Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения Зависимость от деформаций упругих — Закон Гука

Величина х называется модулем объемной упругости или просто объемной упругостью. Применимость закона Гука, т. е. линейность зависимости деформации от напряжения, является существенным допущением при выводе волнового уравнения.  [c.12]

Физическая сторона рассматриваемой задачи заключается в установлении зависимости деформаций от напряжений. При упругих деформациях эта зависимость линейна и, как известно, называется законом Гука  [c.86]


Итак, когда мы выходим за рамки закона Гука, связь между напряжениями и деформациями становится не только нелинейной, но оказывается к тому же еще и неоднозначной, а кроме того, она зависит и от истории нагружения. Поэтому, если напряжения превосходят предел пропорциональности и предел упругости, все те соотношения, которые были выведены нами ранее с использованием закона Гука, становятся неверными вдвойне . При решении задач за пределом упругости надо прежде всего условиться об истории нагружения, а оказавшись за пределом пропорциональности, надо позаботиться о том, как отразить реальную зависимость напряжений от деформаций, не следующую уже закону Гука.  [c.137]

Упругое последействие. Описывая деформирование образца в 2.11, мы отвлеклись от того, как протекает оно во времени. Рассмотрим деформирование образца в пределах соблюдения закона Гука с учетом фактора времени. Наблюдения показывают наличие некоторого отставания деформаций от напряжений — деформация происходит как в процессе возрастания силы, так и в течение некоторого отрезка времени после прекращения роста напряжения. Такое явление носит название упругого последействия при нагружении. Отстают деформации от напряжений и в процессе разгрузки нагрузка уже снята с образца — напряжения равны нулю, а упругая деформация к этому моменту еще не полностью исчезла и остаток ее продолжает уменьшаться, доходя до нуля, еще некоторый отрезок времени. Это явление называется упругим последействием при разгрузке ГНа рис. 2.51 графически изображена зависимость  [c.152]

Закон наличия упругой деформации в случае необратимого изменения формы. Пластическая деформация тела сопровождается его упругой деформацией, зависимость которой от напряжения может быть определена законом Гука. На основании этого закона размеры тела в конечный момент его нагружения отличаются от размеров тела после снятия нагрузки. Следовательно, размеры  [c.270]

Пластический изгиб. При исследовании процесса пластического изгиба, как и при упругом изгибе, допускается, что поперечные сечения изгибаемой полосы сохраняются плоскими. В этом случае деформации сжатия и растяжения по сечению полосы будут пропорциональны расстоянию от нейтральной линии, а распределение напряжений о по поперечному сечению полосы (фиг. 67, а) будет подобно диаграмме зависимости между напряжениями о и деформацией е при растяжении (фиг. 68). В средней части сечения изгибаемой полосы будет зона упругих деформаций, и эпюра напряжения на этом участке согласно закону Гука будет выражаться прямой линией. В крайних же частях сечения будут зоны пластических деформаций, и напряжения на этих участках будут изменяться по некоторой кривой, аналогичной кривой растяжения (фиг. 68).  [c.993]


При растяжении цилиндрич. образца (одноосное напряжённое состояние) обнаруживают предел упругости Оу при напряжениях о < о деформация е обратима (упругая) и связана с а Гука законом Оу = Еъ Е — модуль Юнга). При дальнейшем увеличении растягивающей силы связь между о и е становится нелинейной и необратимой (рис.). Возрастание а с увеличением е наз. деформац. упрочением. При разгрузке от напряжения а > Оу (точка М) зависимость а от е изображается прибл. прямолинейным отрезком МП, параллельным нач. участку упругости ОА. Часть деформации  [c.631]

Законы упругости, имеющие место для большинства материалов, по крайней мере, при малых (а иногда и больших) деформациях, отражают взаимно однозначные зависимости между текущими (мгновенными) значениями напряжений и деформаций. Осн. физ. закон У. т.— обобщённый Гука закон, согласно к-рому напряжения линейно зависят от деформаций. Для изотропных материалов эти зависимости имеют вид  [c.234]

