Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения температурные энергии

Исследована кинетика ползучести на первой стадии алюминия марки А1 в температурном диапазоне 20—280 °С при различных уровнях приложенного напряжения. Найдено, что в координатах напряжение — температура испытания четко выделяются граничащие между собой и осью температуры три области, в каждой из которых наблюдается одна из известных кинетических закономерностей. С ростом температуры логарифмическая ползучесть (первая область) сменяется кубической закономерностью Андраде (вторая область), а кубическая — квадратичной Андраде (третья область). С ростом напряжения температурный интервал кубической зависимости растет за счет первой области. Температура перехода от кубической к квадратичной не зависит от напряжения и примерно равна 0,5 температуры плавления. Энергия активации ползучести во второй и третьей областях линейно уменьшается с ростом напряжения. Результаты исследований рассматриваются с точки зрения вопроса о ведущей роли сдвиговых или диффузионных процессов.  [c.262]


Процессы механического разрушения полимерных материалов. Процессы, вызывающие разрушение нагруженного полимерного материала, представляют собой процессы разрыва внутримолекулярных химических связей в результате тепловых флуктуаций, т. е. процессы термодеструкций полимерных цепей, активированные механическими напряжениями. Для полимерных материалов температурно-временная зависимость прочности определяется кинетикой постепенного флуктуационного разрыва химических связей. По данным Э. Е. Томашевского, энергия активации процесса разрушения полимеров, уменьшающаяся под действием напряжения, соответствует энергии активации термодеструкции при этом величина U,j в уравнении (4) представляет собой энергию активации процесса термодеструкции Et полимерных цепей в ненапряженном полимере, равную энергии химической связи между атомами в полимерной цепочке (табл. 2).  [c.28]

Механизм толчкообразного раздира, связанного с кристаллизацией материала в вершине растущего надреза, рассмотрен в работах [509,510]. Как и любая другая механическая характеристика прочностных свойств резины, удельная энергия раздира в неравновесных условиях деформирования оказывается зависящей от режима деформации. Раздир может происходить при разных напряжениях (деформациях, энергиях), при этом для него характерна различная продолжительность (долговечность), или скорость процесса. Можно задать постоянное значение нагрузки Р, которому для образцов определенного типа (см. рис. 4.1.8) отвечает некоторая усталостная удельная энергия раздира, например Н = 2/ /Д, если на образцах, деформируемых по типу простого растяжения , исключена сопутствующая работа деформации. Этому значению Н отвечает при заданных температурных условиях и гладком раздире определенная средняя скорость раздира V. Можно задать такую среднюю скорость раздира, как на разрывной машине, тогда для образцов из ненаполненных некристаллизующихся резин ей будет отвечать определенная средняя раздирающая нагрузка Р.  [c.210]

Если обратиться к эмпирическим формулам (190.2), (190.3) или (190.4), то окажется, что зависящим от температуры будет лишь один коэффициент, а именно А в формуле (190.2) н к ъ формулах (190.3) и (190.4). На самом деле температурная зависимость ползучести технических сплавов имеет более сложный характер, и при обработке опытных данных оказывается, что все постоянные, входящие в формулу, зависят от температуры. Однако, если диапазон изменения температуры невелик (50°—100° для стали), уравнение (193.2) дает достаточно точные предсказания. Нужно только иметь в виду, что энергия активации /, не постоянна, она меняется в зависимости от температуры и напряжения. Изменение энергии активации свидетельствует о переходе от одного преобладающего механизма ползучести к другому.  [c.435]


Процесс энергоразделения неотделим от процесса диссипации части механической энергии в тепло, возникающего из-за совершения работы по преодолению турбулентных напряжений. Вследствие энергетической изолированности течения в предположении незначительности абсолютной величины гидравлических потерь преодоление потоком турбулентного трения однозначно связано со снижением давления в потоке. Это снижение давления, трактуемое как потеря энергии, вызывает снижение эффекта температурного разделения в вихревой трубе по отношению к эффекту, который возникал бы в случае идеального течения без трения. Поэтому термодинамическая эффективность процесса энергоразделения в вихревой трубе может быть оценена внутренним адиабатным КПД  [c.182]

