Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рауса связей

Рауса функция 166, 289 Реакция связи 56 Риттера способ 66  [c.366]

Предполагая, что произвольные постоянные а и й связаны соотношением (34), мы легко раскрываем неопределенность в выражении (26) для потенциала Рауса )  [c.285]

Замечание Рауса, что 6x — x6t есть виртуальное перемещение, использовано А. Фоссом ) и М. Рети ) для другого случая, а именно, когда уравнения связей не являются определенно независимыми от времени.  [c.835]


В связи с приближенностью расчета, в котором используется гипотеза Рауса, здесь допущена возможность применения ее в форме (17.367)1,2.  [c.262]

Расчет устойчивости проектируемых устройств, имеющих обратные связи (замкнутые контуры), является важным и трудоемким этаном расчета. Достоинство известных алгебраических критериев устойчивости (Рауса, Гурвица) и частотных критериев (Найквиста, Михайлова и других) состоит в том, что они позво-  [c.85]

Для электромагнитов с существенной нелинейностью проще составлять уравнения Рауса. Для этого достаточно найти связь между потоком и током, используя закон полного гока  [c.338]

М. Ф. Шульгин предложил преобразование канонических переменных, выраженных в голономных и неголономных координатах, позволяющие установить соответствие между теоремами аналитической голономной динамики. Он показал также, что метод преобразования уравнений Лагранжа второго рода, установленный Э. Раусом, можно обобщить на неголономные системы с линейными связями.  [c.102]

Критерий (146) не требует дополнительных пояснений в связи с обилием литературы, посвященной движению спутника с двойным вращением при отсутствии внешних сил [1]. Для проверки критерия (14а) к уравнениям (3) и (4), рассматриваемым при / = О, были применены условия Рауса [т. е. рассматривались уравнения (За), (36) и (4а), образующие систему линейных уравнений с постоянными коэффициентами]. Можно убедиться, что соответствующие выводы, показанные на рис. 4, полностью согласуются с упомянутым критерием, когда величина а[ больше 10.  [c.98]

Не меньшее значение получили в аналитической механике методы исследования малых движений системы вблизи положения устойчивого равновесия или установившегося движения. Эти методы начали развиваться из запросов небесной механики и нашли широкое применение в технике. Развитие методов связано с именами Лагранжа, Рауса, Пуанкаре, Ляпунова и многих других математиков и механиков.  [c.444]

Уравнения Рауса. Раньше других для исследования движения механической системы с неголономными связями были применены уравнения Рауса со множителями. Эти уравнения применимы как для систем с голономными, так и с неголономными связями.  [c.535]

Основные теоремы. Задача об устойчивости имеет значение ие только при исследовании положений равновесия, но и при исследовании движения механических систем. Она возникает в связи с необходимостью знать, как изменится движение нри отклонении начальных условий от заданных. Исследованием вопросов устойчивости равновесия занимался еще Аристотель. Лагранж сформулировал известную теорему об устойчивости равновесия и рассмотрел малые возмущенные движения в окрестности положения равновесия системы. Развитием учения об устойчивости равновесия и движения занимались такие крупнейшие ученые, как П. Тэт (1831— 1901), Томсон (лорд Кельвин) (1824—1907), Э. Раус, А. Пуанкаре,  [c.571]


В случае псевдоциклических координат использование преобразования Лежандра с соответствующим числом / приводит к понижению порядка системы на п — / единиц. Процедура исключения циклических координат посредством перехода к уравнениям Рауса носит название процедуры игнорирования циклических координат по Раусу. Уравнения Рауса используются также для систем с неудерживающими связями ( 33).  [c.128]

Переход от части обобщенных скоростей к обобщенным импульсам соответствует переходу от уравнений Лагранжа к уравнениям Рауса ( 29). Будем исходить из выражения системы с неудерживающей связью в виде, представленном в п. 2 настоящего параграфа. Кинетическая энергия  [c.150]

Поскольку движение систем с дифференциальными связями нередко описывают уравнениями, содержащими реакции этих связей или неопределенные множители Лагранжа, то применение теории Рауса к таким системам требует особой внимательности [14, 20]. Дело в том, что указанные выше уравнения систем с дифференциальными связями не могут быть представлены в виде (1), так как для реакций связей или неопределенных множителей Лагранжа нет соответствующих дифференциальных уравнений. Поэтому для применения теории, изложенной в предыдущих параграфах, к неголономным системам, необходимо исключить зависимые скорости из выражений всех первых интегралов указанных уравнений движения системы с помощью уравнений неголономных связей. При этом полученные функции будут представлять собой первые интегралы уравнений движения рассматриваемой системы, записанных в форме Чаплыгина (см. следующий параграф), Воронца, Больцмана-Гамеля и др., которые не содержат реакции связей и неопределенные множители Лагранжа и представимы в виде (1), а сами первые интегралы примут вид (2).  [c.436]

