обратного хода. В коробке скоростей мотороллера Т-20О имеются четыре ступени скоростей. EJ некоторых токарных станках встречаются коробки скоростей со значительно большими числами ступеней регулирования.  [c.123]

Рассмотрим схему, показанную на рис. 222. На этой схеме каждый из электродвигателей 10 является приводом соответствующего исполнительного механизма продольного суппорта, поперечного суппорта и других объектов токарного станка.  [c.370]

В швейных машинах, приборах, токарных станках для обработки древесины, кузнечных горнах, гребнечесальных и смесительных машинах применяют те же механизмы с преобразованием вращательно-колебательного движения звена ВС, которое в этом случае является входным (направление движения показано штриховой стрелкой на рис. 2.8), во вращательное движение звена ОА, превращенного в выходное звено.  [c.35]


Как видно из этого простейшего примера, для машины автоматического действия кроме основного рабочего механизма характерно присутствие дополнительного управляющего устройства. В приведенном примере таким устройством был механизм клапанного распределения. Вообще же это устройство может быть и не механическим (а, например,гидравлическим, пневматическим или электрическим). Работа управляющего устройства происходит согласно заранее заданной программе, соответствующей комплексу операций, образующих рабочий цикл. Таким образом, для специализированных автоматов характерна цикличность работы, при которой структура рабочего цикла определяется жесткой программой, остающейся неизменной до переналадки автомата. Типичным представителем машин этого типа может служить токарно-копировальный автомат, где программу подачи резца определяет копир. При переналадке автомата производят смену копира. Управляющее устройство иногда называют командоаппаратом.  [c.73]

В качестве примера на рис. 111, о показана схема механизма подъема шпиндельного барабана токарного многошпиндельного автомата. Барабан 4 поднимается на время его поворота (До = = 0,25- -0,3 мм),чтобы не изнашивались его постоянные опоры 5, являющиеся базовыми поверхностями. Подъем осуществляется от кулачка распределительного вала /, который, действуя на подшипник 2, приподнимает колодку 3 и фланец шпиндельного барабана 4. Ось подшипника и подъемной колодки помещена на качающемся рычаге 7. Функциональное назначение данного механизма состоит в подъеме барабана на такую величину, чтобы он отходил от своих постоянных опор 5. Если износ деталей механизма возрастет настолько, что поворот барабана будет проходить на его постоянных опорах, то они будут интенсивно изнашиваться, и станок потеряет свою точность.  [c.338]

На фиг. 379 кинематическая схема токарно-винторезного станка выполнена по методу прямоугольных проекций, причем все детали механизма расположены в габаритах станка.  [c.155]

В мастерских находят широкое применение самые разные механизмы — мощные токарные и ткацкие станки, сверлильные приспособления. Там, где это было возможно, использовалась и мускульная сила человека — многие станки имели ручной или ножной привод, но ясно было, что энергетическая база производства изменилась. Начиналось широкое использование водяных колес не только в мельницах, но и для приведения в движение самых разнообразных станков и механизмов.  [c.34]

Нормальной точности конусы фрикционных деталей с последующей подгонкой, зубчатые конические колеса, центрирующие концы осей, штифты конические (1 50) нормальной точности, направляющие планки кареток Точение на токарных и револьверных станках обычной точности, фрезерование высокой точности с применением делительных механизмов, шлифование с установкой на столе и в приспособлении, развертывание  [c.116]

V-Y1 Рабочие поверхности токарных автоматов и полуавтоматов нормальной точности. Втулки станочные повышенной точности. Посадочные поверхности валиков и осей точных приборов и механизмов. Посадочные поверхности валов под зубчатые колеса 6 и 7-й степеней точности. Опорные шейки коленчатого и распределительного валов автомобильных двигателей. Быстроходные валы повышенной точности Шлифование, обтачивание повышенной точности, внутреннее шлифование, растачивание с одной установки  [c.126]

ВИНТОВОЙ МЕХАНИЗМ ЗАДНЕЙ БАБКИ ТОКАРНОГО СТАЙКА  [c.408]

