Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Токарные Производительность

Накатывание цилиндрических (рис, 6.116, г) и конических мелкомодульных колес в 15—20 раз производительнее зубонарезания. Процесс можно осуществлять на токарных станках накатниками 6 и 7, которые закреплены на суппорте и перемещаются с подачей Si,p. Каждый накатник имеет заборную часть для постепенного образования накатываемых зубьев на заготовке 2.  [c.390]

Низкая производительность и требующаяся высокая квалификация рабочего являются недостатками нарезания резьбы на токарных станках.  [c.258]


С помощью многошпиндельных головок агрег.атные станки обрабатывают в корпусных деталях многочисленные крепежные отверстия не только с одной, а с нескольких сторон одновременно, обеспечивая высокую производительность. На агрегатных станках производят черновую, получистовую и чистовую обработку одного или нескольких отверстий с одной установки. В табл. 16 приведен технологический маршрут обработки корпуса коробки скоростей токарного станка в крупносерийном производстве.  [c.417]

Обтачивание валов, в зависимости от объема выпуска, выполняют на обычных токарных станках с программным управлением или оснащенных станках гидрокопировальным суппортом, на копировальных токарных станках, а также на станках с многорезцовыми головками. На станках с многорезцовыми головками обтачивание повышает производительность по сравнению с обычной токарной обработкой за счет совмещения переходов и автоматической настройки измерений операционных размеров.  [c.171]

Нарезание резьбы плашками и резьбонарезными головками выполняют на револьверных, токарных и болторезных станках, а также на токарно-револьверных автоматах. В серийном и мелкосерийном производствах нарезают резьбы плашками при требованиях точности к резьбе не выше 7-й степени. В серийном и массовом производствах резьбы нарезают резьбонарезными головками, обеспечиваюш,ими повышение производительности в 2. ... .. 4 раза по сравнению с нарезанием плашками, и повышение точности резьбы до 6-й степени.  [c.174]

Радиальная ковка применяется в основном для получения ступенчатых валов. Точность размеров заготовок при обжатии в холодную достигает 6...10-го, в горячую—И...13-го квалитетов. Она позволяет уменьшить расход металла и обеспечивает получение заготовок с допусками в 1,5...2 раза меньшими, чем при штамповке на молотах. Производительность радиальной ковки не велика, поэтому ее применяют в мелкосерийном производстве взамен ковки или черновой токарной обработки.  [c.94]

Резьбу (наружную) на болтах, винтах и шпильках и (внутреннюю) в гайках и в отверстиях для шпилек нарезают вручную и на станках — преимущественно токарно-винторезных. При массовом изготовлении крепежных деталей часто используют станки-автоматы, обладающие высокой производительностью. Для нарезания наружной резьбы вручную обычно применяют 90  [c.90]

При назначении режимов глубина резания обычно устанавливается максимальной, чаще всего весь припуск снимается за один проход. Для увеличения производительности стремятся брать максимальную подачу, если она не лимитируется требованиями к шероховатости поверхности. Определение наиболее выгодного режима, поэтому, часто, особенно при токарной обработке, сводится к необходимости оптимизировать скорость резания. Именно она оказывает наибольшее влияние на себестоимость и время обработки.  [c.46]


В Основах теории проектирования станков-автоматов содержался целый ряд новых положений, существенных с точки зрения развития теории производительности. Так, в ранних работах Шаумяна рассматривались лишь потери времени, непосредственно связанные с функционированием машины — холостые ходы цикла, потери по инструменту и оборудованию и тем самым учитывалась работа машин в идеализированных условиях — при обеспечении всем необходимым (заготовки, инструмент, электроэнергия, вспомогательные материалы). В новой книге он пришел к выводу о необходимости учета всех потерь времени, в том числе функционально не связанных с режимом работы отсутствие обрабатываемого материала, переговоры по работе, отсутствие рабочего и т. д. Хотя такие потери, связанные с организацией производства, по мысли ученого, и должны быть доведены до минимума, до нуля , их игнорирование в реальных условиях производства было бы неправомерным, ибо они так же влияют на производительность, как, например, потери на замену инструмента. Здесь (по существу впервые в работах Шаумяна) появился тезис общности методов анализа машин-автоматов различного технологического назначения, блестяще развитый впоследствии тезис о единстве законов и тенденций автоматостроения различных отраслей (прежде ученый занимался в основном токарными автоматами).  [c.51]