Количестве 1но У. выражается в том, что компоненты тензора напряжений (см. Напряжение ме.ханическое) в изо.-термич. условиях являются ф-циями компонентов тензора деформации (см. Деформация), к-рые универсальны для данного материала и не зависят от того, в каком порядке происходит изменение разл. компонентов деформации до достижения ими рассматриваемых значений. В большинстве материалов (напр., в металлах, керамике, горных породах, древесине) при малых деформациях зависимости между напряжениями и деформациями можно считать линейными и описывать обобщённым Гука законо.м. Законам нелинейной У. можно придать форму, подобную обобщённому закону Гука, заменив модули упругости нек-рыми универсальными ф-циями (см. Упругости теория).  [c.235]

Процесс деформирования пластичных материалов может быть разделен на две стадии. Первая — упругое деформирование при малых деформациях. Компоненты тензоров напряжений и деформаций при этом связаны законом Гука (гл. 6). Прежде чем перейти к установлению физических зависимостей на второй стадии — пластического деформирования, следует определить условия возникновения пластических деформаций. В простейшем случае одноосного напряженного состояния это условие соответствует равенству напряжений пределу текучести От, при котором на диаграмме ст 8 имеется площадка текучести. При сложном напряженном состоянии условие появления пластических деформаций устанавливается на основании двух критериев, соответствующих двум теориям прочности ( 12.5).  [c.503]

Как уже упоминалось, вследствие перемещения пластической области подсчеты возникающих напряжений можно проводить для определенных периодов времени, причем определять границы этих областей очень трудно иэ-за процесса теплопередачи. Трудности также возникают и при определении напряжений, при которых происходит макроскопическое разрушение материала. При нагреве отдаленных областей формы тепловая нагрузка на приповерхностную область уменьшается. Следовательно, напряжения в нагруженной области можно подсчитать с помощью закона Гука с учетом того, что деформацию необходимо отсчитывать от возникшего нового состояния. Кроме того, в зависимости от температуры следует соответственно определить такие исходные данные, как модуль упругости, коэффициент Пуассона, температурный коэффициент линейного расширения и предел текучести.  [c.18]

Рассмотрим твердое тело, упругие свойства которого не зависят от ориентации координатных осей (т. е. изотропное упругое тело). Далее, если предположить, что тело является идеально упругим, то согласно закону Гука будет иметь место линейная зависимость между напряжениями и деформациями  [c.106]

Зависимость напряжений от упругих деформаций. Закон Гука  [c.68]

Циклическая нелинейность зависимости между напряжением и де рмацией при малых деформациях меди демонстрирует еще раз отклонения от закона Гука в этих, с другой стороны, показывающих почти совершенную упругость очень точных измерениях.  [c.174]


Из приведенных асимптотических формул следует, что при уменьшении расстояния от конца трещины напряжения неограниченно растут и при г = О напряжения равны бесконечности . Однако ясно, что задолго до бесконечности перестает быть справедливым закон Гука и вступают в силу нелинейные зависимости между напряжениями и деформациями, развивается интенсивная пластическая деформация, а сами напряжения в конечном итоге оказываются ограниченными. Но не только в этом причина ограниченности напряжений. Даже в идеально упругом теле, когда линейный закон Гука справедлив для малых объемов непосредственно у поверхности разреза, при точном  [c.102]

Рассмотрим подробнее вклад в вычисление деформаций н напряжений от воздействия центробежной нагрузки вида (III.35) для задач с осевой симметрией. Для этого выражения (II 1.52) и (И 1.35) подставим в зависимости Коши осесимметричной задачи теории упругости. Проинтегрировав по угловой координате 9 и проведя преобразования, получим выражения для подсчета деформаций в случае воздействия центробежных сил. Подставляя полученные выражения в закон Гука, получаем соотношения, позволяющие подсчитать вклад центробежных сил в напряжения для любой внутренней точки. Эта же процедура полностью применима и при решении задач плоской деформации при наличии центробежной нагрузки.  [c.70]

Компоненты тензоров напряжений и деформаций при этом связаны законом Гука. (10.18)-(10.19). Для реальных инженерных задач, связанных с определением напряженно-деформированного состояния тела, как в упругой, так и в упруго-пластической стадии деформирования, предварительно необходимо установить во-первых, условие перехода от упругой стадии деформирования к пластической стадии и, во-вторых, установить физические зависимости во второй стадии деформирования.  [c.210]