С другой стороны, наступление момента конкуренции процессов Z)iA 4-сборки можно интерпретировать как приближение в системе к порогу перколяции в отношении напряженности и взаимодействия локальных силовых полей от сформированных фрактальных кластеров. Достижение же критического значения концентрации фрактальных кластеров конденсированной фазы обусловливает перколяционную структуру электрических взаимодействий между ними. Для систем, погруженных в пространство с евклидовой размерностью Е=Ъ фрактальная размерность частиц, соответствующая порогу перколяции, Df 2,5 [35]. В условиях стационарного воздействия на систему отрицательного температурного градиента (охлаждения системы внешней средой) описанное состояние системы катализирует таким образом дальнейший процесс агрегации по ССЛ-механизму. Подобным образом развивается волнообразный цикличный характер дальнейшей цепочки фазовых переходов второго рода (рис. 3.13), обусловливающий наиболее эффективный путь диссипации энергии посредством структурообразования по иерархическому принципу в открытой неравновесной системе охлаждаемого расплава.  [c.135]

Важнейшей эмиссионной характеристикой твердых тел является работа выхода еср (е — заряд электрона, Ф — потенциал), равная минимальной энергии, которая необходима для перемещения электрона с поверхности Ферми в теле в вакуум, в точку пространства, где напряженность электрического поля практически равна нулю [1]. Если отсчитывать потенциал от уровня, соответствующего покоящемуся электрону в вакууме, то ф— потенциал внутри кристалла, отвечающий уровню Ферми. Согласно современным представлениям в поверхностный потенциальный барьер, при преодолении которого и совершается работа выхода, основной вклад вносят обменные и корреляционные эффекты, а также — в меньшей степени — электрический двойной слой у поверхности тела. Наиболее распространенные методы экспериментального определения работы выхода — эмиссионные по температурной, спектральной или полевой зависимости соответственно термо- фото- или полевой эмиссии, а также по измерению контактной разности потенциалов между исследуемым телом и другим телом (анодом), работа выхода которого известна [I, 2]. В табл. 25.1, 25.3 и 25.4 приведены значения работы выхода простых веществ и некоторых соединений. Внешнее электрическое поле уменьшает работу выхода (эффект Шоттки). Если поверхность эмиттера однородна, то уменьшение работы выхода. эВ, при наложении электрического поля напряженностью В/см, равно  [c.567]

Возможность диссоциации винтовой дислокации на частичные, расположенные в металлах с о. ц. к. решеткой в нескольких плоскостях типа 112 или 110 , и образование сидячей дислокационной конфигурации являются основной причиной торможения дислокаций кристаллической решеткой. В этом случае высокое сопротивление движению дислокаций обусловлено необходимостью стягивания расщепленной дислокации с последующей рекомбинацией и образованием перетяжек, способных скользить в кристаллической решетке, поскольку эти процессы связаны со значительным увеличением энергии дислокации. Модель диссоциации и рекомбинации винтовых дислокаций удовлетворительно объясняет температурную зависимость сопротивления кристаллической решетки движению дислокации, высокий уровень напряжения течения при О К для о. ц. к. металлов, а также меньшую подвижность винтовых дислокаций по сравнению с краевыми. Атомы внедрения могут стабилизировать сидячую дислокационную конфигурацию и понижать вероятность образования перетяжки на расщепленной дислокации, что приводит к возрастанию напряжения Пайерлса при увеличении концентрации примесей внедрения.  [c.219]


Контроль процесса сварки. Остывание наплавленного металла приводит к образованию температурных напряжений, которые в случае возникновения трещин скачкообразно уменьшаются (рис. 117). Образование пор и внутренних включений также приводит к изменению внутренних напряжений. Оба явления сопровождаются появлением сигналов эмиссии. По активности, пиковой амплитуде и энергии эмиссии можно судить о характере и величине дефекта. Сигналы эмиссии можно использовать для управления технологическими параметрами процесса сварки.  [c.320]