Длительное время основным направлением комплексной автоматизации машиностроения было решение задач, связанных с массовым производством, где создано и внедрено множество машин-автоматов и полуавтоматов, автоматических и поточных линий 80—90 % таких деталей, как блоки цилиндров и головки блоков двигателей, валы коробки передач, массовые подшипники и др., обрабатываются на автоматических линиях. Однако это оборудование как правило является специальным, т. е. на обработку других деталей не переналаживается. Поэтому серийное производство длительно базировалось только на универсальном неавтоматизированном оборудовании (токарные станки, кривошипные прессы, сварочные посты и др.), малопроизводительном, но достаточно мобильном (быстро переналаживаемом на обработку других деталей). Переломным моментом в автоматизации серийного производства явилось появление машин с числовым программным управлением, сочетавших высокие производительность и мобильность благодаря наличию систем управления на электронной основе. Первоначально с ЧПУ строились главным образом металлорежущие станки-полуавтоматы токарной, фрезерной, расточной и сверлильной групп. В настоящее время с ЧПУ выпускаются сварочные машины, прессы, станки для электрофизической и электрохимической обработки, термическое оборудование и др. Можно отметить некоторые тенденции развития оборудования с ЧПУ, характерные для современного этапа научно-технического прогресса.  [c.9]

Рис. 4.16. Зависимость роста производительности токарного полуавтомата от интенсификации скорости резания Рис. 4.16. Зависимость роста производительности токарного полуавтомата от интенсификации скорости резания
СРП содержат комплексы функциональных узлов с универсальными и специализированными базовыми поверхностями для сборки компоновок как специальных, так и наладочных, фрезерных, токарных, сверлильных и других приспособлений. Они обеспечивают высокую производительность оборудования, точное базирование заготовок, быструю переналадку и перекомпоновку.  [c.128]

Механическая обработка заготовок деталей машин может производиться различными способами. Применимость и производительность каждого из возможных способов механической обработки, например токарной обработки, строгания, фрезерования, наружного протягивания, шлифования и других способов, обусловливается не только требованиями к точности и чистоте поверхностей, сопрягаемых при сборке, но и типом заготовки и заданными условиями производства.  [c.447]


При проектировании дифференцированных операций с параллельной работой нескольких инструментов (класс 2-D) количество таковых определяется, исходя из заданной производительности применительно к токарной многорезцовой обработке.  [c.456]

ВОЗМОЖНОСТИ перехода на более производительные способы изготовления даже в пределах одного и того же масштаба производства. Так, например, обычно считается, что целесообразность перехода от обработки на токарных к обработке на револьверных станках определяется размером серии, в силу чего токарные станки предназначаются для единичного, а револьверные — для серийного производства. В действительности же в тех случаях, когда количество деталей в серии не достигает необходимого минимума, примене-  [c.576]

В связи с более низкой производительностью фрезерных автоматов и токарных автоматических линий, по сравнению с другим оборудованием комплекса, они установлены в два (операции 21, 22, 42) или три (операции 11, 12, 13) потока. При многопоточном размещении предпочтительным является зеркальное исполнение оборудования соседних потоков и расположение его рабочими зонами друг к другу. Тем самым обеспечиваются более благоприятные условия для обслуживания и создается возможность высвобождения персонала.  [c.17]

