Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ползучесть механизм

Таким путем на карте нанесены две области ползучести, механизмы которых определяются при каждой температуре уровнем напряжений. Соответственно в этих областях есть различия в типе разрушения.  [c.9]

Радиационная ползучесть сталей проявляется при температуре 300-500 °С, когда роль термической ползучести еще пренебрежимо мала. Один из возможных механизмов радиационной ползучести — механизм переползания, т. е. скольжения дислокаций. Установившаяся скорость радиационной ползучести пропорциональна приложенному напряжению и повреждающей дозе.  [c.855]


Действительно, ползучесть льда при высоких температурах (Г>—0,50 Х О.вТ т) происходит по степенному закону с п=3 и энергией активации около 60 кДж/моль (последние обзоры по ползучести льда см. в работах [380, 382, 104, 136]). Величина энергии активации ползучести близка к энергии активации диффузии катионов Н+ и анионов кислорода. Это оставляет открытым вопрос о возможном вкладе в ползучесть механизма, конт-  [c.161]

Накопленный опыт эксплуатации конструкций различного назначения показывает, что, как правило, их преждевременные повреждения, связанные с запуском тех или иных механизмов разрушения материала, происходят при совокупном действии нескольких конструктивных, технологических и(или) эксплуатационных факторов. Каждый фактор в отдельности в большинстве случаев может не приводить к провоцированию какого-либо механизма разрушения. Например, мы можем защитить конструкцию в отдельности от усталостного разрушения, учитывая факторы, провоцирующие этот механизм, и обеспечить ее длительную прочность, используя пластичный материал с большим сопротивлением ползучести, но в то же время нет гарантии, что рассматриваемая конструкция не разрушится по механизму, именуемому в литературе взаимодействием ползучести и усталости .  [c.4]

В предлагаемой методике в качестве основного механизма, контролирующего разрушение, принимается накопление повреждений при медленном квазистатическом деформировании материала, которое обусловлено процессом низкотемпературной ползучести при напряжениях выше предела текучести. С пог мощью данной методики осуществляется расчет временного ресурса конструкции при статическом нагружении в условиях действия коррозионной среды.  [c.329]

Реальность данного механизма коррозионной усталости подтверждают исследования, показавшие что ползучесть (медленная пластическая деформация), которая также осуществляется путем переползания дислокации, ускоряется общей коррозией напряженного металла. Чем выше скорость коррозии, тем выше и скорость ползучести. Прекращение коррозии, например путем катодной защиты, ведет к уменьшению скорости ползучести до исходного значения. Влияние коррозии на ползучесть мелкозернисты, металлов наблюдается у меди, латуни [82], железа и углеродистой стали [831.  [c.164]

Для того, чтобы перейти к анализу разрушения при ползучести, необходимо рассмотреть механизм стадии повреждаемости при длительной высокотемпературной деформации. Как известно, повреждаемость при ползучести связана с порообразованием на фаницах зерен, инициируемом коллективными дислокационными процессами. Они так или иначе зависят от термически-активируемых процессов скольжения и переползания дислокаций с развитием диффузии по дислокационным трубкам или объемной диффузии. Экспериментальные данные, накопленные к настоящему времени, позволяют составить иерархическую последовательность (рисунок 4.34) включения механизмов пластической деформации в зависимости от параметра ре, характеризующего эффективную энергию активации в терминах К.  [c.316]


I - скольжение дислокаций II - переползание дислокаций, диффузия по дислокационным трубкам III - переползание дислокаций, объемная диффузия IV - приграничное скольжение Рисунок 4.34 - Последовательность контролирующих механизмов диссипации энергии при ползучести  [c.318]