Всякая вполне развитая машина, — писал К. Маркс, — состоит из трех существенно различных частей двигательного механизма, трансмиссии (передаточного механизма), наконец, исполнительного механизма, или собственно рабочей машины Это положение в своей основе остается справедливым и в настоящее время. Действительно, оценивая любую из производственных машин, можно убедиться, что ни одна из них самостоятельно работать не может. Например, токарный станок, как и всякая другая машина,  [c.28]

В этих машинах (рис. П1.1, а) электродвигатель 1 преобразовывает энергию электрического тока в механическую энергию и передает ее производственной машине 2 непосредственно либо через передаточный механизм 3 (рис. П1.1, б). Bi производственной машине механическая энергия преобразовывается в работу, обусловленную технологическим процессом. Например, если производственной машиной является токарный станок, то механическая энергия затрачивается на работу пластической деформации поверхностных слоев обрабатываемого изделия и на трение между поверхностями резца и стружки, где они превращаются главным образом в теплоту, которая рассеивается в окружающую среду. Таким образом, в производственных машинах получаемая ими энергия поглощается окончательно.  [c.29]


Присоединительные головки или кольца, служащие для соединения сильфона с деталями в сборочном узле машины или механизма, изготовляются штамповкой из листового материала с последуюш,ей обработкой на токарном станке.  [c.82]

Выполнение обработки и вспомогательных процессов без непосредственного участия человека раскрепощает машины, открывает безграничные творческие перспективы для новых конструктивно-компоновочных решений, не привязанных к ограниченным возможностям человека. Поэтому появление первых металлорежущих автоматов ознаменовало революционные преобразования в конструкции и компоновке, реализации технологических процессов благодаря совмещению операций. Уже первые образцы автоматов фасонно-продольного точения мало походили на технологически идентичные токарные станки, а современные автоматы вообще не имеют одинаковых конструктивных решений с обычными станками. Поэтому развитие автоматостроения неизбежно ставило на повестку дня развитие методов структурного анализа и синтеза не только отдельных механизмов и устройств, но и машин-автоматов в целом.  [c.27]

Тематика изобретений, принадлежащих Шаумяну, весьма обширна. Ученый конструировал разнообразнейшие механизмы и устройства, начиная с микропереключателя повышенной надежности для электросхем управления и кончая устройствами для передачи поступательного движения в вакуумированный объем, всевозможные станки, гидросистемы со стабилизацией давления масла и многое другое. Наибольший интерес представляют его станки с шариковым передаточным механизмом и токарные станки, работающие с трансформацией углов резания в процессе обработки.  [c.81]

Шаумян по образованию и интересам являлся прежде всего конструктором, специалистом по металлорежущим станкам. Поэтому в своих работах он шел от целого — к частному , от машины —к ее механизмам. Это нашло отражение в его исследованиях механизмов питания, зажима, поворота и фиксации, кулачковых механизмов, суппортов, которые ученый рассматривал как элементы машины. Объектом творчества Шаумяна в течение длительного периода были металлорежущие (токарные) автоматы.  [c.109]

Комплексная автоматизация базируется на непрерывном совершенствовании технических средств (от простейших механизмов до сложных электронных систем числового программного управления, электронных вычислительных и управляющих машин и др.) на широком использовании общности методов и средств автоматизации на различных стадиях производственного процесса на применении методов унификации. Это значительно расширяет (по сравнению с неавтоматизированным производством) вариантность возможных технических решений в конкретных условиях. Согласно расчетам автоматическая линия токарной обработки вала коробки передач автомобиля ЗИЛ может быть построена более чем по 600 технически возможным и инженерно целесообразным вариантам, сравнительная оценка и выбор которых отнюдь не очевидны. Поэтому одной из важнейших черт современного научно-технического прогресса машиностроения является развитие научных основ формирования инженерных решений при проектировании и эксплуатации машин. Все больше технологических, конструктивных, компоновочных решений должно выбираться не только с позиций обеспечения определенных кинематики и прочности или по конструктивным соображениям, но в первую очередь на основе научных исследований и эксперимента при высокой квалификации разработчиков — конструкторов и технологов. Стираются грани между проектантами и исследователями умение проводить научные исследования становится для инженера необходимостью.  [c.4]