Для обработки детали на универсальном токарном станке (технологические процессы I класса) с последовательным перемещением резца вдоль всей поверхности детали (рис. 2, а) требуется как минимум три относительных перемещения детали и инструмента, максимальное время обработки и минимальные затраты энергии. Имеются перерывы при переходе резца с одной поверхности детали на другую. Последовательная обработка ступеней детали проходным резцом на универсальном токарном станке потребует следующих затрат времени для обработки ступени I = 1,5 с ступени II р2 = 2,0 с ступени III рз = = 2,5 с. Суммарное время обработки составит р = р1 -Ь р2+ <рз = 6 с. При суммарной длительности вспомогательных ходов = 2 с цикл обработки Тц = -h = 8 с. Технологическая и цикловая производительности будут соответственно Я,, = = 60//р = 10 шт./мин Яц = 60/Гц = = 60/( р + /в) = 7,5 шт/мин. Предположим, что в этом случае затраты энергии будут приняты за условную единицу и расход энергии характеризуется постоянной величиной (рис. 2, а).  [c.284]

Исследования, проведенные в автоматических цехах по производству подшипников на токарных участках, которые, как правило, являются лимитирующими по производительности, показали, что простои оборудования из-за влияния всех остальных участков возрастают не более чем в 1,05— 1,2 раза [4]. Однако таких данных накоплено немного, и распространение их на другие условия и типы оборудования рискованно.  [c.67]

Для обработки валов на АЛ наибольшее распространение получили гидрокопировальные токарные полуавтоматы. Прогрессивные модели указанных станков имеют большие технологические возможности для разнообразной обработки, обеспечивают высокие производительность и точность обработки, обладают простотой переналадки и удобны для встройки в линии. Время на наладку указанных станков и подналадку инструмента затрачивается в 2—3 раза меньше, чем на наладку многорезцовых станков. Кроме того, на гидрокопировальных полуавтоматах точение выполняется с большими скоростями резания, чем на многорезцовых, поскольку в работе участвуют один-два резца.  [c.206]

Типовые схемы токарной обработки валов на гидрокопировальных станках приведены в табл. 7. Наиболее эффективной из этих схем является обработка вала с одновременно-последовательным использованием резцов (с двух копировальных суппортов) на одном полуавтомате. При этом способе производительность повышается обеспечением полной обработки вала за одну операцию, а точность — раздельным черновым и чистовым точением.  [c.206]

Для повышения производительности машин центробежного литья применяют отливки в виде двух гильз. Для гильз высотой до 100—150 мм применение такой заготовки позволяет вести токарную обработку двух гильз без разрезки заготовки. При высоте гильз свыше 150 мм использовать сдвоенную заготовку нецелесообразно из-за ее больших габаритов и массы, сложности базирования при обработке и транспортировании.  [c.245]

Московский станкозавод им. С. Орджоникидзе создал в свое время хороший, мощный одношпиндельный токарный полуавтомат типа 505, отличавшийся жесткостью шпинделей и суппортов, высокой производительностью, возможностью применения скоростных режимов резания. Станки эти в основном удовлетв ри-тельно зарекомендовали себя в практике работы подшипниковых заводов. Но вместе с этим они имели существенные дефекты, сильно снижавшие эффективность их использования. Станок имел устройство, отводящее резец от детали по окончании цикла обработки. Назначение этого устройства — избежать появления глубокой риски на обработанной поверхности при отходе резца. Отвод осуществлялся с помощью копирного клина, установленного на станине под продольным суппортом.  [c.80]

Рассмотрим же и мьи, как применение скоростного резания на токарных станках влияет на производительность.  [c.93]

Известно, что за 30-летний период технический уровень наших токарно-винторезных станков претерпел существенные изменения по сравнению с исходной базой — станками модели ТН значительно повышены их предельные технические характеристики (мош ность станков возросла в 4,54 раза число оборотов — в 4,45 раза и т. д.) увеличился удельный вес их оснащенности твердосплавным режущим инструментом более чем в 30 раз и, естественно, многократно возросла стоимость их производства, так как значительно усложнилась конструкция станка, а производительность станков увеличилась менее чем в два раза [29. Очень скромные экономические результаты. Главная причина в том, что проектанты, не зная расположения экономической зоны интенсификации использования рабочих машин (станков), стремились овладеть зоной более высоких режимов интенсивности, которая была экономически нецелесообразна и в производственной практике не использовалась, становясь дальним резервом интенсификации.  [c.108]