За последние десятилетия в физике твердого тела получило широкое распространение представление о несовершенствах кристаллической решетки, называемых дислокациями. Этим несовершенствам приписывается основная роль при объяснении ряда особенностей поведения реальных кристаллов. Механизм пластической деформации, ползучести, разрушения, рассеяния энергии при циклическом деформировании связываются большинством современных авторов с перемещением дислокаций внутри кристалла. Дислокационные представления используются также для объяснения механизма роста кристалла. Возможные дефекты кристаллической решетки не ограничиваются, конечно, одними дислокациями этим термином называются дефекты особого рода, обладающие совершенно определенными свойствами. Однако дислокационные представления, как оказалось, имеют настолько общий характер, что на их основе можно построить очень большое количество разного рода моделей, объясняющих те или иные свойства реального кристалла, и выбрать из этих моделей те, которые наилучшим образом отвечают опытным данным.  [c.453]

Уравнение (18.4.1) иногда называют уравнением состояния при ползучести, но этот термин в теориях, использующих термодинамику, имеет несколько иной смысл. Существенно подчеркнуть, что параметром упрочнения является именно деформация ползучести р в ранних работах эта оговорка часто не делалась и за параметр упрочнения принималась полная деформация (иногда за вычетом упругой части). Опыты показывают, что мгновенная пластическая деформация, если она невелика—порядка 1—2%,— не оказывает упрочняющего влияния на последующую ползучесть. Это можно объяснить некоторой разницей механизма мгновенной пластической деформации и пластической деформации, происходящей в процессе ползучести. В первом случае, если пластическая деформация невелика, она происходит в результате локализованного скольжения по пачкам плотно расположенных плоскостей скольжения в кристаллических зернах, при этом большая часть объема металла остается недеформированной, а следовательно, неупрочненной. Ползучесть происходит в результате скольжения по атомным плоскостям, распределенным по объему равномерно и на близких расстояниях величина сдвига в каждой плоскости невелика, но достаточна для создания равномерного упрочнения.  [c.621]

Путь построения этой теории повторяет построение теории пластического течения. Использованные аналогии с теориями пластичности при написании соотношений (8.41), (8.42), (8.44) и (8.45) основаны на том, что механизмы образования пластических деформаций и деформаций ползучести имеют много общего и связаны с движением дислокации, образованием линий и плоскостей скольжения.  [c.159]

Часто этот механизм называют диффузионной ползучестью, для которой характерна совокупность различных механизмов, рассматриваемых в следующем разделе этой главы.  [c.156]

Интеркристаллитное разрушение, наблюдаемое при ползучести или коррозии под напряжением, имеет совершенно иной механизм, а металл может проявлять признаки как хрупкого, так и вязкого разрушения.  [c.421]

Пластическое течение в условиях повышенных температур и малых скоростей в соответствии с существующими представлениями, рассмотренными в гл. III и IX, может включать в себя в общем случае следующие механизмы дислокационные — скольжение и переползание, диффузионный направленный массоперенос (диффузионную ползучесть) и скольжение соседних зерен друг относительно друга (зернограничное скольжение).  [c.563]

Механизмом диффузионной ползучести нельзя объ-  [c.563]

Это и обеспечивает увеличение скорости течения примерно на порядок по сравнению с равномерным течением по механизму диффузионной ползучести.  [c.567]


Существует три механизма пластической деформации сдвиговой механизм, или механизм скольжения, двойни-кование, ползучесть или диффузионная пластичность. Первый и второй механизмы проявляют себя как при НИЗКИХ, так и при высоких температурах, тогда как третий механизм имеет место преимущественно при высоких температурах.  [c.76]

Механикой называют область науки, цель которой — изучение движения и напряженного состояния элементов машин, строительных конструкций, сплошных сред и т. п. под действием приложенных к ним сил. Современное состояние этой науки достаточно полно определяется ее основными составными частями общей механикой, к которой относят механику материальных точек, тел и их систем, сплошных и дискретных сред, колебания механических систем, теорию механизмов и машин и др. механикой деформируемых твердых тел, к которой относят теории упругости, пластичности, ползучести, теорию, стержней, ферм, оболочек и др. механикой жидкости и газа с разделами газо- и аэродинамика, магнитная гидродинамика и др. комплексными и специальными разделами механики, в частности биомеханикой, теорией прочности конструкций и материалов, экспериментальными методами исследования свойств материалов и др.  [c.4]