Изобразите примерный график зависимости упругого напряжения от значения деформации. Укажите область, где справедлив закон Гука. Укажите область пластических деформаций. Как по графику найти величину остаточной деформации Покажите, пользуясь графиком, что область линейной зависимости для тела, подвергавшегося пластической деформации, больше, чем для тела, не подвергавшегося такой деформации.  [c.81]

Теория деформаций относится к чистой геометрии, а теория напряжений—к чистой статике. Для установления связи между ними потребуются некоторые физические допущения. Обычное допущение—так называемый закон Гука ) он заключается в предположении линейной зависимости напряжений от деформаций. Этот закон перестает соблюдаться даже приближенно, когда деформации превосходят некоторые величины, получившие название пределов упругости однако для целей акустики в применимости закона Гука можно не сомневаться ввиду  [c.145]

По закону Гука деформации hk в упругом теле прямо пропорциональны напряжениям Opq и каждая из составляющих деформаций зависит от всех составляющих напряжения. Таким образом, элементарная скалярная зависимость, вытекающая из закона Гука  [c.88]

В зоне упругих деформаций существует линейная зависимость между тензорами деформаций и напряжением, это закон Гука, который мы использовали в простейшем случае одноосного напряжения. Для кристаллического тела (анизотропного), упругие свойства которого различны по разным направлениям, в самом общем случае должна существовать линейная зависимость каждой компоненты тензора деформаций от всех компонент тензора напряжений. Расчет показывает, что из-за симметрии тензоров число независимых коэффициентов будет равно 21. Двадцать один параметр определяет упругие свойства анизотропного вещества.  [c.306]

Пластический анализ. У некоторых материалов, особенно у конструкционных сталей, за линейно упругой областью следует область значительного пластического течения. Для такого материа-ла диаграмму зависимости напряжения от деформации с удовлетворительной точностью можно схематически представить двумя прямолинейными отрезками, как показано на рис. 1.19, с. Предполагается, что материал следует закону Гука вплоть до предела текучести, а после этого течет при постоянном напряжении. Напряжение и деформация, соответствующие пределу пропорциональности, будут обозначаться через и соответственно. Материал, который течет без увеличения напряжения, называется идеально пластическим. Конечно, в конце концов вследствие упрочнения диаграмма зависимости напряжения от деформации для стали расположится выше предела пропорциональности, как уже было объяснено в разд. 1.3, но к тому времени, когда это случится, деформации будут чрезвычайно велики и конструкция утратит несущую способность. Поэтому исследование стальных конструкций в пластической области на основе диаграммы, изображенной на рис. 1.19, с,  [c.38]

ЧТО нейтральная ось проходит через середину высоты балки, а максимальные растягивающее и сжимающее напряжения имеют одну и ту же величину (Ть Процесс разгрузки балки эквивалентен ее нагружению отрицательным изгибающим моментом, равным М. При разгрузке предполагается, что материал ведет себя упруго и подчиняется закону Гука, как показывает прямая ВС на диаграмме зависимости напряжения от деформации (рис. 9.20). Поэтому распределение напряжений при разгрузке, накладывающихся на исходные, описывается линейным законом (рис. 9.26, ), и эти напряжения можно определить по формуле а=МуИ, Максимальное напряжение при разгрузке равно  [c.379]


Допуш,ения о характере деформаций. Пере.че-ш,ения, возникающие в конструкции вследствие упругих деформаций, невелики. Поэтому при составлении уравнений статики исходят из размеров недеформированной конструкции — принцип начальных размеров. Перемещения отдельных точек и сечений элементов конструкции прямо пропорциональны нагрузкам, вызвавшим эти перемещения. Конструкции (системы), обладающие указанным свойством, называют линейно деформируемыми. Необходимым условием линейной деформируемости системы является справедливость закона Гука (линейной зависимости между компонентами напряжений и дефор.маций) для ее материала. В некоторых случаях, несмотря на то, что материал конструкции при деформировании следует закону Гука, зависимость между нагрузками и перемещениями нелинейна (например, при продольно-поперечном изгибе бруса, при контактных деформациях). Линейно деформируемые системы подчиняются принципу независимости действия сил и принципу сложения (принципу суперпозиции). Согласно этим принципам, внутренние силовые факторы, напряжения, деформации и перемещения не зависят от последовательности нагружения и определяются только конечным состоянием нагрузок. Результат действия (перемещение и т. п.) группы сил равен сумме результатов действия каждой из сил в отдельности. При рассмотрении раздельного действия на конструкцию каждой из нагрузок необходимо учитывать соответствующие этой нагрузке опорные реакции. Для бруса в большинстве случаев справедлива гипотеза плоских сечений — сечения бруса, плоские и перпендикулярные к его оси до деформации, остаются плоскими и перпендикулярными к оси и после деформации. Эта гипотеза не справедлива, в частности, при кручении брусьев некруглого поперечного сечения. Для тонких пластин и оболочек принимают гипо-  [c.170]