Важнейшее преимущество промышленных роботов — возможность реализации циклов перемещений любой сложности с оптимальными режимами, с быстрой переналадкой, длительным поддержанием параметров процесса на необходимом уровне, что невыполнимо при ручных работах. Основные недостатки промышленных роботов, помимо их значительной стоимости, — невысокие быстродействие и точность позиционирования. Применительно к различным технологическим задачам значимость этих преимуществ и недостатков неодинакова. При сварке и окраске адаптация в управлении процессами позволяет поддерживать их параметры более стабильно, чем это может делать человек. Иные условия при транспортировании, загрузке и особенно сборке, где решающее значение приобретают такие факторы, как точность позиционирования и быстродействие при значительных перемещениях, совмещение различных действий во времени. Операции автоматической загрузки и сборки, связанные с перебазированием конструктивных элементов, — самые ненадежные в технологическом цикле. Так, исследования работоспособности специализированных загрузочных механизмов — автооператоров-показа-ли, что в токарных автоматах на долю указанных операций приходится до 70 % всех отказов. Наличие последних не исключено и при внедрении роботов, поскольку отказы обусловлены такими объективными причинами, как наличие стружки, нестабильность размеров деталей, погрешности позиционирования и др. Эти причины могут быть устранены лишь длительной доводкой конструкций.  [c.16]

Другим примером использования в качестве компенсатора одного из рабочих элементов механизма может служить фиксация осевого положения мальтийского креста делительного (индексирующего) механизма шестишпиндельного токарного автомата (фиг. 716).  [c.657]

Велосит Л 4.0-5.1 0,005 112 —25 1840—51 Для точных механизмов, работающих с малой нагрузкой и числом оборотов 15—20 тыс. в минуту (высокоскоростные шпиндели токарных, шлифовальных и других станков)  [c.429]

К сложным зубчатым механизмам относятся также зубчатые коробки передач. Зубчатой коробкой передач называется зубчатый механизм, передаточное отношение которого можно изменять скачкообразно по ступеням. Коробками передач снабжаются те машины, рабочие органы которых должны вращаться с различными скоростями в зависимости от условий работы. Например, обработка различных деталей на токариом станке производится при разных скоростях, поэтому в механизм токарного станка включается коробка передач. Коробкн передач применяются в автомобилях для получения различных скоростей движения автомобиля. Схема и конструктивное оформление коробок передач бывают чрезвычайно разнообразными. Если число ступеней регулирования скорости невелико, то схема коробкн получается достаточно простой, при большом же числе ступеней регулировл-ння как схема, так и конструктивное оформление могут быть весьма сложными.  [c.153]


Рассмотрим схему автоматической систел ы программного управления станков типа токарных или револьверных (рис. 28.10). Иа этой схеме каждглй из электродвигателей W является приводом соответствующего исполнительного механизма станка. Блок программы представляет собой устройство, протягивающее магнитную лепту 5 последовательно мимо двух магнитных головок 3 и 4. Для управления каждым из электродвигателей 10 установлен магнитный пускатель 9 и кнопка /. При нажиме кнопки 1 одновременно включается двигатель 10 и соответствующий генератор 2, генерирующий электрические колебания определенной частоты.  [c.587]

Среди деятелей эпохи Возрождения особенно выделяется гениальный художник, геометр и инженер, итальянец Леонардо да Винчи (1452—1519), которому принадлежат исследования в области теории механизмов, трения в машинах и движения по наклонной плоскости. Кроме того, он занимался перспективой, теорией теней и строил модели летательных машин. Им построен также эллиптический токарный станок, носящий до сих пор его имя. Другой замечательный деятель этой эпохи, великий польский ученый Николай Коперник (1473—1543) создал свою гелиоцентрическую картину мира, которая, сменив геоцентрическую картину Птолемея, произвела большой переворот в научном мировоззрении и оказала огромное влияние на все последующее развитие естествознания. Благодаря работам Коперника и многочисленным наблюдениям датского астронома Тихо-Браге Иоганн Кеплер (1571 —1630) получил свои три знаменитых закона движения планет, послуживших Ньютону основанием для его закона всемирного тяготения ). Далее следует упомянуть о работах голландца Стевина (1548—1620), который исследовал законы равновесия тел на наклонной плоскости и в результате пришел к выводу основных законов статики.  [c.11]