Подведем итог сказанному для случая стационарных связей. Функция Рауса представляется в виде  [c.354]

Вычисление функции Рауса проще, чем по (5), проводится (ограничиваемся рассмотрением стационарных связей) по формуле  [c.366]

В цикле работ [3-6] П.Г. Четаев обобщил уравнения Пуанкаре на случаи нестационарных связей и зависимых координат, привел уравнения Пуанкаре к каноническому виду и разработал теорию их интегрирования, а также ввел важное понятие циклических перемещений и дал обобщение уравнений Рауса. Этими работами создан, по существу, новый раздел аналитической механики, основанный на уравнениях Пуанкаре-Четаева.  [c.4]

Однако, как отметил Ляпунов, законность такого упрощения априори ничем не оправдывается, ибо дело приводится к замене рассматриваемой задачи другой, с которой она может не находиться ни в какой связи. Учет членов второго и более высоких порядков малости в уравнениях возмущенного движения, что пытались делать некоторые исследователи (например, Раус), не давал новых оснований для строгих заключений об устойчивости. Единственная попытка строгого решения принадлежала Пуанкаре, который рассматривал устойчивость для случая систем дифференциальных уравнений второго и отчасти третьего порядков.  [c.8]

Как отмечалось выше, актуальной проблемой теории устойчивости является создание строгих и эффективных методов исследования устойчивости движения систем с распределенными параметрами, в особенности сплошных сред. Эта проблема имеет огромное теоретическое и прикладное значение. В связи с этим весьма заманчивым представляется распространение методов Ляпунова вообще, и второго метода в частности, на системы с бесконечным числом степеней свободы. Этой проблеме посвящено большое число исследований, связанных большей частью с прикладными задачами. Мы рассмотрим здесь главным образом два направления исследований в этой области применение прямого метода Ляпунова и распространение теорем Лагранжа и Рауса,  [c.30]

В связи с этим Раус [81] ставит и решает в первом приближении вопрос об устойчивости постоянной треугольной конфигурации, образованной тремя телами. Другими словами, решается задача об орбитальной устойчивости периодического лагранжева решения.  [c.843]


Замечание 1. Для задачи четырех вихрей на плоскости при условиях (4.1) в работе [94] выполнена редукция по Раусу на три степени свободы посредством явного исключения всех циклических переменных с помощью канонических преобразований. При таком подходе остается невыясненной связь с задачей М — 1) вихрей и возникает необходимость рассмотрения всевозможных частных случаев.  [c.90]

Проблема Гурвица возникла при следующих обстоятельствах Максвелл, изучая причины потери устойчивости регулятора прямого действия паровой машины, установил, что задача эта сводится к выяснению того, имеют ли все корни некоторого алгебраического уравнения отрицательные действительные части. Решив эту задачу для частного случая уравнений третьей оепени, он сформулировал се в обш,ем виде, и по его предложению она была объявлена задачей на заданную тему на премию Адамса. Эту задачу решил и премию Адамса получил Раус, установивший алгоритм, позволяющий по коэффициентам уравнения решить, все ли его корни расположены слева от мнимой оси. Позже, не зная о работах Максвелла и Рауса, известный словацкий инженер-турбостроитель Стодола пришел к той же задаче, исследуя причины потери устойчивости регулируемых гидравлических турбин. Он обратил на эту задачу внимание цюрихского математика Гурвица, который, также не знап о работах Максвелла и Рауса, самостоятельно решил ее, придав критерию замкнутую (рорму. Связь между алгоритмом Рауса и критерием Гурвица была установлена позднее,  [c.220]

Равенство (2.43) представляет собой первый интеграл типа (2.40) и оно может быть использовано для формального исключения циклической координаты. После такого исключения мы получим систему уравнений, содержащих только оставшиеся нециклические координаты, и задача сведется к решению этой системы. В связи с этим Раусом был предложен метод, состоящий в такой модификации лагранжиана, при которой исчезают функции циклических скоростей q,, а вместо них появляются соогветствующие импульсы pj. Преимущество такого приема состоит в том, что он позволяет рассматривать эти импульсы р, как постоянные интегрирования, и тогда последующее интегрирование будет относиться только к нециклическим координатам. Подробное рассмотрение метода Рауса мы отложим до тех пор, пока не познакомимся с так называемым гамильтонианом, с которым этот метод тесно связан.  [c.62]