Номенклатура токарных многорезцовых полуавтоматов и автоматов развивается в направлении создания широкоуниверсальных и глубоко агрегатированных для серийного и мелкосерийного производства с бесступенчато-регулируемым главным приводом и приводом подач, с адаптивным управлением, оптимизирующим режим обработки, концентрацией операций и совмещением работ нескольких режущих инструментов, автоматическим контролем и т. д. Создаются специальные, максимально производительные токарные автоматы для крупносерийного и массового производства, расширяются их технологические возможности.  [c.290]


Различные методы удаления заусенцев применяют и в конце технологического процесса. Большое распространение получили механические методы, особенно с использованием ручного механизированного инструмента фрезерных нли абразивных головок, металлических щеток, шлифовальных кругов, ленточных шлифовальных установок. Для удаления заусенцев, получения фасок и переходных поверхностей используют также металлорежущие станки (рис. 6.109). Фаски на деталях типа тел вращения протачивают на станках токарной группы (рис. 6.109, а), а на деталях в виде корпусов, плат, планок — на фрезерных станках (рис. 6.109,6). Целесообразно использование специального режущего инструмента — фасонных фрез. Широко используют станки сверлильнорасточной группы (рис. 6.109, б). Фаски на выходе отверстий получают специальными зенковками или обычными сверлами. Производительную обработку кромок деталей проводят на протяжных станках (рис. 6.109, г). Протяжки выполняют по форме обрабатываемых граней, расположенных на наружных или внутренних поверхностях. Используют зуборезные станки (рис. 6.109, д) для снятия заусенцев и получения фасок методом огибания (например, на шлицевых валах).  [c.380]

На токарных капировальных полуавтоматах выполняют черновую и чистовую обработку валов. Эти станки применяют в серийном производстве, где они повышают производительность по сравнению с использованием обычных токарных станков в 2 раза и более. При обточке валов с числом ступеней более четырех полуавтоматы работают эффективно при размере партии в 10. .. 15 шт.  [c.172]

Токарно-винторезный станок 16М16САУ Средневолжского станкостроительного завода имеет два привода подач от коробки подач и от регулируемого электродвигателя постоянного тока, установле н-ного на правом торце станины. Диапазон автоматического регулирования — от 40 до 880 мм/мин. Оно осуществляется в зависимости от припуска при сохранении постоянной силы резания. Производительность обработки на 30—40% выше, чем у обычного токарного станка, точность обработки — 2-го класса.  [c.212]

Именно этой цели — повышению производительности и эффективности автоматизированного оборудования, созданию прогрессивных технологических процессов и конструкций машин и механизмов — была подчинена в течение многих лет деятельность Г. А. Шаумяна как технолога и конструктора. Будучи глубоким знатоком процессов токарной обработки и конструкций токарных автоматов, он пришел к выводу, что классические, традиционные схемы технологических процессов и машин в основном исчерпали себя. Качественный скачок в повышении производительности машин и точности обработки может быть обеспечен только на основе принципиально иных, нетрадиционных инженерных решений, связанных с трансформацией углов резания в процессе обработки, созданием токарных автоматов непрерывного действия. Им были разработаны методы попутного точения и фрезоточения, основанные на попутном движении заготовки и многолез-  [c.7]

Но если говорить образно, то токарная обработка была его нестареющей любовью всю жизнь. Еще молодым инженером исследовал он работоспособность токарных автоматов, закупленных в годы первой пятилетки за рубежом, систематизировал конструкции и пытался прогнозировать развитие принимал участие в проектировании первых оригинальных отечественных одношпиндельных токарных автоматов. Именно применительно к токарным автоматам Шаумян создавал и свою теорию максимальных по производительности и оптимальных по 9К0Н0МИЧН0СТИ режимов обработки. Ученый поддерживал связи с рабочими-новаторами, разрабатывавшими и внедрявшими высокопроизводительные методы скоростного и силового течения, неоднократно приглашал их для выступлений на кафедре. Именно в токарных автоматах применил он свое изобретение — шариковый передаточный механизм, создав ряд конструкций станков. Его лекции по диалектике развития конструктивно-компоновочных решений токарных автоматов и полуавтоматов,  [c.83]