Влияние на траекторию звена износа жестко связанных направляющих. Выше была рассмотрена плоская задача, когда искажение траектории движения звена зависит от износа одной пары направляющих. В конструкциях различных механизмов машин движение ползунов, столов, суппортов и других звеньев осуществляется по нескольким направляющим, каждая из которых имеет свои условия работы и неодинаковую форму изношенной поверхности. Вместе с тем они являются, как правило, жестко связанными сопряжениями (см. гл. 7, п. 1) с взаимным влиянием на износ каждой пары. Рассмотрим влияние износа нескольких направляющих на точность перемещения ведомого звена на при-iwepe токарного станка (рис. 118). Суппорт перемещается по Трем граням направляющих станины (а, Ь и с)- Причем передняя треугольная направляющая несет основную нагрузку, поскольку на нее направлена сила резания. При износе направляющих резец изменяет свое положение и точность обработки уменьшается. При этом именно неравномерность износа направляющих станины приводит к тому, что вместо цилиндрической поверхности на обрабатываемой детали возникнет конусность или бочкообразность, так как последствия равномерного износа направляющих полностью компенсируются за счет начальной установки резца. Износ направляющих суппорта по той же причине практически не оказывает влияния на точность обработки.  [c.356]

Третья стадия развития оборудования — создание автоматов, функции управления которыми осуществляются уже не рабочим, а механизмами самого станка (токарные и многие другие станки-автоматы, прокатные станы, горизонтально-ковочные, сварочные и другие автоматы). Механизмы этих машин-автоматов осуществляют весь цикл обработки изделия без участия человека, производя переключения и изменения скоростей, включение вспомогательных перемещеций, соблюдая строгую последовательность цикла. г  [c.460]

Наибольшее распространение четырехзвенные механизмы получили в технике. Четырехшарнирные кривошипно-коромысло-вые (рис. 2.9, б) механизмы обычно применяются для преобразования вращательного движения ведущего звена в колебательное движение ведомого. Такие механизмы находят применение в конструкциях швейных машин, различных приборов, ткацких станков, гребнечесальных и месильных машин, погрузчиков, киноаппаратов и др. Звено 1, совершающее полнооборотное вращательное движение (рис. 2.9, а, б), называется кривошипом, а звено 2, совершающее неполнооборотное вращательное движение,— коромыслом. Звено 3, совершающее сложное движение, называется шатуном. Возможно и обратное преобразование колебательного движения коромысла во вращательное движение кривошипа, которое имеет место в приводе токарных станков по дереву, точил, кузнечных горнов, балансирных паровых машин и др. Если звенья этого механизма имеют длины а, Ь, с и d, подчиненные неравенству а < Ь < с < d, то существование кривошипа возможно при условии а + d < Ь + с, т. е. если сумма длин наибольшего и наименьшего звеньев меньше суммы длин двух других звеньев (теорема Грасгофа). В противном случае существование кривошипа невозможно (рис. 2.9, б).  [c.23]

Следует также отметить, что в индивидуальном приводе резко сокращаются потери на холостые хода. Потери в групповом приводе неизбежны, и достигают больших величин из-за разновременной остановки или нераиномерности загрузки рабочих машин. Потери холостого хода имеют большое экономическое значение, так как, например, в токарных станках при их загрузке на 25—30% удельный расход электроэнергии (на единицу работы) возрастает почти в 2 раза. Следовательно, за счет больших холостых ходов при групповом приводе возрастают удельные расходы электроэнергии и увеличиваются издержки производства. Следуюштим этапом совершенствования электропривода был переход на индивидуальную схему соединения электромотора с механизмами. Такая схема электропривода обеспечивалась беспредельной дроби-мостью мощности электродвигателя с сохранением вы-  [c.25]