В этой глаие мы начнем с рассмотрения связей, наложенных на систему мы покажем, что связи можно ввести как предельный случай обычной потенциальной энергии. Затем обсуждается принцип Д Аламбера и на его основе выводятся уравнения Лагранжа первого рода, которые используются в нескольких простых примерах. Выводится вариационный принцип Гамильтона, с помощью которого получаются уравнения Лагранжа второго рода, после того как вводятся обобщенные координаты. После этого рассматриваются циклические координаты, функция Рауса и скрытые массы. Далее кратко обсуждаются неголоном-ные и неинтегрируемые связи и потенциалы, зависящие от скорости специально рассмотрен случай движения заряженной частицы в электромагнитном поле. В конце главы обсуждается связь между бесконечно малыми преобразованиями координат и законами сохранения.  [c.38]

Алгоритм метода обобщенных определителей Хилла. Для системы с п степенями свободы при сохранении в рядах Фурье (54) и (55) первых Ра р гармоник соответственно размерность матрицы К равна 2п (2/io + 1) (2р + 1). В связи с высокой размерностью могут встретиться затруднения при проверке условий устойчивости. Если система обладает полной и достаточно сильной диссипацией, то следует отдать предпочтение критерию Зубова. Если диссипация отсутствует или она не является полной, то в области устойчивости все или часть характеристических показателей — чисто мнимые. Критерии Рауса — Гурвица и Зубова в этих случаях непригодны. Устойчивость проверяют непосредственным вычислением комплексных корней уравнения (56).  [c.130]

Чжоу [С.63] исследовал неустойчивость качания лопасти шарнирного несущего винта, вызванную связью этого движения с маховым, наблюдающуюся в испытаниях несущего винта при большом общем шаге и малой частоте вращения. Отмечались качания с амплитудой около 30° и частотой 0,32Q, причем маховое движение имело ту же частоту. При замерах параметров системы управления было обнаружено регулирование качания с положительным коэффициентом. Рассматривая демпфирование качания кориолисовыми силами, которые создает маховое движение вследствие регулирования качания (разд. 12.3.2), Чжоу получил критерий устойчивости. Он вывел также критерий устойчивости с помощью определителей Рауса из уравнений, приведенных в разд. 12.3.2, и показал, что для шарнирных винтов точный критерий эквивалентен приближенному.  [c.609]

Циклический вариант взаимосвязи симметрия — сохранение , заключающийся в том, что каждой обобщенной циклической координате отвечает некоторый.сохраняющийся обобщенный импульс, по существу говоря, был известен уже Лагранжу который и закон сохранения энергии связывал с цикличностью временной координаты В 70—80-х годах XIX в. эта идея Лагранжа была существенно развита и применена к анализу не только механических, но и физических систем в работах Рауса (1877 г.), Гельмгольца, В. Томсона и Тэта, Дж. Дж. Томсона и др. (1879—1888 гг.). Разработанная на основе метода циклических координат (называемых также игнорируемыми , отсутствующими , киностеническими , скоростными и т. д.) теория скрытых движений позволяла механически интерпретировать лагранжианы, имеющие значение в теории теплоты и электродинамике. Вместе с тем упомянутые исследователи не обращали достаточного внимания на, так сказать, нетеровский аспект метода циклических координат. Ведь циклический характер некоторой координаты означает, что движение системы, как целого, соответствующее этой координате, никак не сказывается на свойствах системы. А это эквивалентно инвариантности (или симметрии) системы (ее лагранжиана или гамильтониана) относительно преобразования, характеризующего циклическое движение. Таким образом, устанавливается непосредственная связь между симметриями типа однородности и изотропности пространства с законами сохранения типа импульса. Характер циклической координаты (трансляционный иди вращательный)  [c.236]


В начале развития динамики неголономных систем дифференциальные 93 уравнения движения были выведены в различном виде Остроградским, Феррерсом и Раусом. Общая методика интегрирования этих уравнений не была разработана, а их структура, связанная с наличием декартовых координат или множителей неголономных связей, создавала значительные трудности при решении конйретных задач (о качении твердых тел). Таким образом,в конце XIX в. проблема составления динамических уравнений неголономной механики в лагранжевых координатах без множителей связей типа уравнений Лагранжа второго рода была вполне актуальной.  [c.93]

