Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление кристаллической решетки движению дислокаций

Возможность диссоциации винтовой дислокации на частичные, расположенные в металлах с о. ц. к. решеткой в нескольких плоскостях типа 112 или 110 , и образование сидячей дислокационной конфигурации являются основной причиной торможения дислокаций кристаллической решеткой. В этом случае высокое сопротивление движению дислокаций обусловлено необходимостью стягивания расщепленной дислокации с последующей рекомбинацией и образованием перетяжек, способных скользить в кристаллической решетке, поскольку эти процессы связаны со значительным увеличением энергии дислокации. Модель диссоциации и рекомбинации винтовых дислокаций удовлетворительно объясняет температурную зависимость сопротивления кристаллической решетки движению дислокации, высокий уровень напряжения течения при О К для о. ц. к. металлов, а также меньшую подвижность винтовых дислокаций по сравнению с краевыми. Атомы внедрения могут стабилизировать сидячую дислокационную конфигурацию и понижать вероятность образования перетяжки на расщепленной дислокации, что приводит к возрастанию напряжения Пайерлса при увеличении концентрации примесей внедрения.  [c.219]


В формальной интерпретации сопротивление кристаллической решетки движению дислокаций, или напряжение Пайерлса — Набарро, обусловлено наличием на плоскости скольжения периодических потенциальных барьеров с периодом, равным межатомному расстоянию. При наложении внешнего напряжения эти барьеры преодолеваются дислокационной линией с помощью термической активации, например по механизму образования двойных перегибов [90, 92, 93]. В различных теориях показано, что потенциальный барьер Пайерлса или соответственно энергия активации и , необходимая для образования двойного перегиба за счет термических флуктуаций, снижается до некоторого эффективного значения У в присутствии внешнего напряжения, что в линейном приближении может быть представлено  [c.46]

Сопротивление кристаллической решетки движению дислокаций  [c.286]

Напряжения, препятствующие движению дислокаций (кроме сопротивления кристаллической решетки), возникают за счет взаимодействия дислокаций с различными препятствиями, в том числе с другими дислокациями.  [c.289]

Считается, что сильная температурная зависимость напряжения у о. ц. к. металлов в области низких температур обусловлена влиянием примесей, растворенных по способу внедрения. Однако это должно относиться лишь к верхнему пределу текучести. К нижнему пределу текучести и к напряжению течения это положение вряд ли применимо, так как в обоих случаях дислокации оказываются разблокированными, и сопротивление их движению может быть связано только либо с частицами вторых фаз, либо с сопротивлением кристаллической решетки.  [c.223]

Повышение сопротивления движению дислокаций приводит к увеличению прочности металла. Этого достигают введением в металлы специальных примесей, термической обработкой, наклепом и т. п. В настоящее время сделаны первые шаги по созданию металлов, не имеющих дефектов кристаллической решетки. Получены бездислокационные нитевидные металлические кристаллы ( усш), обладающие очень высокой прочностью, приближающейся к теоретической.  [c.107]

Участок Ьс представляет упрочнение металлов и сплавов вследствие увеличения числа несовершенств в кристаллической структуре. С увеличением плотности дислокаций уменьшается расстояние между дислокациями, а это приводит к усилению взаимодействия дислокаций между собой и с другими дефектами решетки. При этом сопротивление движению дислокаций возрастает, а следовательно, возрастает и сопротивление деформации (упрочнение), прочность металла увеличивается.  [c.10]


Пластическая деформация поверхностного слоя сопровождается увеличением числа дефектов и искажением кристаллической решетки, изменением субструктуры и микроструктуры металла поверхностного слоя. В металле поверхностного слоя резко возрастает количество дислокаций, вакансий и других несовершенств кристаллической решетки, повышая его напряженность. Взаимодействие полей напряжений дислокаций между собой и с другими дефектами решетки затрудняет движение дислокаций, сопротивление пластической деформации возрастает, металл упрочняется (наклеп, деформационное или механическое упрочнение). Число дефектов в кристаллической решетке поверхностного слоя зависит от степени пластической деформации. Степень деформации, а следовательно, и число дефектов в решетке по глубине поверхностного слоя переменные, они уменьшаются с его глубиной.  [c.50]

Известно, что пластическая деформация кристаллических тел является следствием движения дислокаций в определенных плоскостях. Кривая упрочнения в какой-то мере отражает интегральный характер зарождения и движения дислокаций, их взаимодействие с решеткой, между собой и другими структурными несовершенствами кристаллов. Одной из важных характеристик кривой упрочнения кристаллов является напряжение начала пластической деформации. Фактически оно соответствует стартовому напряжению дислокаций (Тз), зарождение и смещение которых представляет собой элементарный акт пластической деформации. Наиболее достоверными значениями можно считать данные непосредственных наблюдений начала движения дислокаций при нагружении и измерений критической амплитуды колебаний по методу определения внутреннего трения. В некоторых случаях эти величины совпадают со значением критических скалывающих напряжений (КСН), вычисленных по кривым растяжения как напряжение начала отклонения зависимости сг (б) от линейного закона в упругой области деформации. Самыми развитыми плоскостями и направлениями скольжения являются плотноупакованные, поэтому изменения сопротивления деформированию у облученных кристаллов прежде всего определяются количеством дефектов и полем напряжений в этих плоскостях.  [c.55]

Наличие в кристаллах дефектов и полей напряжений вокруг них создает сложный потенциальный рельеф для движущихся дислокаций. Кроме силы сопротивления со стороны кристаллической решетки (силы Пайерлса) дислокации при своем движении должны преодолеть барьеры, связанные с точечными дефектами и их комплексами, частицами внедрения, другими дислокациями, элементарными возмущениями решетки. В различных случаях подвижность дислокации лимитируется тем физическим механизмом, который обеспечивает в этих условиях наибольшую скорость диссипации их энергии.  [c.78]

При (ВЫСОКИХ напряжениях, а следовательно, высоких скоростях движения дислокаций и температурах кристалла, существенно отличающихся от абсолютного нуля, свободные колебания дислокаций тормозятся из-за взаимодействия с электронами в кристалле. Это происходит в результате поглощения свободными электронами фононов (колебаний узлов кристаллической решетки), возникающих при движении или колебании дислокаций, а следовательно, отбирающих энергию у дислокаций и тормозящих их движение, оказывая сопротивление как вязкая среда.  [c.84]

Итак, дефекты кристаллической решетки ослабляют металл. Для снижения сопротивления деформации необходимо иметь дислокации и другие дефекты, способствующие образованию дислокаций в процессе деформации. Но дефекты затрудняют движение дислокаций, что упрочняет металл. Это, в частности, используется при его легировании, когда образование твердых растворов внедрения и замещения упруго искажает решетку и затрудняет движение дислокаций.  [c.116]


Под теоретической прочностью понимают сопротивление деформации и разрушению, которое должны были бы иметь материалы согласно физическим расчетам сил сцепления в твердых телах. Низкая прочность (сопротивление деформации) металла объясняется легкой подвижностью дислокации. Следовательно, для повышения прочности необходимо или устранить дислокации или повысить сопротивление их движению. Сопротивление движению дислокации возрастает при взаимодействии их друг с другом и с различного рода другими дефектами кристаллической решетки, создаваемыми при обработке металла.  [c.62]

Анализ движения дислокаций позволяет объяснить, почему предел сопротивления скольжению для малы.х монокристалличе-ских образцов из чистых металлов соответствует значительно более низким напряжениям по сравнению с пределом текучести поликристаллических технических металлов, и почему испытания чистых металлов при нормальной или повышенной температуре приводят к очень большим пластически.м деформациям. Причиной этих различий является меньшее количество загрязнений и более правильное строение кристаллической решетки в образцах из чистых металлов, облегчающее движение дислокаций и возникновение скольжения.  [c.108]

Авторы работы [9] на основе анализа модели диссоциации и редиссоциации винтовых дислокаций отмечают, что она удовлетворительно объясняет температурную зависимость сопротивления кристаллической решетки движению дислокаций, высокий уровень напряжения-течения при ОК, асимметрию скольжения в металлах с ОЦК-решеткой, а также меньшую подвижность винтовых дислокаций по-сравнению с краевыми.  [c.103]

Теоретическая прочность твердых тел Прочность реальных кристаллов Сопротивление кристаллической решетки движению дислокаций ф Упрочнение за счет препятствий Термическая стабильность барьеров Мартенсит-ная структура стали и прочность Химическая и структурная неоднородность и механические свойства титановых сплавов Высокая прочность и композиционные материалы Нитевидные кристаллы Механизм упрочнения композиций, армированных непрерывными и короткими волокнами % Материаль , получаемые однонаправленной кристаллизацией  [c.279]

Замещение собственного атома в кристаллической решетке на чужеродный, как и образование вакансии, создает барьеры ближнего действия. Однако легирование вызывает ряд косвенных эффектов может изменяться межатомное взаимодействие как по величине, так и по характеру, что изменяет сопротивление кристаллической решетки движению дислокаций. Легирование титана железом увеличивает, по-видршому, долю ковалентных связей в р-титаие, а легирование оловом — как в а-, так и 3-титане (такие эффекты наблюдаются при введении значительных количеств легирующего элемента). Введение чужеродных атомов изменяет время релаксации вакансий и, следовательно, избыточную концентрацию вакансий. Легирование, поскольку при этом меняется энергия дефектов упаковки, может увеличивать плотность дислокаций и изменять их свойства. При легировании могут возникать малоугловые границы, меняются константы упругости и диффузии и, наконец, условия фазовых превращений. Это непосредственно или косвенно может оказать влияние на прочность твердого раствора. При его образовании более вероятным становится скольжение по негкольким плоскостям, т. е. грубое скольжение (множественное) вместо тонкого (единичного), что приводит к увеличению то,2. Как правило, легирование приводит к увеличению сопротивления пластической деформации. Однако известны случаи обратного влияния, например введение хрома в определенных условиях уменьшает предел прочности железа [270, 271], что, возможно, связано с изменением энергии дефектов упаковки [15].  [c.297]

До сих пор мы считали, Что единичная дислокация в ненапряженном кристалле не испытывает никакого сопротивления своему движению. На самом деле кристалл имеет конечные размеры и в свою очередь разбивается на субмикроскопические блоки, границы которых в настоящее время рассматривают как некоторые образования, составленные из дислокаций. В зависимости от расстояния до границы энергия дислокации меняется таким образом, границы являются препятствиями для движения дислокаций. Движению дислокаций могут мешать другие дислокации в той же или иных плоскостях скольжения, внедренные атомы или вакансии, субмнкро-скопические выделения разного рода. Наконец, имеется еще одна категория сил, препятствующих движению дислокаций даже в идеальной кристаллической решетке. Центр дислокации С при движении дислокации может совпадать с одним из атомов решетки или может находиться между ними. Оказывается, что энергия дислокации зависит от положения центра. Очевидно, что перемещение дислокации на одно междуатомное расстояние полностью восстанавливает картину, но для того, чтобы произвести такое перемещение, нужно преодолеть некоторый энергетический барьер дело обстоит так, как есля бы существовали некоторые силы, препятствующие движению дислокаций. Эти силы называются силами Пайерлса, величина их в сильной степени зависит от расположения атомов в кристаллической решетке. Для площадей наиболее плотной упаковки атомов и для направлений, соответствующих наименьшему расстоянию между атомами, силы Пайерлса оказываются наименьшими, для других кристаллических плоскостей и направлений величина их во много раз больше. Этим и объясняется то, что в кристаллах пластические деформации происходят по определенным системам скольжения, как было указано выше.  [c.147]


Движение дислокаций приводит к необратимым смещениям атомов кристаллической решетки, т. е. сопровождается элементарными актами пластической деформации. Упругое взаимодействие дислокаций увеличивает общую энергию системы, повышая тем самым сопротивление пластической деформации. Ранее были рассмотрены идеализированные варианты движения и взаимодействие параллельных дислокаций благодаря дальнодейст-вующим полям напряжений. Действительная картина движения и взаимодействия дислокаций между собой и с другими дефектами кристаллической решетки намного сложнее. В данном разделе дано описание более реальной картины этих явлений.  [c.84]

Сопротивление движению дислокации обусловлено периодическим строением кристаллической решетки и полями напряжений, вызванными ее дефектами [15, 278]. Приложение внешней нагрузки, достаточной для того, чтобы дислокация преодолела барьеры на пути ее движения, приводит к скорости движения дислокации, величина которой ограничивается только вязким демпфированием в соответствии с гипотезой Гранато— Люкке, так что сопротивление сдвигу при этом  [c.28]

Однако с повышением температуры испытания в предварительно деформированном металле по сравнению с ненаклеианным возрастает интенсивность диффузионных процессов, способствующих уменьшению напряженности и искажений кристаллической решетки (в результате развития явлений возврата и рекристаллизации). Интенсивность диффузионных процессов в наклепанном металле возрастает с увеличением накопленной внутренней энергии. Движение дислокаций, освободившихся от препятствий, увеличивает число элементарных актов сдвига и насыщенность металла вакансиями. Металл разупрочняется, сопротивление длительному статическому и циклическому разрушению уменьшается. Начало процесса разупрочнения предварительно наклепанного металла зависит прежде всего от степени деформации, температуры и продолжительности испытания.  [c.200]

Существует, однако, принципиально другой подход, основанный на модели, что свежий мартенсит — мягкий [306—308], т. е. что кристаллическая решетка новорожденного мартенсита оказывает слабое сопротивление движению дислокаций. Такая точка зрения впервые была сформулирована в работе Кишкина [306]. В данном случае важно подчеркнуть, что речь идет о слабом сопротивлении самой начальной стадии пластической деформации, но не о Оо,2 и тем более не о аь или НВ. Анализ диаграмм истинных напряжений приводит к выводу о том, что высокие значения твердости или предела прочности, которые отвечают значительной (6—8%) пластической деформации, достигаются за счет способности структуры мартенсита сильно упрочняться в процессе пластической деформации. В связи с этим и были развиты представления о том, что мартенсит первоначально мягок, но в процессе деформации упрочняется за счет распада пересыщенного а-твердого раствора, т. е. происходит так называемое динамическое деформационное старение.  [c.335]

Особое механическое поведение материалов с кубической структурой типа алмаза обусловлено наличием в них высокой степени направленности ковалентной связи. Именно эта структурная особенность межатомной связи обусловливает высокое сопротивление решетки скольжению дислокаций во всех системах скольжения, включая основную систему 111J 110). В данном случае вплоть до температуры 0,5 оказывается энергетически более выгодным диссипировать подводимую энергию путем разрыва межатомной связи, чем путем пластического течения. Эти структурные особенности кристаллического строения обусловливают и другие следствия, а именно энергия образования и движения точечных дефектов очень велика, так что при заданной гомологической температуре диффузионные процессы также более заторможены, чем в других классах сплавов более низкого уровня неравновесности структуры. Таким образом, даже при температурах больше 0,6 Tj в случае, например, кремния и германия деформация ползучести, контролируемая диффузией, очень ограниченна. Поэтому элементы и сплавы с алмазоподобной структурой образуют отдельный класс материалов с высоким значением zJG при всех гомологических температурах.  [c.261]

Движение краевой дислокации в плоскости частичного сдвига кинематически возможно и без влияния диффузии точечных дефектов. Эта плоскость называется плоскостью скольжения и обычно совпадает с плоскостями наиболее плотной упаковки атомов в кристаллической решетке. При скольжении дислокация может выйти на поверхность кристалла и образовать ступеньку элементарного сдвига размером Ь. Перемещение дислокации из одного устойчивого положения в другое связано с преодолением определенного энергетического барьера. Поэтому при движении дислокации в плоскости скольжения возникает сила сопротивления (сила Пайерлса) и для ее преодоления необходимо наличие внешнего касательного напряжения т (см. рис. 2.9). Для кристаллов без примесей с упругоизотропной простой кубической решеткой сила Пайерлса [47 ]  [c.86]

Увеличение содержания примесей внедрения в сплавах промышленной чистоты способствует росту склопностй к хрупкому разрушению. При этом реализуется пластический сдвиг в ограниченном числе плоскостей скольжения ГЦК-решетки, что и приводит в общем случае к повышению прочности и снижению пластичности и вязкости с понижением чистоты выплавки. Примеси внедрения увеличивают сопротивление движению свободных дислокаций со стороны кристаллической решетки. В этом заключается одна из причин повышения температуры порога хладноломкости сплавов промышленной чистоты и их более низкой деформационной способности. О том, что ГЦК-струк-тура сплава Г29 высокой чистоты содержит в меньшем количестве и меньшей плотности дефекты кристаллического строения, чем структура сплава Г23 промышленной чистоты подтверждают данные диффузного рассеяния (см. рис. 70, 71).  [c.239]

Повышает прочность металла и легирование, т. е. введение в кристаллическую решетку основы чужеродных атомов, кочорые локально искажают ее, что повышает сопротивление перемещению дислокаций. В тех случаях, когда в результате термической обработки атомы растворенного элемента собираются в определенных участках кристаллической решетки, эффект их действия на движение дислокаций значительно возрастает. Влияние различных видов обработки на прочность наиболее распространенных в технике сплавов на основе железа (стали) показано на рис. 43.  [c.65]

Твердые и хрупкие частицы цементита, искажающие кристаллическую решетку феррита, затрудняют движение дислокации (сдвиг), а следовательно, повышают сопротивление деформации и уменьшают пластичность и вязкость. Вследствие этого с увеличением в стали углерода возрастают тйердость НВ, предел прочности и текучести От и уменьшаются относительное удлинение б, относительное сужение г] и ударная вязкость а (рнс. 93).  [c.147]

Как известно, пластическая деформация металлов при низких температурах осуществляется в результате размножения и перемещения дислокаций. При движении дислокации преодолевают различного рода препятствия. Дислокации прежде всего должны преодолеть потенциальные барьеры, связанные с периодическим расположением атомов в идеальной кристаллической решетке. Необходимые для этого напряжения называют напряжениями Пайерлса — Набарро или сопротивлением трения решетки. Помимо этого, дислокации на своем пути преодолевают различного рода препятствия, не свойственные идеальной решетке, такие как лес дислокаций, пороги винтовых дислокаций, барьеры Ломера — Коттрелла, выделения вторых фаз, искажения решетки, обусловленные растворенными атомами. Преодоление этих барьеров может осуществляться путем прорыва через них дислокаций, а также путем поперечного скольжения и нерепол-за шя дислокаций. Во всех случаях для этого необходимо затратить некоторую энергию Я(ст) (рис. 2).  [c.10]


Жаропрочность - сопротивление стали разрушению при высокой температуре, зависящее не только от температуры, но и от времени. Механизм разрушения металла при высокотемпературном длительном нагружении имеет диффузионную природу и состоит в развитии дислокационной ползучести. Под действием температуры, времени, напряжений дислокации у барьеров, создавшие упрочнение, приходят в движение (совместно с облаком легирующих элементов и примесей) в результате взаимодействия с созданными нагревом подвижными вакансиями, которые обеспечивают их переползание в другие плоскости кристаллической решетки на границы зерен. Это приводит к разупрочнению, развитию локальной пластической деформации и охрупчиванию. Дислокации, выходящие на границы зерен, создают микроступеньки и вызывают из-за соответствующего изменения размеров контактирующих зерен межзеренное проскальзывание, раскрывающее микроступеньки в поры и трещины, чему способствуют потоки вакансий. В этих условиях прочность и пластичность металла зависят от температуры и времени, т.е. от длительности нагружения. Для предотвращения ползучести жаропрочность повышают двумя основными способами  [c.50]

Энергия кристалла складывается из кинетической и потенциальной. Кинетическая энергия— это колебательное движение частиц кристаллической решетки. Потенциальная энергия — это энергия связи каждого атома со своими соседями. При сообщении какому-то микрообъему металла всестороннего высокого давления потенциальная энергия кристаллов растет и в связи с этим развиваются силы отталкивания между атомами. Эти силы преодолеваются тем большими давлениями, чем ближе оказываются атомы расположенными друг к другу. Сближение атомов, если оно произведено при давлениях порядка 10 Па, уже коренным образом может менять не только механические, но и химические свойства вещества, поскольку можно добиться того, что внешние, валентные электронные оболочки атомов будут вдавлены во внутренние. Вполне допустимо предполагать, что при взрывных давлениях порядка 10 Па такого рода процессы в некоторых микрообъемах могут наблюдаться. Еще более вероятны два совершенно противоположных процесса залечивание всех микродефектов и создание идеальной кристаллической структуры создание и закрепление сверхнор-мального количества дислокаций. Оба эти процесса, хотя и в разной мере, но сильнейшим образом увеличивают сопротивление металла любым нагрузкам.  [c.24]


Смотреть страницы где упоминается термин Сопротивление кристаллической решетки движению дислокаций : [c.218]    [c.72]    [c.218]    [c.16]    [c.8]    [c.49]    [c.13]    [c.161]    [c.49]    [c.286]    [c.129]   
Смотреть главы в:

Строение и свойства металлических сплавов  -> Сопротивление кристаллической решетки движению дислокаций



ПОИСК



Движение дислокаций

Дислокация

Кристаллическая решетка

Кристаллические

Сопротивление движению



© 2025 Mash-xxl.info Реклама на сайте