Именно этой цели — повышению производительности и эффективности автоматизированного оборудования, созданию прогрессивных технологических процессов и конструкций машин и механизмов — была подчинена в течение многих лет деятельность Г. А. Шаумяна как технолога и конструктора. Будучи глубоким знатоком процессов токарной обработки и конструкций токарных автоматов, он пришел к выводу, что классические, традиционные схемы технологических процессов и машин в основном исчерпали себя. Качественный скачок в повышении производительности машин и точности обработки может быть обеспечен только на основе принципиально иных, нетрадиционных инженерных решений, связанных с трансформацией углов резания в процессе обработки, созданием токарных автоматов непрерывного действия. Им были разработаны методы попутного точения и фрезоточения, основанные на попутном движении заготовки и многолез-  [c.7]

Первые токарные станки-автоматы, полностью соответствующие йтому названию, были построены лишь в 80-е годы XIX в. Они были одношниндельными и по типу соответствовали современным автоматам фасоннопродольного точения. Революционизирующим фактором для автоматостроения послужило использование в качестве управляющего органа автомата распределительного вала с кулачками. Каждый кулачок управлял соответствующим механизмом (суппортом, механизмом подачи материала, зажима и т. д.), профиль кулачков определял величину, место и скорость любого перемещения, жесткая установка всех кулачков на едином валу обеспечивала необходимую синхронизацию всех элементов рабочего цикла любой сложности. На долгое время, вплоть до 30-х годов XX в., распределительный вал с кулачками стал важнейшим органом управления рабочим циклом автоматов самого различного технологического назначения (металлообработка, текстильная, легкая, пищевая промышленность и др.).  [c.25]


Он разделил все многопозиционные машины по принципу действия на три вида машины последовательного действия ( последовательного агрегатирования ), в которых концентрируются разноименные операции, последовательно выполняемые при обработке каждого изделия (многошпиндельные токарные автоматы и нолуавтоматы, многопозиционные агрегатные станки и др.) машины параллельного действия, выполняюш ие одноименные операции, при этом каждая позиция должна иметь полный комплект механизмов и инструмента (роторные и конвейерные автоматы и др.) машины последовательно-па раллельного или смешанного действия, производящие и разноименные и одноименные операции (в машине имеется р параллельных потоков обработки, в каждом из которых технологический процесс дифференцирован па q частей). Последний вид машин является наиболее общим при р = 1 (один потоку получаем машину последовательного действия при д = 1 (каждое изделие проходит только через одну рабочую позицию) — машину параллельного действия.  [c.53]

В эпоху простого машинного производства, до его автоматизации, вариантность техпроцессов и конструктивнокомпоновочных решений машин обычно весьма невелика. Так, все универсальные токарные станки подобны друг другу по своей компоновке, номенклатуре основных механизмов и т. д., потому что они в течение многих десятилетий совершенствовались с учетом условий совместной работы машины и человека, применительно к возможностям последнего.  [c.65]

Инженер. В Г. А. Шаумяне довольно рано проявился и талант изобретателя. Так, еще в начале 30-х годов он сконструировал механизм падающего червяка для токарно-винторезных станков. Во время работы в ЭНИМСе Шаумян участвовал в создании гаммы одношпиндельных токарных автоматов типа Ш, которые вскоре уже выпускались станкостроительными заводами. Это были одни из первых конструкций отечественпых автоматов. Однако наиболее полно деятельность Шаумяна как конструктора развернулась в послевоенные годы. Из 39 авторских свидетельств на изобретения, которые он получил, 36 относятся к периоду 1950—1970 гг,  [c.80]

Но если говорить образно, то токарная обработка была его нестареющей любовью всю жизнь. Еще молодым инженером исследовал он работоспособность токарных автоматов, закупленных в годы первой пятилетки за рубежом, систематизировал конструкции и пытался прогнозировать развитие принимал участие в проектировании первых оригинальных отечественных одношпиндельных токарных автоматов. Именно применительно к токарным автоматам Шаумян создавал и свою теорию максимальных по производительности и оптимальных по 9К0Н0МИЧН0СТИ режимов обработки. Ученый поддерживал связи с рабочими-новаторами, разрабатывавшими и внедрявшими высокопроизводительные методы скоростного и силового течения, неоднократно приглашал их для выступлений на кафедре. Именно в токарных автоматах применил он свое изобретение — шариковый передаточный механизм, создав ряд конструкций станков. Его лекции по диалектике развития конструктивно-компоновочных решений токарных автоматов и полуавтоматов,  [c.83]