Температурная зависимость напряжения течения и чувствительность к скорости деформации определяются величиной энергии  [c.21]

Это означает, что условия стесненной деформации в толстых сечениях при наличии определенного концентратора напряжений не воспроизводятся испытаниями образцов Шарпи с V-образным (кли-надрезом. температурной за-поглощенной энергии, построенная методом определения ТНП, в левой своей части либо совпадает с кривой,  [c.211]

Поведение I типа характеризуется упрочняющим влиянием воздуха. В конкретном случае крупнозернистого сплава на никелевой основе среда влияет на скорость ползучести главным образом через факторы, зависящие от напряжения, и в меньшей степени посредством температурной зависимости или через энергию активации. То, что среда не влияет на температурную зависимость  [c.35]

Если в системе протекают составные процессы, то они могут быть последовательными (действующими по очереди) или же одновременными (т. е. независимыми и, возможно, аддитивными). Это существенное различие, если скорости составляющих процессов заметно различаются. Действительно, скорость последовательного процесса при этом будет определяться самым медленным, а одновременного процесса — самым быстрым составляющим процессом. Возможность 2) подразумевает, что при данных условиях (температура, напряжение, скорость деформации и т. д.), когда относительные вклады составляющих процессов сравнимы, происходит либо последовательный, либо одновременные процессы. В настоящее время нет данных, позволяющих определить тип составного процесса при индуцированном водородом КР. Один из возможных способов состоит в измерении энергий, активации растрескивания в нескольких узких температурных интервалах. При этом энергия активации будет расти с температурой в случае независимых процессов и уменьшаться — в случае последовательных [326], при условии, что область исследованных температур включает переход от условий доминирования одного процесса к условиям преобладания другого. Необходимо также, чтобы в этой температурной области механизм, определяющий скорость каждого процесса, оставался неизменным (например, перенос массы в растворе при анодном растворении или поглощение водорода металлом при водородном растрескивании.  [c.134]

В номинальных режимах эксплуатации АЭС рабочие параметры установки сохраняются примерно постоянными (для ВВЭР-440 с учетом данных 1 гл. 2 давление и температура на входе составляют 12,7 МПа и 265 °С, а на выходе - 12,4 МПа и 296 °С). Расход теплоносителя через реактор составляет около 43000 м /ч, Давление в контуре, стационарные температурные смещения и напряжения от весовых нагрузок определяются с использованием общей расчетной схемы. Весовые нагрузки из-за массивности оборудования АЭУ оказьшаются весьма значительными. Суммарная масса оборудования составляет около 10% от массы бетонных сооружений, заключающих в себя установку, Эта характеристика АЭУ важна для проектирования опор, анализа отклика на сейсмические воздействия и нагрузки, обусловленные аварийными режимами эксплуатации АЭС. Опорные конструкции должны допускать температурные расширения и быть достаточно жесткими, поскольку они строго влияют на собственные колебания всей системы АЭС, даже контролируя их, что также важно для учета влияния землетрясений и аварийных нагрузок. Жесткостные свойства опор, возможные (заложенные в проекте) их особенности рассеяния (диссипации) энергии колебаний учитываются в расчетах введением соответствующих матриц жесткости и демпфирования.  [c.90]

Обозначения Т — температура окружающей среды А — толщина пленки I — характеристическая длина / колл напряженность поля при коллапсе — индукция насыщения — удельная энергия доменной границы а а/у а , и температурные коэффициенты величин I, / колл  [c.487]

Ведутся экспериментальные и теоретические исследования кинетики образования и условий взаимодействия напряжений, возникающих при сварке в различных температурных областях сварного соединения (И. М. Жданов, М. В. Валиев). В результате исследований был сформулирован ряд закономерностей, определяющих развитие силового поля в сварном соединении в процессе сварки неустановившийся характер при квазистационарном тепловом поле, характер суммирования напряжений и сброса упругой потенциальной энергии при нагреве  [c.26]

