Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория упругости Решение — Методы вариационные

Изложены основы теории упругости после ознакомления с основополагающими понятиями приводятся анализ напряженного и деформированного состояния, вывод основных уравнений, плоская и температурная задачи, элементы теории пластин и оболочек. Особое внимание уделено численным методам решения прикладных задач теории упругости помимо достаточно распространенных вариационных и разностных методов подробно освещается сравнительно новый структурный метод, хорошо зарекомендовавший себя при исследовав НИИ объектов сложной формы. Для понимания затронутых вопросов достаточно знаний обычного курса математики технического вуза.  [c.40]


В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

При исследовании и решении задач теории упругости широко применяются энергетические (вариационные) методы. В их основе лежит использование тех или иных энергетических теорем (вариационных принципов, а в задачах с краевыми условиями в форме альтернативных равенств и неравенств и вариационных неравенств). Подробное изложение энергетических теорем с анализом класса задач, для которых та или иная из них наиболее эффективна, содержится, например в [19, 90,93, 123, 134, 135, 138, 225]. В дальнейшем понадобится главным образом теорема о минимуме потенциальной энергии, а также теорема о минимуме дополнительной работы. Приведем необходимые определения и формулировки.  [c.94]

Трудности, связанные с точным решением системы дифференциальных уравнений в частных производных, заставляют искать другие пути. В теории упругости наиболее плодотворными являются вариационные методы.  [c.63]

Уравнение (5-1) представляет собой уравнение Пуассона, для решения которого используются различные математические методы. Точные решения можно получить, например, с помощью функций комплексного переменного. Из приближенных методов используются метод конечных разностей, а также вариационные методы, позволяющие получить приближенное решение в аналитической форме. С математической точки зрения рассматриваемая задача эквивалентна задаче о кручении длинного бруса. Поэтому известные в теории упругости решения задач о кручении брусьев различной формы после некоторой переработки можно использовать для вычисления профилей скорости в трубах с такой же формой поперечного сечения. Решения уравнения (5-1) для труб различной формы содержатся во многих работах [Л. 1—7]. В последующих параграфах будут приведены некоторые из них.  [c.48]


Расчеты на ползучесть по теории старения эквивалентны расчетам при нелинейных зависимостях между напряжениями и деформациями. Наиболее общая формулировка теории старения принадлежит Ю. Н. Работнову [124, 125]. Согласно ей напряжения и деформации в условиях ползучести для заданного значения времени определяются путем расчета детали на основе изохронной кривой ползучести для этой величины времени. Поэтому так же, как и в случае установившейся ползучести, результаты, полученные в теории пластичности [50, 60, 149], а также приближенные методы решения упруго-пластических и пластических задач, например метод упругих решений [50], метод переменных параметров упругости [8, 9], вариационные методы [60], могут быть использованы и для расчетов по теории старения.  [c.220]

В данной главе излагается теория упругости, в которой напряжения и деформации связаны линейными соотношениями. Дается общее представление о вариационных принципах и методах, нашедших свое наиболее плодотворное применение при практическом решении инженерных задач кручения и изгиба стержней, пластин и оболочек. В современных инженерных расчетах наиболее распространен численный метод решения задач, называемый методом конечных элементов (МК.Э). Подробное изложение метода и его применение к решению задач теории упругости на ЭВМ дано в работах [3, 8, 17].  [c.112]

В теории упругости большинство задач сводится к решению дифференциальных уравнений с заданными граничными условиями. Их решение часто связано с большими математическими трудностями. Обойти эти трудности позволяют прямые вариационные методы. Вместо того, чтобы решать основные дифференциальные уравнения теории упругости, ставится задача об определении искомых функций Ui, Zij, ац, удовлетворяющих граничным условиям и минимизирующих некоторый функционал Ф(щ, гц. оц). например полную потенциальную энергию П или дополнительную энергию П.  [c.127]

Вариационный метод решения краевых задач физически нелинейной теории упругости  [c.272]

В первой главе излагаются методы решения задач прикладной теории упругости, при этом основное внимание уделяется вариационным и прямым методам.  [c.6]

Расчет массивных тел методами математической теории упругости связан со значительными математическими трудностями ввиду разнообразия форм, краевых условий и условий нагружения. Поэтому для решения пространственных задач применяют прямые и вариационные методы прикладной теории упругости.  [c.351]

Ряд важнейших исследований по аналитическим методам решения задач механики принадлежит знаменитому русскому математику и механику М. В. Остроградскому (1801 —1861). Он установил очень важный вариационный принцип динамики — принцип наименьшего действия, позволяющий сводить изучение движения механических систем к некоторой экстремальной задаче. Этот принцип называется принципом Остроградского — Гамильтона, так как независимо от Остроградского и в несколько менее общем виде он одновременно также был дан английским ученым Гамильтоном (1805— 1865). М. В. Остроградский решил также много частных механических задач в области гидростатики, гидродинамики, теории упругости, теории притяжения и баллистики.  [c.16]

ВАРИАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ ТЕОРИИ УПРУГОСТИ  [c.57]