Представление о дислокациях возникло на основе анализа процесса пластической деформации в кристаллах. Экспериментально было установлено, что при малых деформациях кривая зависимости напряжения от деформации круто нарастает в области справедливости закона Гука, согласно которому напряжения зависят от деформации линейно. После прохождения критической точки, называемой пределом упругости, наступает пластическая деформация, являюшаяся, в отличие от упругой деформации, необратимым процессом.  [c.236]

В теории упругости термин чистый изгиб призматического бруса подразумевает такую деформацию, при которой, кроме условий (12.1), имеет место строго определенное распределение на торцах поверхностной нагрузки, статическим эквивалентом которой являются моменты Ш, а именно распределение этой нагрузки по линейному — в зависимости от у (или х) — закону, если чистый изгиб происходит в плоскости Оуг Охг). При этом во всем брусе отсутствуют не только поперечные и продольные силы и крутящий момент, но и самоуравновешенные в пределах поперечного сечения напряжения, в том числе касательные напряжения, д следовательно, если учесть закон Гука, то отсутствуют и сдвиги.  [c.97]

Существуют пластические массы — эластомеры, которые обладают способностью деформироваться в значительных пределах, имеют так называемую высокоэластическую деформацию. Высокоэластическая деформация исчезает при снятии нагрузки, но от обычной упругой деформации отличается по величине и по механизму проявления. Напомним, что упругая деформация стали составляет около 0,1% и резко отграничена пределом текучести. Деформация эластомеров может превысить 1000 , а модуль их упругости очень мал и колеблется в пределах 20—200 кГ1см . При растяжении высокоэластичных тел зависимость между напряжением и деформацией не является линейной. Диаграмма деформации здесь имеет вид кривой, напоминающей по форме букву 5 (рис. 184). Таким образом, высокоэластические деформации не подчиняются закону Гука, и модуль упругости эластомеров является переменной величиной. Для суждения об упругих свойствах высокоэластичных материалов на основании кривой растяжения обычно пользуются значением  [c.309]

В общем случае нагружения тело можно разделить на две части. В одной из них появляются только упругие деформации, в другой — пластические. Возникает вопрос, связанный с определением границы между этими двумя частями. При одноосном напряженном состоянии это решается достаточно просто. Если напряжение а < (рис. 10.1), то справедлив закон Гука, если же а От, то закон Гука перестает быть справедливым и нужно воспользоваться другими зависимостями менхду напряжениями и деформациями.  [c.293]

Описанная выше схема нагружения вращающегося вала весом маховика, т. е. силой постоянного направления, используется при устройстве наиболее распространенных испытательных машин. Образец круглого поперечного сечения зажимается в шпиндель, на другом конце образца помещается подшипник, к нему подвешивается груз. Максимальное напряжение подсчитывается по обычным формулам теории упругого изгиба в предположении о том, что материал следует закону Гука. Это не совсем точно, в действительности при циклическом нагружении диаграмма зависимости деформации от напряжения представляет собою криволинейную замкнутую петлю, как схематически показано на рис. 19.10.1. Однако погрешность в определении о обычным способом невелика и ею можно пренебречь. Прикладывая нагрузки разной величины и фиксируя число циклов до разрушения п, строят диаграмму, которая схематически показана на рис. 19.10.2. По оси абсцисс откладывается число циклов до разрушения, по оси ординат — напряжение. Эта диаграмма носит имя Вёлера  [c.678]