Механизм роста графитовых включений можно представить так. К графитовому зародышу диффундируют атомы углерода, что-обусловливает его рост. Матрица вначале не удаляется от фронта растущего графитового включения, в связи с чем повышается давление до начала ползучести. Давление в итоге зависит от соотношения скорости ползучести матрицы и скорости выделения углерода на графите.  [c.35]

Уравнение (1.25) с эффективным коэффициентом диффузии дает фактически скорости двух процессов. С одной стороны, при высоких температурах и низких напряжениях, где определяющей является объемная диффузия, скорость деформации изменяется пропорционально Ts. Соответствующая область на карте — Т представляет собой область высокотемпературной ползучести. С другой стороны, при низких температурах и больших напряжениях преобладает диффузия вдоль дислокационных линий и скорость деформации уже будет пропорциональна Соответствующее этим условиям полена карте механизмов  [c.24]

В качестве примера на рис. 5.17 приведена карта механизмов разрушения для молибдена [435]. Отметим, что при разрушении ОЦК-ме-таллов в интервале от абсолютного нуля до температуры плавления Эшби различает семь механизмов разрушения скол, межзеренное разрушение, низкотемпературное пластичное разрушение, внутри-зеренное разрушение при ползучести, межзеренное разрушение при ползучести, разрыв и динамическое разрушение. В разрушении сколом Эшби выделяет три вида скол 1 — разрушение сколом, когда не наблюдается общая пластичность, хотя микропластичность в вершине трещины может быть, скол 1 — это скол от существующих дефектов  [c.211]

Здесь первое слагаемое определяет мгновенную деформацию, -а второе — установившуюся дй )ормацию ползучести. Значит, величина GqAi/E указывает ту часть деформации, которую вносит в общую деформацию ползучести механизм со временем запазды- вания у1.  [c.761]

С другой стороны, стенки крупных субзерен долгое время сохраняют память об условиях ползучести, несмотря на то-что они постоянно развиваются и мигрируют в процессе ползучести. Миграция границ крупных субзерен в процессе ползучести наблюдалась в алюминии [116] и хлористом натрии [148]. Этот эффект давал от 10 до 20% полной деформации ползучести (механизм группового скольжения дислокаций). Во многих случаях при увеличении деформации наблюдалось увеличение разориентации субзерновых границ до больших зна чений (иногда эти границы становились фактически большеугловыми границами зерен). О развивающейся разориентации границ сообщалось для алюминия [238], никеля [311] и кварца [176]. Приводились данные в пользу существования развивающейся разориентации в -минералах, деформированных в природных условиях кварце [387] и оливине [295].  [c.199]

Проскальзывания по границам зерен обычно рассматривают как неизбежный эффект диффузионной ползучести. Механизм лроскальзывания по границам зерен в связи с диффузионной ползучестью быЛ очень хорошо описан в работе [ 280] вопрос о том, могут ли проскальзывания независимо вносить свой вклад в деформацию ползучести (в условиях, при которых дислокационная ползучесть не происходит), широко обсуждался до недавнего времени. В некоторых работах (главным образом [281-283]) делались попытки ооосно-вать правильность представлений о том что проскальзывание может привести к не зависящему от диффузии вкладу в ползучесть. Однако в работах [279, 284 - 286] было показано, что при рассмотрении данного деформационного процесса логичнее приписать деформацию ползучести целиком либо проскальзыванию по границам зерен, лм о .диффузии. Деформация может происходить только тогда, когда проскальзывание и диффузия действуют одновременно, и, наоборот, она равна нулю, если один из процессов не име-  [c.179]

Радиационная ползучесть сталей проявляется при температуре 300-500 °С, когда роль термической ползучести еще пренебрежимо мала. Один из возможных механизмов радиационной ползучести - механизм переползания-скольжения дислокаций. Установившаяся скорость радиационной ползучести пропорциональна приложенному напряжению и повреждающей дозе. Модуль радиационной ползучести составляет (1-2)10 (МПа с.н.а.)" для стали AISI 316 в холодно-деформирован-ном состоянии при температуре 400-550 °С. Минимум модуля радиационной ползучести отмечен при температуре около 550 °С и  [c.315]

Процесс ползучести. Механизм пластической деформации при ползучести в основном остается тем же, что и механизм обычной пластической деформации ползучесть происходит в результате сдвигов по плоскостям наилегчайшего скольжения за счет движения дислокаций. Однако если при кратковременной пластической деформации сдвиги локализованы в пачках плоскостей скольжения, причем блоки значительных размеров остаются практически иедеформироваиными, то ползучесть происходит в результате весьма малых сдви- n гов по большому числу плоскостей скольжения поэто- му микроскопическая картина обычно не обнаруживает I, следов сдвига, который распределяется более или менее Ч I равномерно по всему объему кристаллического зерна.  [c.430]


Рассмотрим результаты экспериментов, характеризующие влияние скорости деформирования на критические параметры, контролирующие предельное состояние материала, и сопоставим их с механизмами накопления повреждений и разрушения. Основная закономерность, которая наблюдается при различных схемах деформирования в условиях, когда скоростные параметры нагружения влияют на характеристики разрушения, состоит в уменьшении критических значений этих характеристик при снижении эффективной скорости деформирования. Так, при испытании на ползучесть в определенном температурном интервале снижение скорости установившейся ползучести, вызванное уменьшением приложенных напряжений, может приводить к уменьшению деформации ef, соответствующей разрушению образца. В качествее примера на рис. 3.1, а приведены результаты опытов на ползучесть для ферритной стали, содержащей 0,5% Сг, 0,25% Мо, 0,25% V, при 7 = 550°С и напряжении а =150- 350 МПа [342]. При скорости установившейся ползучести порядка 10 3 с деформация до разрушения образца составляет всего несколько процентов.  [c.151]

Движения дислокации, при которых нарушается условие (14.9.1), называются неконсервативными. Эти движения принципиально возможны вследствие того, что в кристаллической решетке имеются дефекты — вакансии и внедренные атомы, которые перемещаются в результате неравномерного распределения между атомами энергии их тепловых колебаний. Можно представить себе, что дефект, находящийся вблизи дислокации, движется, это движение посит диффузионный характер, т. е. описывается математически с помощью уравнения диффузии, и дислокация следует за ним, выходя из своей плоскости скольжения. Подобные диффузионные движения дислокаций возможны, главным образом, при высоких тб мпературах, за их счет относят некоторые механизмы ползучести.  [c.472]

Так как поликристалл состоит из множества зерен, го при диффузионной ползучести изменение формы отдельных зерен должно быть согласованным. Диффузионная ползучесть в поликристаллнческом материале может привести к зернограничному проскальзыванию, которое в этом случае выступает как аккомодационный процесс. Диффузионная ползучесть и зернограничное проскальзывание могут быть взаимосвязанными процессами при развитии диффузионной ползучести зернограничное проскальзывание можно рассматривать как аккомодационный процесс и, наоборот, при развитии зернограничного проскальзывания диффузионную ползучесть как аккомодационный процесс. В случае, когда скорость пластической деформации ограничивается скоростью диффузионной ползучести, скорость деформации определяется выражением (101). Но она может быть меньше этой величины, поскольку границы зерен могут перестать играть роль совершенных источников и стоков вакансий. Сочетание диффузионной ползучести и зернограничного проскальзывания представляет собой такой механизм деформации, который в принципе может обеспечить достаточно большую деформацию без разрушения.  [c.181]

Механизмом, конкурирующим с рассмотренным по мнению Эшби и Вералла, является дислокационная ползучесть, включающая консервативное скольжение и переползание дислокаций.  [c.567]