В начале 60-х годов Шаумян все чаш е начал приходить к выводу, что при достигнутом уровне технологических процессов, при современных конструкциях станков и инструментов возможности повьшхения производительности токарного оборудования практически достигли предела. Благодаря внедрению твердосплавного инструмента взамен быстрорежущ его были в основном исчерпаны возможности повышения режимов обработки. Дальнейшая дифференциация и концентрация операций и увеличение рабочих позиций автоматов ограничивались надежностью механизмов и устройств. Холостые ходы цикла в многошпиндельных автоматах были доведены до минимума внедрение инструмента с настройкой на размер вне станка позволило существенно сократить время его смены и регулировки, но и здесь возможности были в основном реализованы. Неизбежно напрашивался вывод о необходимости поиска новых путей, новых методов и процессов токарной обработки, которые позволили бы создавать нетрадиционные конструкции и компоновки станков, обеспечивающих качественно иной, революционный рост их производительности. Таким искомым путем стала идея трансформации углов резания в процессе обработки.  [c.84]

Рассмотрим конкретный пример. Токарный многошпипдельный полуавтомат при принятых режимах обработки Vq имеет производительность Qj = 1,34 шт/мин, при этом элементы затрат времени, согласно эксплуатационным исследованиям, имеют следующие численные значения время рабочих ходов цикла /р = 0,5 мин, время холостых ходов цикла /х = 0,05 мин, собственные внецикловые потери S = = 0,08 мин, из них потери по инструменту = 0,06, потери по оборудованию tod = 0,02 мин, потери по организационным причинам Ц орг = 0.08 мин. Полуавтомат работает в условиях массового производства (Е пер = 0), ручная загрузка и съем изделий в загрузочной позиции полностью совмещены с обработкой ( всп = = 0). Выход годной продукции V = 0,95, следовательно, потери по браку  [c.98]

Этап I — выбор объектов наблюдений. В сложных многопоточных и многоучастковых автоматических линиях охват исследованиями всего комплекса нецелесообразен исследуются, как правило, лишь выпускные или лимитирующие по производительности и надежности участки. В линиях из агрегатных станков, где производительность участков-секций, как правило, идентична, в качестве объектов для наблюдений выбирают выпускные участки. На данном этапе можно использовать следующую методику. Для каждого из станков или участков наблюдения производят измерения только фактической длительности рабочего цикла Tj и размеров обрабатываемых деталей при ограниченной выборке (не более 100 шт.). На основе обработки результатов рассчитывают укрупненные характеристики собственной производительности Qy, = (pilTt) г]тех и точности обработки, которые и сравнивают с допустимыми значениями. При этом величины 1Г)тех можно принимать априорно для токарного оборудования 0,80—0,85, для шлифовального 0,85—0,90. Участки, где соотношения между Q и Qtp, Sj и бдод являются наименьшими, выбирают объектами наблюдения.  [c.195]

Объем и частота выбора контролируемых гильз зависят от надежности процесса обработки на конкретный период времени и определяются в процессе эксплуатации. На автоматической линии МЕ437Л1А после мойки предусмотрен сплошной визуальный контроль, выполняемый операторами-контролерами, для выбраковки гильз с литейными дефектами (порами, раковинами, трещинами и т. п.). При эксплуатации автоматических линий в процессе наладки оборудования вследствие ощибочной настройки режущего инструмента или несвоевременной его замены и других причин могут быть получены гильзы с отклонениями от параметров операционного чертежа. Гильзы с отклонениями от параметров операционного чертежа подразделяют на исправимый или неисправимый брак. К исправимому браку относят гильзы с отклонениями, позволяющими провести повторную обработку с целью устранения дефекта на оборудовании данной линии или последующих автоматических линий. Для токарных автоматических линий обработки гильз исправимый брак не должен превышать 2—2,5%, а неисправимый — не выше 0,04—0,06 %. Неисправимый брак, связанный с литейными дефектами и выявляемый на линиях для токарной обработки, учтен в объеме (не свыше 7 % от производительности) выпуска гильз на токарных автоматических линиях.  [c.111]