Так как большинство приближенных методов решения различных задач теории упругости, пластичности и ползучести основывается на классическом вариационном принципе, согласно которому действительная форма равновесия тела отличается от всех возможных форм тем, что для нее полная энергия системы  [c.58]

Два отмеченных принципа являются широко используемой базой для построения вариационных методов решения задач теории упругости. При этом возможная схема построения решения заключается в задании либо перемещений в исследуемой области с точностью до некоторого числа параметров, либо напряжений. На основе приведенных выше выражений можно  [c.117]


И. Г. Бубнов (1872—1919) впервые в 1913 г. изложил новый приближенный метод интегрирования дифференциальных уравнений теории упругости, который широко применялся затем Б. Г. Галеркиным (1871—1945) для решения ряда задач теории упругости. Метод Бубнова—Галеркина, как общий приближенный метод интегрирования дифференциальных уравнений, не связан, вообще говоря, с каким-либо вариационным принципом.  [c.109]

Наряду с классическими вариационными методами решения задач плоской теории упругости широко используют численный метод конечных разностей и метод конечных элементов, реализуемые с помощью ЭВМ.  [c.328]

В то же время известны общие универсальные математические методы, позволяющие, в частности, находить решения некоторых классов задач теории упругости. Справедливость их применения в процессе получения решения базируется на существовании специальных неравенств. Естественно, что методически более оправданным является обстоятельное построение этих неравенств для упрощенных задач (обыкновенные дифференциальные уравнения, уравнения Лапласа), рассматриваемых (вместе с общей теорией) в математической главе. С учетом этого при изложении задач теории упругости оказалось целесообразным отметить лишь специфику построения соответствующих неравенств, ограничившись при этом простейшими областями (ввиду сложности построения оценок в общем случае). Такой подход реализован, например, при рассмотрении вариационных методов.  [c.7]

Например, при решении задач теории упругости вариационными методами осуществляется переход к задаче об определении в некотором классе функций минимума соответствующего функционала. Доказывается, что решение этой задачи всегда существует и соответствующее ему поле смещений удовлетворяет дифференциальным уравнениям, однако краевые условия выполняются уже в некотором обобщенном смысле. Аналогичная ситуация возникает и при решении задач теории упругости методом потенциалов. При определенных ограничениях на форму поверхности и краевые условия доказывается, что получаемое посредством соответствующих интегральных уравнений решение краевой задачи может и не удовлетворять условиям, требуемым классической постановкой. Лишь при более строгих ограничениях (в чем, по сути дела, нет необходимости) решение оказывается регулярным.  [c.243]

В гл. 5 рассматриваются некоторые общие свойства упругих и пластических стержневых систем. Существенно заметить, что вариационные принципы теории упругости, ассоциированный закон течения, свойство выпуклости поверхности нагружения для пластической системы доказываются здесь совершенно элементарно. Все эти теоремы будут сформулированы и доказаны впоследствии при более общих предположениях. Автору представляется по опыту его педагогической работы, что иллюстрация общих принципов на простейших примерах, где эти общие принципы совершенно очевидны, способствует лучшему их пониманию и усвоению. Гл. 6 посвящена теории колебаний, которая должна занять подобающее место как во втузовских, так и в университетских программах. Кроме собственно задач о колебаниях здесь излагается метод характеристик для решения задач о продольных волнах в стержнях. Этот метод настолько прост И ясен, что им можно пользоваться и его легко понять, не прослушав общего курса дифференциальных уравнений математи-  [c.12]

Пе всегда удается получить точное решение задачи теории упругости, даже если это возможно — не всегда имеет смысл им пользоваться. Часто оказывается, что та точность, с которой известны граничные условия задачи, делает практически бессмысленным стремление к большой точности самого решения. Поэтому наряду с точными методами математической теории упругости развиваются упрощенные приближенные теории, подобные, например, технической теории изгиба, рассмотренной нами ранее. Вариационные принципы теории упругости позволяют указать путь для построения таких приближенных теорий рациональным образом.  [c.266]

Заметим, что вариационные принципы наследственной теории упругости допускают и иную трактовку. Вследствие принципа Вольтерра можно применять любой метод для решения задачи обычной теории упругости, и лишь в окончательном результате упругие константы следует заменить операторами. Отсюда следует, в частности, что для нахождения точного или приближенного решения задачи теории упругости может быть применен любой из известных вариационных методов, если в результате решения в окончательном результате появится некоторая комбинация упругих констант, ее можно заменить такой же комбинацией из операторов и расшифровать по известным правилам.  [c.606]

Большинство задач теории упругости сводится к интегрированию дифференциальных уравнений с заданными граничными условиями. Точного решення очень многих важных для практики задач до сих пор не получено, так как интегрирование дифференциальных уравнений, к которым они приводятся, представляет собой большие математические трудности. Поэтому важное значение приобрели вариационные методы, позволяющие эффективно получать приближенные решения дифференциальных уравнений с точностью, достаточной для инженерных расчетов.  [c.153]