В начале 60-х годов Шаумян все чаш е начал приходить к выводу, что при достигнутом уровне технологических процессов, при современных конструкциях станков и инструментов возможности повьшхения производительности токарного оборудования практически достигли предела. Благодаря внедрению твердосплавного инструмента взамен быстрорежущ его были в основном исчерпаны возможности повышения режимов обработки. Дальнейшая дифференциация и концентрация операций и увеличение рабочих позиций автоматов ограничивались надежностью механизмов и устройств. Холостые ходы цикла в многошпиндельных автоматах были доведены до минимума внедрение инструмента с настройкой на размер вне станка позволило существенно сократить время его смены и регулировки, но и здесь возможности были в основном реализованы. Неизбежно напрашивался вывод о необходимости поиска новых путей, новых методов и процессов токарной обработки, которые позволили бы создавать нетрадиционные конструкции и компоновки станков, обеспечивающих качественно иной, революционный рост их производительности. Таким искомым путем стала идея трансформации углов резания в процессе обработки.  [c.84]

Современный токарный автомат — это комплекс технологических и конструктивно-компоновочных решений, характеризуемый многопозиционностью, одновременным функционированием десятков, а в автоматических линиях — сотен механизмов и инструментов. Создание таких систем требует решения многих задач, в том числе автоматизации транспортирования и загрузки даталей, изменения их ориентации, накопления заделов, поворота и фиксации деталей, удаления отходов и т. д., и только при этих условиях может быть эффективным применение автоматического управления. Автоматически действующие средства производства только тогда перспективны, когда они выполняют производственные функции быстрее и лучше человека.  [c.7]

Аналогичный расчет длительности холостых ходов затруднителен, так как конструктивная проработка механизмов загрузки и транспортирования зажима и фиксации детали, ее поворота и др. отсутствует. Однако можно использовать соотношение длительности холостых и рабочих ходов tjtp, которое относительно стабильно. Так, в линиях из токарных многошпиндельных автоматов его можно принимать 0,05—0,10, в линиях из агрегатных станков 0,25—0,35, в роторных автоматических линиях 1,0—1,5, в роторно-конвейерных линиях 0,20—0,40, для оборудования с ЧПУ 0,35—0,50.  [c.202]

Технологические зоны многих станков не могут быть строго разграничены так как на одном и том же станке можно работать различными инструмеы тами, и вместе с тем одним и тем же инструментом можно работать на различ ных станках например, на токарном станке можно работать сверлом, раз верткой, фрезой, шлифовальным кругом, а одним и тем же инструментом например сверлом, работать на токарном, фрезерном, расточном станках Это убеждает в том, что в ряде случаев под различными наименованиями типов станков скрывается совершенно одинаковая функциональная сущность ряда механизмов.  [c.168]

На фиг. 627, а изображена вилка механизма блокировки автоматического включения фрикциона шестишпиндельного токарного автомата, тре-бующ,ая обработки наружных и внутренних поверхностей с обеспечением , при этом точных размеров. Наиболее затруднительна здесь обработка внутреннего паза шириной 40 ° мм, которая требует применения фрезы большого диаметра либо подрезки внутренних торцов при сверлении или расточке отверстий в ушках вилки.  [c.606]

После черновых токарных станков гильза проталкивается сквозь шаблон, что позволяет проконтролировать габаритные размеры гильзы с точностью 0,15—0,20 мм. Чистовые расточные станки оснащены контрольноизмерительными устройствами и устройствами для автоматической подналадки резцов в подрезно-расточных шпинделях с шаговым поднала-дочным механизмом.  [c.11]