Трактат об устойчивости заданного состояния движения... Э. Рауса появился в 1877 г. В нем изложено в общем виде составление дифференциальных уравнений возмущенного движения, т. е. уравнений для отклонений координат системы от их значений, соответствующих заданному состоянию движения. Эти отклонения, в трактовке Рауса, вызываются мгновенными возмущениями (по сути это возмущения начальных данных). В первую очередь, как орудие исследования возмущенного движения, рассматривается метод линеаризации (теория малых колебаний). Раус переоткрывает результаты Вейерштрасса и Сомова и дает критерий для суждения о знаках вещественных частей корней характеристического уравнения. Определение устойчивости у Рауса остается в достаточной мере расплывчатым. Оно связано с понятием малости возмущений, а малы те величины, для которых возможно найти такое число, численно большее, чем каждая из них, и такое, что квадратом его можно пренебречь . Как выражается Раус, это число есть стан-  [c.121]

Эти уравнения неинтегрируемы, т. е. связи неголономны. Поэтом мы не можем воспользоваться уравнениями Лагранжа второгс рода для исследования движения этой системы. Чтобы применит уравнения Рауса, составим сначала выраженпе для живой силь  [c.538]

Для того чтобы связать доудар-ные и послеударные значения составляющей скорости вдоль препятствия, требуется новая гипотеза. Употребительными являют-сядве гипотезы. Первая использует закон Кулона, связывающий нормальное и касательное усилие при сухом трении (гипотеза Рауса), что приводит к соотношению  [c.99]

Другое направление в исследовании устойчивости сплошных сред, позволяюш ее успешно решать конкретные задачи, связано с распространением на сплошные среды теорем Лагранжа и Рауса. Как известно, названные теоремы были доказаны для систем е конечным числом степеней свободы задолго до создания Ляпуновым теории устойчивости однако их можно доказать и на основе теоремы Ляпунова об устойчивости. Как уже упоминалось во введении, Ляпунов ввел определение устойчивости формы равновесия жидкости и установил теорему, сводящую вопрос об устойчивости формы равновесия вращающейся жидкости к решению задачи минимума функционала, представляющего собой измененную энергию системы. Задача минимума была решена А. М. Ляпуновым в его работах 1884 и особенно 1908 г. (Собр. соч., т. 3, 1959), что позволило ему получить строгие заключения об устойчивости фигур равновесия вращающейся жидкости в форме эллипсоидов Маклорена и Якоби, а также некоторых фигур, производных от последних.  [c.32]

Упомянем еще про попытку решения проблемы дальнодействия с помощью теории скрытых движений . Основную идею можно пояснить на примере вращающегося симметричного волчка поскольку вращение волчка вокруг его оси симметрии заметить невозможно, то можно считать волчок невращающимся и странности в его поведении объяснить действием дополнительных гироскопических и потенциальных сил. В общем случае эту идею можно пытаться реализовать в рамках теории Рауса понижения порядка систем с симметриями. Предположим, что механическая система с и + 1 степенями свободы движется по инерции и ее лагранжиан, представляющий только кинетическую энергию, допускает однопараметрическую группу симметрий. Понижая порядок системы факторизацией по орбитам действия этой группы, мы видим, что функция Рауса, представляющая лагранжиан приведенной системы с п степенями свободы, содержит слагаемое, не зависящее от скоростей. Это слагаемое можно интерпретировать как потенциал сил, действующих на приведенную систему. Гельмгольц, В. Томсон (лорд Кельвин), Дж. Дж. Томсон, Герц настаивали на том, что все механические величины, проявляющиеся как потенциальные энергии , на самом деле обусловлены скрытыми циклическими движениями. Эта концепция кинетической теории наиболее полно выражена в книге Генриха Герца Принципы механики, изложенные в новой связи [20]. Оказывается, системы с компактным конфигурационным пространством действительно можно получить из геодезических потоков с помощью метода Рауса [13]. Однако, в некомпактном случае (наиболее интересном с точки зрения теории гравитации) это уже не так (см. [23, 13]).  [c.13]


Смотреть страницы где упоминается термин Рауса связей : [c.457]    [c.376]    [c.890]    [c.305]    [c.94]    [c.95]    [c.101]    [c.196]    [c.510]    [c.350]    [c.220]    [c.133]    [c.124]    [c.97]    [c.463]   
Теоретическая механика (1981) -- [ c.90 ]



ПОИСК



Неголономные связи. Уравнения Рауса с неопределенными множителями

Рауса



© 2025 Mash-xxl.info Реклама на сайте