При пластическом деформировании одна часть кристалла перемещается (сдвигается) гю отношению к другой. Если нагрузку снять, то смещенная часть кристалла не возвратится на прежнее место, деформация сохранится. Эти сдвиги обнаруживаются при микрострук-турном исследовании. Пластическая деформация вызывает уменьшение плотности металла и увеличение его удельного объема. Пластически деформированный при резании слой не может свободно уиеличиваться в объеме, так как этому препятствует недеформированный металл, поэтому в наружном слое возникают напряжения сжатия, а в остальной части изделия - напряжения растяжения. Этот механизм реализуется, если деформируемый слой не находится в состоянии ползучести. В результате механическая прочность и микротвердость поверхностных  [c.48]

Медленные процессы протекают за вр емя работы машины между периодическими осмотрами или ремонтами. Они длятся дни и месяцы. К таким процессам относятся изнрс основных механизмов машины, перераспределение внутренних напряжений в деталях, ползучесть металлов, загрязнение поверхностей трения, коррозия, сезонные изменения температуры.  [c.35]

Текущий ремонт производят но мере необходимости, но не реже одного раза в год. При этом восстанавливают оборудование и обеспечивают его работоспособность на период до следующего ремонта. При текущем ремонте производят следующие виды работ очищают поверхности нагрева и газоходы от шлака н золы, спрессовывают котлоагрегат, устраняют выявленные при-сосы и неплотности, заменяют дефектные участки труб поверхностей нагрева, измеряют диаметры труб для определения ползучести металла, ремонтируют топочные устройства, заменяют изношенные части вращающихся механизмов.  [c.264]

Некоторые замечания о неразпостных ядрах ползу чести стареющих материалов. Выше были рассмотрены только те перазно-стные ядра ползучести и релаксации для стареющих материалов, которые связаны с настоящим исследованием. Однако имеется много работ как теоретического, так и экспериментального характера, в которых рассматриваются ядра ползучести и релаксации иной структуры, связанные с изучением различных сторон механизма явлений ползучести этих материалов. Основные результаты в этой области получены в ряде экспериментальных работ [230, 531, 607, 632] и в теоретических исследованиях [5, 72, 100, 256, 390].  [c.75]

В реальных материалах уровень приложенных напряжений редко приближается к этому верхнему пределу, так как наличие дефектов кристаллического строения приводит к срабатыванию альтернативных механизмов пластической дес])ормацин, среди которых в первую очередь надо отметить дислокационное скольжение и дислокационную ползучесть.  [c.20]

Когда в уравнении (1.30) превалирует т. е. когда весь процесс контролируется решеточной диффузией, выражение (1.29) соответствует деформации, которая известна как ползучесть Набарро — Херинга. Она характерна для высоких температур. При низких же температурах лимитирующим фактором служит зернограничная диффузия и соответствующая ей деформация называется ползучестью по Коблу. Кроме того, Эшби [31, 32] отмечает, что в определенных условиях заметную роль также могут играть и другие механизмы, например, механическое  [c.26]

Разрушение по границам элементов структуры — межзеренное или межъячеистое разрушение, при котором трещина идет по границам зерен или дислокационных ячеек. Различают хрупкое межзеренное разрушение, которому предшествует пластическая деформация-внутренних объемов зерен и пластичное межзеренное разрушение. Указанные типы межзеренного разрушения обычно относят к низкотемпературным типам разрушения. Кроме того, существуют высокотемпературное межзеренное разрушение и межзеренное разрушение при ползучести. Эти механизмы обусловлены высокотемпературным-проскальзыванием по границам зерен и диффузионным зарождением пор на границах. Они подробно изложены в обзорах Эшби с сотрудниками [404].  [c.201]


Смотреть страницы где упоминается термин Ползучесть механизм : [c.359]    [c.266]    [c.11]    [c.588]    [c.629]    [c.174]    [c.179]    [c.568]    [c.221]    [c.23]    [c.24]    [c.27]    [c.376]   
Теория высокотемпературной прочности материалов (1986) -- [ c.181 ]



ПОИСК



Введение. Механизмы упрочнения твердых растворов при ползучести

Механизм деформации при ползучести

Механизм разрушения при ползучести



© 2025 Mash-xxl.info Реклама на сайте