Узлы трения являются диссипативными системами. При внешнем трении рассеивание суммы кинетической и потенциальной энергии системы с частичным переходом в тепловую происходит в тонких слоях сопряженных тел. В нижележащих слоях температура увеличивается в результате теплопередачи и вследствие рассеяния механической энергии волн напряжений. На характер изменения температуры в поверхностных слоях пластмассовых подшипников можно эффективно влиять, подбирая соответствующий смазочный материал и регулируя интенсивность смазки. Проявление гистерезисных явлений в пластмассах значительно сильнее, чем в металлах, поэтому интенсивность и глубина температурных полей в полимерных телах трущихся пар определяется внешними силовыми условиями, преимущественно нагрузкой и скоростью относительного скольжения. Способность пластмасс поглощать механическую энергию влечет за собой быстрый рост температуры и тем самым отрицательно влияет на работоспособность подшипника — Прим. ред.  [c.231]


Помимо фантастической теплопроводности, она обладает еще несколькими замечательными свойствами. Используя их, можно концентрировать тепловые потоки, изменять и поддерживать на одном уровне нужную температуру агрегатов и технологических процессов с такой же легкостью, с какой электронщики уже давно манипулируют токами и напряжениями в своих схемах, с какой механики научились недавно управлять силами, энергиями, деформациями и другими деталями удара. Недаром инженеры прозвали тепловую трубку температурным трансформатором , тепловым транзистором . Калории и градусы становятся столь же гибкими в обращении, как вольты, амперы и килограммы.  [c.20]

В твердом теле, подчиняющемся закону Гука, часть энергии тратится на работу сил упругих деформаций. Если считать, что причиной появления таких деформаций является неравномерное температурное поле, то при отсутствии напряжений сдвига (всестороннее растяжение или сжатие) работа сил внутренних напряжений в единице объема, производимая в единицу времени, определится следующим выражением [Л. 33]  [c.17]

Для поисков возможных причин уменьшения размера зерна, которое происходит далеко не при всех превращениях, представим измельчение зерна как процесс образования новых межзеренных границ. Известно, что во время полиморфных превращений энтропия системы изменяется скачкообразно, рис. 3.12. При этом, как обычно при изменении энергии, изменяются напряжения, а их величина определяется соотношением Гельмгольца. Если превращение происходит на узком температурном интервале АГп.п- 0, то изменение внутренней энергии системы мало, А /пп" 0- Тогда для системы  [c.142]

Стали типа 15Х5М относятся к числу термически стабильных. Однако при длительном воздействии высокой температуры в сварных разнородных соединениях могут образовываться переходные прослойки, обусловленные диффузионно м перераспределением в них диффузионно-подвижных Э1 с,ментов. Исследования, проведенные Н.М. Королевым во ВНИИнефтемаше, показали, что интенсификацию диффузионных процессов вызывают циклические термические напряжения, обусловленные различием температурных коэффици-ешов линейного расширения аустенитного шва и основного металла. Помимо термических напряжений действуют также напряжения, возникающие вследствие наличия закаленных участков в околошовных зонах. Мартенситная пересыщенная структура закалки всегда обладает более высокой свободной энергией, чем равновесные фазы с таким же номинальным составом, т.е. околошовные зоны термического влияния закаливающейся стали характеризуются более структурнонапряженным состоянием. Как известно, напряженное состояние металла значительно влияет на скорость диффузионных процессов и их коррозионную стойкость.  [c.155]

Нейтронное и у-излучения из активной зоны реактора создают мощный поток энергии, В больших энергетических реакторах интенсивность излучения достигает 10 МэвЦсм -сек). Это приводит к тому, что мощность энерговыделения в конструкциях, находящихся в непосредственной близости от активной зоны, достиггает 100 бт/слг и более [45]. Для корпусов водо-водяных и газоохлаждаемых реакторов, которые рассчитаны на значительное давление, энерговыделение, связанное с поглощением излучений, может привести к дополнительным температурным напряжениям, которые необходимо учитывать в расчетах прочности. Кроме того, интенсивное нейтронное облучение вызывает структурные нарушения материала корпуса, которые, накапливаясь, приводят к изменению его прочностных характеристик-Существенными факторами для реакторов многих типов являются также коррозия материала корпуса и усталость этого материала от переменной нагрузки.  [c.66]