В книге дано систематическое изложение теории упругости, начиная с вывода основных соотношений и кончая некоторыми решениями, полученными в недавние годы. Подробно рассмотрены плоская задача, задачи кручения и концентрации напряжений, некоторые пространственные задачи, вариационные принципы и методы решения задач. Излагаются также задачи распространения волн в упругой среде. В авторском приложении к книге, которого не было в прежних изданиях, описан метод конечных разностей для решения плоской задачи, а в приложении, написанном переводчиком к русскому изданию, изложен метод ко. нечных элементов.  [c.2]


Основные дополнения отразили развитие отдельных разделов, интерес к которым повысился со времени появления в 1951 г. второго издания. В главах 3 и 4 введен анализ влияния концов и теория собственных решений, связанных с принципом Сен-Ве-нана. Ввиду быстрого роста приложений дислокационных упругих решений в науке о поведении материалов, эти разрывные в смещениях решения излагаются более подробно (теория краевых и винтовых дислокаций в главах 4, 8, 9 и 12). К главе 5 добавлены вводные сведения о методе муара с иллюстрацией его применения на практике. Изложение понятия об энергии деформации и вариационных принципов проведено в трехмерном случае и включено в главу 9, что дало основу для новых разделов по термоупругости в главе 13. Обсуждение использования комплексных потенциалов для двумерных задач пополнено группой новых параграфов, основанных на хорошо известных теперь методах Н. И. Мусхелишвили. Этот подход несколько отличается  [c.12]

Вместе с тем можно отметить также взаимное проникновение как рассматриваемых объектов (пластины, оболочки), так и используемых методов при решении задач (вариационные, численные, метод конечных элементов и др.) из теории упругости в строительную механику и наоборот. Поэтому нельзя установить также четкие границы между теорией упругости и строительной механикой.  [c.8]

Многие методы решения задач прикладной теории упругости, например, такие, как прямые вариационные методы, о которых более подробно будет сказано далее, в основе своей опираются на принципы Лагранжа и Кастильяно.  [c.49]

Таким образом, видно, что метод Релея — Ритца в теории упругости при малых перемещениях ведет к формулировкам, эквивалентным тем, которые получены с помощью приближенных методов 1.5 и 1.7. Однако каждый метод имеет свои преимущества и недостатки в применении к задачам, отличным от задач теории упругости. Эти приближенные методы справедливы независимо от соотношений напряжения — деформации и потенциалов внешних сил, но обычно трудно доказать, что приближенное решение сходится к точному при увеличении п. С другой стороны, соотношения напряжения — деформации, объемные силы и поверхностные силы должны обеспечивать существование функций состояния Л, Л Ф и Ч при использовании вариационных формулировок метода Релея — Ритца. Однако доказательство сходимости решений здесь менее сложно, особенно когда найдено минимальное или максимальное значение функционалов.  [c.62]

Глава, посвященная вариационным и разностным методам (гл. VIII), также написана в иллюстративном ключе, на примерах решения конкретных задач. Это объясняется тем, что вариационные и особенно разностные методы решения систем уравнений с частными производными являются весьма обстоятельно разработанными разделами вычислительной математики (в частности, и в плане применения к задачам теории упругости), концентрированное изложение которых не представляется возможным в силу ограниченности объема предлагаемой книги. В то же время частные примеры решения с достаточной полнотой выявляют преимущества и недостатки этих методов.  [c.9]

В соответствии с общей теорией приходим к следующему утверждению в энергетическом пространстве всегда существует решение (вообще говоря, обобщенное) вариационных задач, соответствующих основным и смещанной задачам теории упругости. Это рещение может быть получено методом Ритца,  [c.625]

Книга соответствует программе для строительных вузов. В ней рассматриваются основные уравнения теории упругости и методы их решения вопросы изгиба и устойчивости пластинок вариационные методы прикладной теории упругости основы расчета оболочек по моментной и безмоментной теориям основные уравнения теории малых упруго-пластических деформаций и методы их решения. Каждый метод по воаможности иллюстрируется примером.  [c.2]

Во многих случаях в книге применяется также энергетический метод решения задач теории упругости. При этом интегрирование дифференциальных уравнений заменяется исследованием условия минимума некоторых интегралов. При помощи метода Ритца эта задача вариационного исчисления сводится к простой задаче отыскания минимума функции. Таким способом удается получить приближенные решения во многих практически важных случаях.  [c.17]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]


Смотреть страницы где упоминается термин Теория упругости Решение — Методы вариационные : [c.26]    [c.76]    [c.272]    [c.2]    [c.630]    [c.2]    [c.4]    [c.376]    [c.57]    [c.327]    [c.447]    [c.377]    [c.196]    [c.282]   
Прочность, устойчивость, колебания Том 1 (1966) -- [ c.30 , c.32 ]



ПОИСК



Вариационное решение

К упругих решений

Метод вариационный

Метод вариационный упругости

Метод теории решений

Метод упругих решений

Методы теории упругости вариационные

Решения метод

Ряд вариационный

Теория Метод сил

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте