Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Центральные силы, их применение при

Применение формулы Бине позволяет определить закон изменения центральной силы по данному уравнению центральной орбиты (прямая задача). Если оказывается положительной, то центральная сила является силой отталкивания, если — отрицательной, то — силой притяжения.  [c.14]

Рассмотрим пример применения интеграла энергии в случае действия центральной силы.  [c.381]


Этот результат может быть распространен на многоэлектронную систему, электроны которой движутся в поле центральных сил, вызванных одним ядром. Это имеет широкое применение в микроскопической теории магнитных свойств материи ).  [c.44]

Указав, что метод, развитый им для исследования движения в поле центральных сил, может быть применен к задаче о нахождении условий равновесия механических систем, Эйлер усматривает обоснование такой возможности в аргументах, доказательная сила которых ему самому представляется недостаточной  [c.790]

Первая книга, состоящая из 14 отделов, построена в нарочито абстрактном математическом плане. Только в следствиях и поучениях (схолиях) теорем просвечивают иногда те физические или астрономические применения, которые впоследствии эти теоремы находят. Основное содержание книги — движение материальных точек и твердых тел под действием центральных сил.  [c.163]

Применение формулы Бине позволяет определить центральную силу по данному уравнению орбиты (первая задача динамики). Если проекция  [c.14]

Г. Рассмотрим некоторые общие задачи теории движения под действием центральных сил задачи эти имеют непосредственное применение при проверке справедливости закона всемирного тяготения за пределами Солнечной системы.  [c.279]

Уравнения (4), (6), (7) представляют полную систему интегралов исходной системы дифференциальных уравнений движения, содержащую 2п произвольных постоянных. Наличие п — пг циклических координат позволило понизить порядок интегрируемой системы до 2т и свести задачу к интегрированию этой системы (5) и к выполнению п — т квадратур (7). Надо к этому добавить, что от выбора обобщенных координат зависит и число циклических координат например, при задании положения материальной точки в поле центральной силы декартовыми координатами л , у, г циклические координаты отсутствуют, тогда как при применении сферических координат одна из них (долгота) будет циклической (пример 1° п. 7.18).  [c.349]

Применение к нелинейным симметричным молекулам типа XYj. В случае нелинейных симметричных молекул типа ХУ допущение центральных сил означает, что коэфициенты aj2, а,, и в уравнении (2,97) равны нулю. Так как 03.1 = aj , то  [c.178]

Мы не будем приводить каких-либо других примеров применения системы центральных сил, так как в общем случае предположение о валентных силах (см. следующий параграф) дает несколько лучшие результаты. Кроме того, оно имеет особые преимущества по отношению к линейным и плоским молекулам.  [c.185]


Применение к нелинейным симметричным молекулам типа ХУ . Согласно предположению о валентных силах, в случае нелинейных симметричных молекул типа ХУ имеются упругие силы между атомом X и обоими атомами У, а также силы, стабилизирующие угол У — X — У. Последние заменяют собой центральные силы, действующие между атомами У. Таким образом, выражение для потенциальной энергии (без членов более высоких степеней) имеет вид  [c.186]

Следует иметь в виду, что метод непосредственных построений, примененный во втором варианте решения этой задачи, может быть успешно использован только в простейших случаях. Так, при равных по модулю силах B и все углы, получившиеся при построениях, оказались равными 45°. Если бы мы несколько усложнили задачу, взяв не равные по модулю силы / 1 и то определение положения центральной оси оказалось бы довольно затруднительным.  [c.199]

Принцип действия. Гироскопом в широком смысле слова можно назвать твердое тело, имеющее одну неподвижную точку и совершающее вокруг нее сложное вращательное движение. Широкое применение в технике нашли динамические симметричные гироскопы, у которых центральный эллипсоид инерции есть эллипсоид вращения. Если неподвижная точка, вокруг которой движется гироскоп, совпадает с его центром масс, то такой гироскоп называется уравновешенным или астатическим. Симметричный гироскоп, будучи приведен в быстрое вращение вокруг его оси динамической симметрии, обладает способностью сохранять свою ориентацию в пространстве и сопротивляться внешним силам, стремящимся изменить эту ориентацию. Это свойство используется в разнообразных областях современной техники.  [c.358]

Рис. 41. Объединение однотипных иллюстраций к различным разделам курса 1) колебательное движение одномерной консервативной системы в потенциальной яме 2) этапы построения траекторий и решения уравнений движения в центральном поле сил 3) зависимость одной из постоянных интегрирования от определяющей координаты при применении метода Гамильтона—Якоби. Аналогичные многозначные зависимости можно указать и в других случаях Объяснение. Решение многих задач механики упирается в интегрирование дифференциального уравнения вида Рис. 41. Объединение однотипных иллюстраций к различным разделам курса 1) <a href="/info/12919">колебательное движение</a> одномерной <a href="/info/8752">консервативной системы</a> в потенциальной яме 2) этапы построения траекторий и <a href="/info/51684">решения уравнений движения</a> в <a href="/info/8811">центральном поле</a> сил 3) зависимость одной из <a href="/info/8157">постоянных интегрирования</a> от определяющей координаты при применении <a href="/info/40011">метода Гамильтона—Якоби</a>. Аналогичные многозначные зависимости можно указать и в других случаях Объяснение. Решение <a href="/info/378373">многих задач</a> механики упирается в <a href="/info/174489">интегрирование дифференциального уравнения</a> вида
Замыкающие пружины располагаются или центрально на оси вращения дисков, или по периферии. В последнем случае устанавливают несколько пружин, расположенных симметрично относительно оси вращения и на равном расстоянии друг от друга, так чтобы их равнодействующее усилие было направлено по оси вращения. Обеспечение этого условия требует достаточно высокого качества изготовления пружин с одинаковой жесткостью и одинаковыми размерами. Регулирование тормозного момента при центральной пружине проще, чем при нескольких пружинах, расположенных по периферии. Применение для тормозов с осевым нажатием тарельчатых пружин весьма удобно оно позволяет получить малые габариты замыкающего устройства при значительной величине усилия. Кроме того, при определенном выбранном отношении свободной высоты пружины к толщине листа, из которого она сделана, можно получить в некотором диапазоне изменения деформации практическую независимость ее от нагрузки, т. е. тарельчатые пружины могут на некотором участке своей характеристики обеспечить практическое постоянство развиваемого ими усилия независимо от величины деформации [103]. Изменением толщины пружины и соответствующей установкой регулировочных болтов эту часть характеристики можно выбрать по максимуму замыкающей силы. При этом изменение деформации пружины вследствие износа накладок не приводит к существенному изменению замыкающего усилия, что устраняет необходимость в регулировании тормоза по мере изнашивания накладок.  [c.224]

Обтачивание коренных и шатунных шеек выполняют на токарных станках с центральным приводом или на двухместных токарных станках с двусторонним приводом. При этом, как правило, проводится многорезцовая обработка шеек и концов валов. Однако при относительной простоте режущего Инструмента и наладки станка, возможности максимальной концентрации операций, применение токарной обработки зависит еще от партии обрабатываемых коленчатых валов, их длины, конструкции, заготовки (припусков под обработку) и имеет некоторые существенные недостатки. Так, затруднено использование твердосплавного инструмента из-за его низкой стойкости. Многие коленчатые валы, особенно среднего габарита, не обладают достаточной жесткостью для восприятия относительно высоких окружных сил при обтачивании с большими скоростями. Вследствие этого возникают вибрации, приводящие к низкой точности и большим параметрам шероховатости обрабатываемых поверхностей, а также преждевременному выходу инструмента из строя. Под центральный привод необходимо предварительно обработать базы, а для этого специально предусматривают приливы на противовесах, т. е. усложняется конфигурация поковки, увеличивается объем фрезерных работ. Кроме того, при оора-ботке коленчатого вала на станке с центральным приводом происходит его искривление из-за колебания допуска на размер, связывающий ось центров вала и поверхности под центральный привод. Фрезерование шеек коленчатых валов, как способ обработки, практически устраняющий недостатки токарной обработки, получило наибольшее распространение в  [c.76]


В это же время Шухов руководил восстановлением трехпролетного моста (длина пролета 75 м). Два из трех пролетных строений находились в воде. Центральная часть моста могла быть поднята и отремонтирована. Крайние пролетные строения были так разрушены, что требовалась их замена на новые. После окончания ремонтных работ в центральной части на нее были надвинуты боковые (крайние) пролетные строения и на имеющихся деревянных подмостях изготавливались новые фермы. Была получена общая симметрия по форме и очертанию новых и старых ферм, что придало мосту новый единый облик. Совершенно другая ситуация сложилась с двухпролетным мостом со старым и новым (не принадлежит Шухову) пролетными строениями, которые отличаются друг от друга как по очертанию, так и по виду решеток (рис. 299). При сравнении первоначальных ферм и заново возведенных на месте разрушенных отчетливо видно, что недостаток квалифицированной рабочей силы и стремление к минимальному сроку строительства способствовали (несмотря на то что работы выполнялись под руководством Шухова) упрощению и унификации ферм и элементов несущих конструкций (рис. 299). Применение унифицированных поперечных сечений элементов как следствие стандартизации привело к тому, что легкость и выразительность прежних мостов были утеряны.  [c.147]

Гидравлические связи. Основой гидравлических связей явились пять базирующихся на использовании сервомоторов с дроссельными золотниками типовых конструктивных элементов [2, 7, 8, 25], нашедших широкое применение в системах регулирования всех заводов гидравлический выключатель отсечного золотника, позволяющий выполнить безрычажными схемы с отсечными золотниками гидравлические сумматоры, позволяющие вводить в САР любое количество управляющих сигналов посредством установки управляющих дросселей на параллельных линиях слива или подвода рабочей жидкости, причем каждый из дросселей перемещается своим регулятором гидравлические пружины, обеспечивающие строго центральное приложение усилия к поршням системы сопло — заслонка (следящие золотники) с подвижными и неподвижными соплами, обеспечивающие бесконтактную передачу управляющего сигнала от одного элемента к другому и открывшие благодаря этому возможность применения современных высокочувствительных регуляторов и электрогидравлических преобразователей с малой перестановочной силой золотники двойного дросселирования, обеспечивающие минимальный расход рабочей жидкости и наилучшие динамические свойства гидравлической части САР.  [c.156]

В применении к металлам метод создания и анализа тепловых волн с целью определения величины а сформулирован сто лет тому назад Ангстремом. Металлический узкий и весьма длинный (теоретически предполагается бесконечно длинный) стержень с одного конца поочередно подогревается паром и охлаждается потоком воды, чем создается тепловая волна с периодом Т. По истечении достаточного промежутка времени в любой точке стержня х, расположенной примерно в центральной его части, устанавливается распределение температуры, выражающееся периодической функцией времени /(- ). Регистрация хода температуры го времени в двух соседних точках стержня и позволяет найти коэффициент температуропроводности материала стержня а. Полученное выражение для а содержит в качестве неизвестных величин коэффициент теплопроводности материала /. и коэффициент теплообмена от боковой поверхности стержня в окружающую среду а. Только знание последней величины может привести к раздельному нахождению значений X и а, а в силу известной связи последних с объемной теплоемкостью в виде I = с ,а-- к конечному определению и а, т. е. всех трех теплофизических характеристик  [c.11]

Наибольшее применение для изучения развития трещин в широком диапазоне температур получили плоские образцы с начальными трещинами при внецентренном растяжении [110, 124]. Однако образцы такого типа целесообразно использовать при сравнительно низких уровнях размахов коэффициентов интенсивностей напряжений когда размеры пластических зон Гт меньше длины трепщны I и при положительных значениях коэффициентов асимметрии по напряжениям. При образовании в опасном сечении развитых упругопластических деформаций и деформаций ползучести и при знакопеременном нагружении следует применять осевое нагружение образцов с регистрацией номинальных деформаций. При однократном и малоцикловом нагружениях в условиях комнатных температур используются [110] плоские образцы с симметричными центральными или боковыми трещинами. Прецизионные делительные сетки с малым шагом наносятся в зоне трещин на боковых полированных поверхностях образцов. При повышенных температурах в силу определенных трудностей с получением равномерного распределения температур по ширине и длине рабочей части применение плоских образцов становится менее рациональным, чем цилиндрических трубчатых. Для обеспечения возможности измерения местных деформаций и размеров пластических зон в вершине трещины статические и малоцикловые испытания при высоких температурах должны проводиться в соответствующих инертных газовых средах или в вакууме.  [c.220]

Эта ситуация в целом соответствует действительности, поскольку применение утолщенного корда повышенной прочности позволило уменьшить число слоев в каркасе современной диагональной шины почти вдвое. Исходные характеристики элементарных резинокордных слоев выбираем следующими упругие постоянные корда Е . — 10 МПа = 0,3 упругие постоянные резины = 6 МПа = 0,49 толщина резинокордного слоя йо = 0,12 см диаметр нитей. g = 0,07 см угол наклона нитей корда на экваторе 7о= 52 плотность нитей на экваторе / о 9 нитей /см. Полагаем, что шина нагружена внутренним давлением q = 0,5 МПа и поверхность приведения, в качестве которой возьмем поверхность контакта центральных слоев, образована вращением окружности радиусом Л, = 10 см. Расстояние Rq от оси вращения до экватора исходной поверхности щины примем равным 40 см. В силу симметрии задачи будем рассматривать только левую половину щины (см. рис. 7.2).  [c.238]


Метод оскулирующих элементов наиболее приспособлен для решения эадач возмущенного движения для ие слишком больших интервалов времени исследуемого движения при относительно малых значениях возмущающих сил. Методу вариаций координат отдают предпочтение в случае, когда необходимо произвести вычисление возмущений для длительных промежутков времени при действующих возмущениях, соизмеримых с величиной центральной силы. Применение его целесообразно также для расчета особых возмущений.  [c.87]

Рассмотрим два примера на применение соотношений (72.14) к выяснению вопроса о том, является ли рассматриваемое силовое поле потенциальным. Сначала рассмотрим двухмерное силовое поле центральной силы, произвольным образом зависящей от расстояния до [1ентра (рис. 164, а).  [c.194]

Формула (7) называется формулой Бинэ. Эта формула дает нам возможность определить центральную силу, под действием которой точка опишет данную траекторию, и, наоборот,— траекторию, которую опишет точка под действием заданной центральной силы. Формула Бинэ имеет большое применение в небесной механике.  [c.670]

Рассеяние частиц в поле центральной силы. Исторически интерес к центральным силам возник из астрономических задач о движении планет. Однако нет оснований считать, что интерес к этим силам ограничивается лишь задачами такого рода. Мы уже указывали на другой пример применения теории центральных сил — задачу о движении электрона в атоме Бора. Мы сейчас рассмотрим еще одну задачу о центральных силах, допускающую решение с позиций классической механики. Это — задача о рассеянии частиц в поле центральной силы. Конечно, если эти частицы имеют масштабы атома, то следует ожидать, что некоторые результаты классического исследования будут часто физически неправильными, так как квантовые эффекты в этих случаях обычно значительны. Тем не менее, имеется много классических полох<ений, которые остаются верными и здесь и поэтому могут служить в качестве достаточно хорошего приближения.  [c.97]

Однако указанные применения носят слишком специальный характер, чтобы на них можни было построить доказательство общего принципа кроме того, они несколько неопределенны и произвольны, что придает некоторую ненадежность и выводам, которые можно было бы сделать на основании их о точности самого принципа. Поэтому мне кажется, было бы неправильно изложенный в таком виде принцип ставить в один ряд с теми принципами, которые были указаны выше. Существует, однако, и другой способ его применения, более общий и более точный, который один только и заслуживает внимания математиков. Первую идею этого принципа дал Эйлер в конце своего сочинения De isoperi-metri is , напечатанного в Лозанне в 1744 г. он показал, что при траекториях, описанных под действием центральных сил, интеграл скорости, умножен-  [c.319]

Формулировка Мопертюи принципа наименьшего действия была еще весьма несовершенна. Первая научная формулировка принципа была дана Эйлером в том же 1744 г. в сочинении Метод нахождения кривых линий, обладающих свойствами максимума либо минимума, или решение изопериметрической задачи . Он сформулировал свой принцип следующим образом интеграл J mvds имеет наименьшее значение для действительной траектории, рассматривая последнюю в группе возможных траекторий, имеющих общие начальное и конечное положения и осуществляющихся с одним и тем же значением энергии. Эйлер дает своему принципу точное математическое выражение и строгое обоснование для одной материальной точки, подчиненной действию центральных сил. На протяжении 1746—1749 гг. Эйлер написал несколько работ о фигурах равновесия гибкой нити, где принцип наимень шего действия получил применение к задачам, в которых действуют упругие силы. Дальнейшее продвижение здесь было достигнуто трудами Ж. Лагранжа.  [c.185]

Применение к пирамидальным молекулам типа XV . Введение центральных сил для неплоских четырехатомных молекул, таких как рассмотренные выше пирамидальные молекулы типа XYj, снова приводит к разумным результатам. В этом последнем случае потенциальная энергия имеет вид  [c.180]

Центральносиловые координаты 161, 168 Центральные силы, нх применение при расчете частот колебаний, силовые постоянные 178 (глава II, 4в) линейные трехатомные молекулы 179 нелинейные молекулы ХУ 178 пирамидальные молекулы ХУз 180 простые молекулы с числом атомов больше трех 180 проверка 178, 249  [c.626]

НОВЫЙ качественный подход к анализу проблемы п тел. Позднее в гамильтоновой динамике зародились два различных направления ( ) исследование динамической сложности, возникающей в этой задаче из-за определенной гиперболичности (Алексеев, Конли), и Ш) анализ интегрируемых систем и их возмущений, который привел к КАМ-теории. Хотя и гиперболическая, и интегрируемая модели были известны еще со времен Пуанкаре, потребовался глубокий анализ Колмогорова, для того чтобы осознать, что многие качественные особенности (весьма специальных) интегрируемых систем в определенной степени сохраняются под действием возмущений, а также возникают в типичных ситуациях (например, вблизи неподвижной эллиптической точки). На развитие обоих этих направлений повлиял вопрос об устойчивости солнечной системы, который изучался в рамках гиперболического подхода в терминах устойчивости системы п тел и в рамках КАМ-теории посредством анализа возмущений, например, (интегрируемой) системы центральных сил без учета взаимодействий между планетами. В работе Конли и Цендера была установлена взаимосвязь топологических и вариационных методов, ставшая краеугольным камнем современной глобальной симплектической геометрии. Возрождение анализа вполне интегрируемых систем началось с работы Гарднера, Грина, Крускала и Миуры и открытия П. Лаксом новых методов построения интегрируемых систем. Это привело к быстрому увеличению числа новых интересных примеров конечномерных интегрируемых систем, а также к построению теории бесконечномерных гамильтоновых систем. Применение этой теории к изучению нелинейных дифференциальных уравнений в частных производных стало крупным достижением впервые в ситуациях, когда асимптотическое поведение уже не может быть названо тривиальным, появились средства для законченного качественного анализа.  [c.24]

Метод центральных сил применялся во многих старых исследованиях по теории упругостн. Несколько ниже мы остановимся на применении этого метода к определению соотношений между компонентами напряжения и деформации в кристаллическом теле, которые дал Кошн 20). Всякое подобного рода сведение близкодействия к дальнодействию стирает разницу между поверхностным напряжением и массовыми силами обычно старались поддержать это различие путем гипотезы о молекулярном строении тел. В теории Кошн, например, кажущееся близкодействие приводится к дальнодействию между молекулами, причем принимается, что это действие не простирается за пределы так называемой области молекулярного действия . Массовые силы, наоборот, рассматриваются, как действующие на значительном расстоянии. Таким образом второй способ введения понятия напряжения основан на гипотезе молекулярных снл.  [c.644]

Первый класс включает Меркурий, Венеру, Землю, Марс и Плутон (а также астероиды) в этом случае можно считать, что применение формул поля центральных сил (в соответствии с методами, изложенными в гл. 11) в исследованиях выполнимости даст достаточно точные данные для межпланетного полета, даже если пренебречь возмунгениями вблизи границ сфер действий.  [c.400]

В гидропульсационном силовозбудителе (рис. 105, б) применен миогоплунжерный радиально-роторный пульсатор. Ротор 4 связан с маховиком, предназначенным для рекуперации энергии упругих сил нагруженной конструкции. Центральный распределительный золотник 2 состоит из разделенных перегородкой всасывающей и нагнетающей камер. Ему создают дополнительное вращение. За каждый оборот золотника функции его камер меняются. В процессе равномерного вращения перемычка золотника изменяет величину потока, поступающего в камеру (или засасываемого из нее) по гармоническому закону. Одна из камер золотника связана с одной рабочей полостью силового гидроцилиндра 5 двустороннего действия, а другая—со второй полостью того же цилиндра (или со сливным баком при использовании цилиндра одностороннего действия). При медленном вращении золотника перемычка реверсирует поток, переводя пульсатор на каждом полуобороте из насосного в двигательный режим. Предложены оригинальные гидропульсаторы " " , гидромеханический пульсатор , двусторонние гкдропульсациоииые ус-тановки - а также гидравлическая машина для испытания на усталость при жестком и мягком нагружении , для испытания по программированному режиму с электромагнитным управлением " . Предложен оригинальный роторный пульсатор .  [c.188]


Применение ультразвуковой размерной обработки ограничено из-за того, что производительность процесса в значительной степени зависит от величины углубления инструмента в обрабатываемую деталь на глубине 10—15 мм она практически равна нулю. Чтобы увеличить производительность, нужно решить проблему обмена абразива в зоне обработки. Самое простое решение — периодический подъем инструмента он позволяет повысить скорость перемещения инструмента на 20—40%. Однако зависимость производительности от величины углубления инструмента остается. Более радикальным средством является отсос абразивной суспензии из зоны обработки через центральное отверстие в инструменте. Для этого станок оснащают вакуумным насосом. Производительность возрастает в 2—3 раза и не зависит от величины углубления. Еще более эффективный метод — подача суспензии в зону обработки под давлением (рис. 102), что позволяет увеличить производительность в 5—6 раз и сделать ее малозависящей от величины углубления. При этом примерно в 2 раза удается снизить концентрацию абразива в суспензии, что упрощает подачу ее в зону обработки. В 1,5—2 раза повышается также точность обработки [50]. Для успешного протекания процесса в этом случае необходимо несколько увеличить силу прижима  [c.169]

Устройство закрытого РК обычно решается установкой на внешнем меридиональном обводе кольцевого покрывающего диска оболочковой конструкции. Насадные покрывающие диски нашли широкое применение в компрессоростроении. Их геометрическая конфигурация и способы крепления к лопаткам РК апробированы в промышленности. Стальные диски, как правило, обладают необходимой несущей способностью при периферийных окружных скоростях до 300—350 м/с. Для РК, рассчитанных на большие окружные периферийные скорости, применение насадных покрывающих дисков в этом аспекте встречает серьезные трудности. Применение сверхпрочных или сверхлегких материалов, например композитных, решает эту проблему частично в силу особенностей напряженного состояния тонкостенной оболочки (диска с центральным отверстием). В связи с этим ставится вопрос отыскания принципиально новых технических решений конструкций закрытых РК.  [c.83]

Применение арочной конструкции колонны, в центральном проеме которой перемещается шпиндельная бабка с горизонтальным шпинделем (рис. 61,6), предотвращает скручивание колонны силой, действующей вдоль оси шпинделя, что наблюдается при консольном расположении шпиндельной бабки (рис. 61, а). Кроме того, такая термосимметричная компоновка позволяет снизить влияние температурных деформаций колонны путем равномерного нагрева ее левой и правой сторон (рис.  [c.588]

Рассчитывалась также цилиндрическая панель при действии центрально приложенной сосредоточенной силы. С учетом симметрии рассматривалась четвертая часть панели при сетке узлов 5x5 (рис.3.5). Использовались элементы LAMSHP. Результаты расчета представлены на рис. 3.5 в виде зависимости прогиба центральной точки от нагрузки. Полученные результаты соответствуют данным работы [66]. И в этом случае применение энергетической коррекции снижало число итераций на каждом шаге с 5-6 до 2-3. Итерационный процесс начинал расходиться при р=0,50 кН в случае решения с коррекцией (критическая нагрузка составляет согласно данным работы [66] 0,59 кН).  [c.98]

ВОЙ силы Fx, совершающей работу по упругому изменению длины оси. Этот член следует учитывать в случае, подобном описай-ному в 2.6, где рассматривалась балка, у которой наложенное-связи препятствуют осевым смещениям на концах, если исследовать эту балку энергетическим методом, а не пользоваться уравнениями равновесия этот метод, как было показано, удобен для применений. В случаях осевой нагрузки, когда концы могут свободно перемещаться в осевом направлении, как в случае за-> дачи о потере устойчивости, работа, совершаемая внешней осевой нагрузкой при упругом изменении длины оси, обращает в нуль только упомянутую выше энергию осевой упругой деформации уравнениях, следующих из принцица возможной работы, и поэтому принято опускать оба этих члена. Однако работу, совершаемую внешней осевой нагрузкой на пути, равном уменьшению расстояния между концами вследствие искривления (изменения кривизны) центральной линии, необходимо учитывать, как это будет сделано в случае, рассмотренном ниже в этом разделе.  [c.101]

Для выдавливания различных полостей А5атрнц, имеющих центральное отверстие для выталкивателя. Перед процессом выдавливания в отверстие заготовки вставляют коническую шпильку. Применение заготовки с отверстием Значительно снижает силу выдавливания  [c.328]


Смотреть страницы где упоминается термин Центральные силы, их применение при : [c.73]    [c.313]    [c.9]    [c.327]    [c.199]    [c.227]    [c.231]    [c.352]    [c.366]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



Ось центральная

Сила центральная

Центральные силы, их применение при больше трех

Центральные силы, их применение при линейные трехатомные молекулы

Центральные силы, их применение при нелинейные молекулы

Центральные силы, их применение при пирамидальные молекулы

Центральные силы, их применение при проверка

Центральные силы, их применение при простые молекулы с числом атомов

Центральные силы, их применение при расчете частот колебаний, силовые постоянные 178 (глава

Центральные силы, их применение при тетраэдрические молекулы



© 2025 Mash-xxl.info Реклама на сайте