На чистовых токарных станках применено аналогичное контрольноизмерительное устройство в сочетании с системой автоматической подналадки одного из расточных резцов. Резец подналаживается путем поворота резцедержателя на малый угол через редуктор и храповой механизм. Наладка всех резцов, выполняющих полу-чистовые и чистовые токарные операции, осуществляется с высокой точностью с помощью оптических наладочных приборов.  [c.11]

Автоматическая линия ЛМ077 предназначена для черновой и получи-стовой токарной обработки ступицы (операция 12). В линию встроены три вертикальных одношпиндельных токарных станка. Детали подаются к линии конвейером-накопителем после фрезерования по наружному контуру спиц. Транспортное устройство линии состоит из поворотных штанг с захватами, кулисного привода перемещения штанг и механизма подъема и опускания штанг. На всех станках применены однотипные зажимные патроны (трехкулачковые, клиновые, с наклонными пазами), что позволяет при закреплении деталей прижимать их к базовым торцам. В связи с базированием ступиц по поверхностям спиц предусмотрена ориентация шпинделей с помощью механизмов поворота и фиксации.  [c.28]


Смотреть страницы где упоминается термин Токарные Механизмы : [c.480]    [c.205]    [c.205]    [c.24]   
Машиностроение Энциклопедический справочник Раздел 4 Том 9 (1950) -- [ c.326 ]



ПОИСК



279 —Механизмы поточные токарной обработки колец подшипников

Блокирующие механизма подачи токарно-винторезных

Выключение суппортов токарных станков автоматическое — Механизмы

Гидравлические механизмы выключения пружинных зажимов токарных станков

Гидравлические механизмы выключения пружинных зажимов токарных станков станков

Коробка подач и суппорт токарного станка механизмы фартука

Механизм Артоболевского задней бабки токарного

Механизм Артоболевского задней бабки токарного станк

Механизм Артоболевского кривошипно-нолзунный с патрона токарного станк

Механизм подач, его кинематическая схема и органы управлеОсновы рациональной эксплуатации токарных станРегулирование станка

Механизмы автомобильные тормозные зажимов токарных станков

Механизмы избирательного управления коробкой подач токарно-винторезного станка

Механизмы с постоянными осями вращения. Механизмы с одноколёсными промежуточными валами. Реверсивная передача в токарном станке. Соосный редуктор с несколькими промежуточными колёсами, его сборка. Многоступенчатые редукторы. Подбор шестерён для двухступенчатого соосного редуктора. Соосный механизм счётчика. Соосный червячный редуктор

Настройка токарно-винторезных станков закрытые Механизмы управления накидной шестерн

Основные узлы и механизмы токарно-винторезных станков

Основные узлы и механизмы токарного стайка

Основные узлы и механизмы токарного станка

Передаточные механизмы токарных станковавтоматов

Подача поперечная токарно-винторезных станков - Механизмы

Приводы и типовые механизмы токарных автоматов и полуавтоматов

Пути улучшения конструкции зажимных механизмов токарных автоматов и револьверных станков (М. Я. Орликов)

ТОКАРНО-ВИНТОРЕЗНЫЕ Передние бабки - Механизмы управления

ТОКАРНО-ВИНТОРЕЗНЫЕ Цепи подач - Реверсивные механизмы

Типовые механизмы и узлы токарных станков Элементарные коробки скоростей и коробки подач

Типовые механизмы токарно-револьверных станков

Типовые механизмы токарных автоматов

Типовые узлы и механизмы токарных автоматов и полуавтоматов

Токарно-винторезные Коробки подач закрытые - Механизмы

Токарно-винторезные Механизмы избирательного управления

Токарно-винторезные станки тяжёлые 142 Механизмы подачи - Блокирующие устройства

Токарные Механизмы зажима

Токарные Механизмы передаточные

Токарные Механизмы питания

Токарные Механизмы питания - Классификация

Токарные одношпиндельные полуавтоматы с распределительными валами и кулачковыми механизмами

Токарные станни во Типовые механизмы станков

Фиксация токарных станков-автоматов многошпиндельных - Поворотные механизмы

Центрирующие механизмы трехкулачковых токарных патронов

Цепи токарно-винторезных станков - Реверсивные механизмы



© 2025 Mash-xxl.info Реклама на сайте