Опыты, оценивающие долговечность, проведенные с целью определения энергии активации процессов разрушения, заключались в следующем определяли время до разрушения образцов при заданных температуре и уровнях напряжений, поддерживаемых в процессе опыта постоянными. Для нахождения температурной и силовой зависимостей начальной энергии активации проводили массовые испытания (десятки сотен образцов) в широком диапазоне напряжений и температур при изменении долговечности различных твердых тел (в том числе полимеров) на несколько гюрядков. Эти исследования позволили установить, что семейство линейных зависимостей lgx=f(a) при разных температурах представляет собой пучок прямых, пересекаюгцихся в полюсе io=10 .  [c.263]

Процессы посткристаллизации при дальнейшем охлаждении твердой фазы являются следующим этапом эволюции системы. Посткристаллизация по сути является неравновесным диссипативным процессом, который возникает в результате необходимости компенсировать температурный градиент от дальнейшего охлаждения системы. В предыдущем разделе рассматривалось одно из свойств фрактальных кластеров - аккумуляция части энергии, выделяющейся при образовании связей между атомами. Благодаря этому свойств фрактальные кластеры новой фазы, образующиеся в процессе кристаллизации сплавов, содержат значительное количество дополнительной энергии, что создает напряжения во фрактальном кластере и, в итоге, приводит к его нестабильности. Можно сказать, что при этом система еще раз включает механизм диссипации энергии, которая была накоплена, но не рассеяна в процессе фазового перехода первого рода. Диссипация этой энергии и проявляется в качестве эффекта посткристаллизацни  [c.95]

Л аксимальное переохлаждение у некоторых металлов может достигать 300 К и более (А7, ах 0,2Гпл). Дислокации приводят к увеличению свободной энергии кристалла и поэтому могут оказывать влияние на процесс кристаллизации. Так как дислокации образуются в процессе зарождения и роста кристалла (очевидно, вследствие значительных температурных градиентов, а также вследствие напряжений, вызванных примесями), то они оказывают влияние также и на размеры зародыша кристаллической фазы.  [c.391]

Если действие сил инерции или процессы рассеяния энергии пренебрежимо малы и не оказьшают существенного влияния на поведение изделия, то задача может быть сформулирована в виде статического прочностного анализа. Такой тип анализа наиболее часто используется, например, для определения концентрации напряжений в галтелях конструктивных элементов или для расчета температурных напряжений, для определения перемещений, напряжений, деформаций и усилий, которые возникают в изделии в результате приложения механических сил.  [c.59]

В веществах с самопроизвольной поляризацией имеются от- ,ельные области (домены), обладающие электрическим моментом F отсутствие внешнего поля. Однако при этом ориентация электрических моментов в разных доменах различна. Наложение внешнего голя способствует преимущественной ориентации электрических юментов доменов в направлении поля, что дает эффект очень сильной поляризации. В отличие от других видов поляризации при некотором значении напряженности внешнего поля наступает насыщение, и дальнейшее усиление поля уже не вызывает возрастания tHT H HBHO TH поляризации. Поэтому диэлектрическая проиицае-люсть при спонтанной поляризации зависит от напряженности электрического поля. В температурной зависимости е,. наблюдается один или несколько максимумов. В переменных электрических полях материалы с самопроизвольной поляризацией характеризуются значительным рассеянием энергии, т. е. выделением теплоты.  [c.21]


Влияние температуры. В работе [81] показано, что критический коэффициент интенсивности напряжений для зарождения трещины Kikp в нейтральном растворе 3,5% Na l для сплава Ti—8 Al—1 Mo—IV не изменяется с температурой (рис. 27). В интервале температур от —1°С до -f93° значения величин Кхкр и Ki находятся в пределах экспериментального разброса, соответственно 15,4—20,2 и 68,3—74,1 МПа-м . В противоположность этому скорость растрескивания имеет явно выраженную температурную зависимость. В этих исследованиях использована предельная скорость роста трещины (соответствующая областям II и Па) в Графической зависимости Аррениуса для определения энергии активации, равной Q = 13,4 Дж/моль. Однако в более поздней работе этих авторов [ПО] сообщалось о величине, равной Q = 23,5 кДж/моль. Эти результаты подобны ранее полученным для сплава Ti—8Al—1 Mo—IV (DA), испытанного в растворе 0,6 М КС1 в потенциостатических условиях с использованием усредненной скорости V в графической зависимости Аррениуса. Полученная величина энергии активации составила Q=I4,7 кДж/моль  [c.330]