Гидрофицированные роторные токарные автоматы МЕ214С0 и МЕ215С0 класса точности Н предназначены для точения деталей при небольшом съеме металла и невысоких требованиях к точности. Эти автоматы работают с темпом 2,5—5 с на них обрабатывают поверхности клапанов, втулок клапанов, ответственных болтов, поршневых пальцев, седел клапанов. Кроме токарных операций, на автоматах предусмотрена накатка поверхностей обрабатываемых деталей. При выходе пз строя инструмента в одной из секций секцию можно отключить и работать с меньшей производительностью в автоматическом режиме.  [c.300]

Совершенствование конструкций станков, появление еще более производительных твердых сплавов непрерывно ставит перед работниками производства новые серьезные задачи. Одна из нИх — повышение эффективности системы охлаждения режущего иструмента путем интенсивного охлаждения самого теплоносителя — эмульсола. Экспериментальные работы в этом направлении были начаты по инициативе и методике проф. д-ра техн. наук А. В. Панкина в автоматно-токарном цехе ГПЗ 1, где смонтировали установку для охлаждения эмульсола. Эти эксперименты показали возможность снижения температуры эмульсола с 45—50 до 18—20° С и, следовательно, повышения стойкости инструмента и дальнейшего форсирования режимов резания.  [c.90]

Беленко И. С. Исследование производительности токарных полуавтоматов в условиях их эксплуатации. Диссертация. ЭНИИПП, 1952.  [c.161]

Метод вихревого нарезания разьбы (вращающимися головками) является новейшим скоростным высокопроизводительным методом. Применение данного метода позволяет увеличить производительность более чем в 10 раз, сократить расход режущего инструмента в 3—4 раза по сравнению с обычным методом нарезания резьбы на токарных станках, использовать менее квалифицированную рабочую силу и не требуют применения охлаждающих жидкостей, затрудняющих осуществление контроля резьбы.  [c.335]

На практике величина и структура машинного времени непрерывно меняются, поэтому существуют разные формы его учета. В некоторых отраслях народного хозяйства устанавли-ваютоя так называемые коэффициенты использования станка. В листоподборочной машине полиграфического производства он равен около 0,8, в автоматическом ткацком станке — 0,9—0,95, в токарных автоматах — 0,8—0,9. А есть и такие машины, у которых коэффициент использования меньше 0,5, т. е. теряется половина их производительности,, — таково большинство швейных, галантерейных и других машин.  [c.106]


Смотреть страницы где упоминается термин Токарные Производительность : [c.356]    [c.145]    [c.406]    [c.391]    [c.94]    [c.6]    [c.23]    [c.61]    [c.189]    [c.417]    [c.31]    [c.19]   
Машиностроение Энциклопедический справочник Раздел 4 Том 9 (1950) -- [ c.322 ]



ПОИСК



О повышении производительности токарных станков

Организационно-технические мероприятия, повышающие производительность токарной обработки

ПОВЫШЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ ПРИ ТОКАРНОЙ ОБРАБОТКЕ Основные понятия о технологическом процессе и технической норме времени

Повышение производительности точения и выбор режима резания при работе на токарных станках

Пути повышения производительности токарной обработки

Пути повышения производительности труда при токарной обработке

Рациональное использование токарно-карусельного станка Основные пути повышения производительности при работе на токарно-карусельном станке

Токарные Производительность — Расчетные формулы



© 2025 Mash-xxl.info Реклама на сайте