Для многих элементов конструвдий типично малоцикловое нагружение, обусловливающее циклические температурные напряжения. Такой режим нагружения реализуется в условиях преобразования тепловой энергии в течение характерного периода эксплуатации изделия и определяется возникновением постоянных градиентов температур в стационарных режимах и кинетикой температурных полей при смене тепловых состояний [ 1, 5, 9, 13, 14,30, 31,36].  [c.170]

Даже после того, как были даны пояснения по поводу многих внешних источников демпфирования, все еще остается очень большое число механизмов, с помощью которых энергия при колебаниях может поглощаться внутри некоторого малого элемента материала при его циклическом демпфировании. Мы не станем пытаться объяснить все эти механизмы, а остановимся на некоторых из них, представляющихся наиболее существенными. Эти механизмы приведены в табл. 2.1 [2.14] для тех диапазонов частот и температур, в которых они, как правило, наиболее эффективны. Все рассмотренные здесь маханизмы связаны с внутренними перестройками микро- или макроструктур, охватывающими диапазон от кристаллических решеток до эффектов молекулярного уровня. Сюда входят магнитные эффекты магнитоупругий и магнитомеханический гистерезис), температурные эффекты (термоупругие явления, теплопроводность, температурная диффузия, тепловые потоки) и перестройка атомарной структуры (дислокации, локальные дефекты кристаллических решеток, фотоэлектрические эффекты, релаксация напряжений на границах зерен, фазовые процессы, учитываемые в механике твердого деформируемого тела, блоки в по-ликристаллических материалах и т. п.) [2.15—2.18].  [c.77]

Теоретической основой постановки экспериментальных исследований для многочисленных механизмов, работающих в масляной среде, является контактно-гидродинамическая теория смазки. Контактно-гидродинамический режим смазки является типичным для условий работы зубчатых и фрикционных передач, подшипников, катков и других механизмов. Основная задача теории заключается в определении контактных напряжений, геометрии смазочного слоя и температур при совместном рассмотрении уравнений, описывающих течение смазки, упругую деформацию тел и тепловые процессы, протекающие в смазке и твердых телах. Течение смазки в зазоре описывается уравнениями, характеризующими количество движения, сплошность, сохранение энергии и состояние. Деформация тел определяется основными уравнениями теории упругости. Температурные зависимости находятся из энергетического уравнения с использованием соответствующих краевых условий. Плоская контактно-гидродинамическая задача теории смазки решалась с учетом следующих допущений деформация ци-лидров рассматривалась как деформация полуплоскостей упругие деформации от поверхностного сдвига считались малыми для анализа течения смазки использовалось уравнение Рейнольдса при вязкости смазки, явля-  [c.165]

НАПОР [<гидростатический определяется отношением полной потенциальной скоростной характеризуется отношением кинетической) энергии некоторого объема жидкости к массе жидкости в этом объеме температурный — разность температур двух различных смежных или разделенных стенкой сред, между которыми происходит теплообмен] НАПРЯЖЕНИЕ механическое [служит мерой внутренних сил, возникающих в деформированном теле и определяемой отношением выявленной силы к величине элементарной площадки, выбранной внутри или на поверхности тела в гидроаэростатике определяется как сила, отнесенная к единице площади поверхности, на которую она действует касательное возникает под действием сил, касательных к нормальное возникает под действием сил, нормальных к> поверхности тела трение численно равно силе внутреннего трения в газе, действующей на единицу площади поверхности слоя] электрическое (численно равно суммарной работе, совершаемой кулоновскими и сторонними силами при перемещении по участку цепи единичного положительного заряда анодное прилагается между анодом и катодом электронной лампы или гальванической ванны зажигания обеспечивает переход несамостоятельного газового разряда в самостоятельный переменное, действующее значение которого вычисляют (для периодического напряжения) как среднеквадратичное значение напряжения за период его изменения пробивное вызывает разряд через слой диэлектрика сеточное приложено между сеткой и катодом электронной лампы и служит для запирания лампы при определенном значении его на участке цепи равно произведению его сопротивления на силу тока) НАПРЯЖЕНИЯ механические (контактные возникают на площадках соприкосновения деформируемых тел температурные образуются в теле вследствие различия температур составных его частей и ограничения возможностей теплового расширения со стороны окружающих частей тела или других тел остаточные вызываются крупными дефектами материала, неоднородностью кристаллической структуры и дефектами атомно-кристаллических решеток)  [c.253]

К., как и др. виды люминесценции, обладает инерционностью послесвечения, температурным и др. видами тушения, характерным для данного вещества спектром свечения и т. д. Вместе с тем она обладает спе-цифич. свойствами, связанными с особенностями преобразования кинетич. энергии заряж. частицы в кванты излучения значительно меньшей энергии многоэтапный процесс преобразования, наличие дополнительных каналов потерь энергии, часто наблюдающаяся нелинейная зависимость яркости свечения от напряжения и плотности тока, трековый характер возбуждения и т. д.  [c.246]

Известно также еще одно, правда не относящееся к категории I, приближенное решение Е. А. Эйхельбренера [6], который в задаче градиентного течения вдоль поверхности использует температурные профили, найденные для продольного обтекания плоской пластины. Введение таких профилей в уравнение энергии дает уравнение 1-го порядка относительно неизвестного касательного напряжения. Указанное уравнение было им решено численным путем.  [c.337]

Основное условие рациональной (с экономической точки зрения) эксплуатации мощных энергоустановок — обеспечение необходимого достаточно длительного ресурса безаварийной работы, достигающего 100—200 тыс. ч на стационарном режиме, и перевод большой группы энергоблоков в полупиковые и пиковые режимы работы для осуществления частичного и глубокого регулирования выработки энергии. Число изменений режимов работы, а также полных остановов энергоблоков за срок назначенного ресурса может достигать 10 —10 и более. Работа энергоблоков на переменных режимах ведет к повышению местной на-груженности (особенно температурных напряжений) и ускорению накопления эксплуатационных повреждений.  [c.6]

Тепловые сети современных промышленных предприятий и городов представляют собой сложные инженерные сооружения, имеющие разветвленную цепь надземных и подземных трубопроводов в основном канальной прокладки. Они являются составной частью системы централизованного или местного теплоснабжения и предназначены для транспорта тепловой энергии от источников тепла к потребителям. В качестве теплоносителя в тепловых сетях используется вода или водяной пар. В РФ для централизованного теплоснабжения (особенно для коммунально-бытового) температура теплоносителя в большинстве случаев превышает 100° С (до 150° С), что в основном и определяет особенности конструкции теплопроводов. В отличие от других ( холодных ) протяженных и сложноразветвленных подземных металлических сооружений теплопроводы в процессе эксплуатации имеют значительные осевые (линейные) перемеш,ения вследствие термического удлинения стали. Температурные колебания в большом диапазоне вызывают знакопеременную и повторно-статическую деформацию металла, что, безусловно, способствует снижению коррозионномеханической прочности и долговечности трубопроводов, в первую очередь за счет уменьшения срока службы изоляционных покрытий и проявления механо-химической коррозии и требует применения специальных конструкций для компенсации тепловых перемеш,ений и снятия механических напряжений в металле трубы.  [c.88]



Смотреть страницы где упоминается термин Напряжения температурные энергии : [c.156]    [c.108]    [c.236]    [c.466]    [c.61]    [c.92]    [c.93]    [c.95]    [c.100]    [c.96]    [c.166]    [c.12]    [c.660]    [c.236]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.115 ]



ПОИСК



Напряжение температурное

Энергия напряжений



© 2025 Mash-xxl.info Реклама на сайте