Предел пропорциональности при кручении (технический) Тпц, кгс/м.м — 1 асательное напряжение — отношение крутящего момента М к полярному моменту сопротивления W образца для упругого кручения, при которо.м отступление от линейной зависимости ме кду папряженпями и деформациями (от закона Гука) по поверхности образца достигает такой величины, когда тангенс угла, образуемого касательной к точке кривой деформации с осью напряжения, превышает первоначальное значение на 50%,  [c.7]

При описании механических свойств материалов принято различать два основных вида деформации упругую и пластическую. Упругая деформация обратима, т. е. она исчезает либо одновременно со снятием напряжения, либо постепенно во время отдыха материала после paзгpyз и (это явление называют также возвратом или обратной ползучестью). Пластическая деформация необратима, т. е. она не исчезает после снятия напряжения. Если упругая или пластическая деформация связана с напряжением вне зависимости от временных характеристик процесса нагружения, то такую деформацию называют мгновенно-упругой или соответственно мгновенно-пластической. Простейшим примером закона мгновенноупругого деформирования является линейный закон Гука. В более сложном случае, когда соотношение, связывающее деформацию с напряжением, включает в качестве дополнительного параметра физическое время, эту деформацию называют вязкоупругой или, соответственно, вязкопластической. Обе мгновенные деформации часто называют склерономными (т. е. независимыми от времени), а обе вязкие деформации — реономными (зависимыми от времени).  [c.6]


В основе метода переменных параметров упругости (31] лежит представление зависимостей деформаций от напряжений по теории малых упругопластических деформаций в форме обобщенного закона Гука, в котором параметры упругости зависят от напряженного состояния и поэтому различны для разтшчных точек тела.  [c.96]

Критерий жесткости материала отношение напряжения вне предела пропорциональности к соответствующему напряжению. Если растягивающее напряжение 13,8 МПа приводит к удлинению на 1,0%, модуль упругости получается делением 13,8 МПа на 0,01 т. е. 1380 МПа. (2) В терминах кривой зависимости деформаций от напряжения, модуль упругости — наклон кривой зависимости деформаций от напряжения в амплитуде линейной пропорциональнсти напряжения. Также известен, как Модуль Юнга. Для материалов, которые не подчиняются закону Гука в пределах упругой зоны, за модуль упругости обычно берется наклон или тангенс кривой вначале или при низком напряжении, или секанс, выведенный от начала до любой точно установленной точки, или прямая, соединяющая любые две конкретные точки на кривой зависимости деформаций от напряжения. В этих случаях, модуль соответственно называется касательным, секансовым или прямым.  [c.1003]

Обсуждаемые в данной книге приложения будут относиться к случаю упругого материала, для которого зависимости напряжения от деформаций выражаются хорошо известным и относительно. простым законом Гука, который будет формально выписан в 3.1 при обсуждении задач, теории упругости. Реальные материалы не следуют этому закону в точности. Некоторые, подобно чугуну, обладают слабо, нелинейной зависимостью напряжения от деформаций. Но даже те, у которых на первый взгляд эта зависимость линейна вплоть до предела упругости, демонстрируют едва заметное различие в поведении при нагружении и разгрузке (упругий гистерезис, который имеет, по-видимому, существенное значение в связи с усталостью материалов) при этом обнаруживаются и температурные эффекты, проявляющиеся в различии температурных постоянных при изотермическом (при очень медленном изменении деформаций) и адиабатическом (при очень быстром изменении деформаций) нагружении, они до некоторой степени аналогичны электростатическим эффектам. Подобные отклйнения от закона Гука, как правило, не важны для практических задач и не будут рассматриваться здесь.  [c.28]

Для упругих материалов можно получить ряд формулировок для определяющих соотношений (2.17), переписалных в скоростях, в зависимости от используемых производных индифферентных тензоров напряжений s и деформаций е. Рассмотрим только оцну модель упругого материала — линейного. упругого изотропного материала в предположении малой деформации тела. Закон Гука для такого материала имеет две эквивалентные записи — в виде определяющих соотношений для гиперупругого и упругого материалов  [c.85]

В начале нагружения между напряжением и деформацией существует приближенная линейная зависимость, что позволяет при расчетах пользоваться законом Гука. Напряжение, при котором отступление от линейной зависимости между напряжениями и деформациями впервые достигает неко-торш заданной величины, называют пределом пропорциональности — 0, (точка 1 на рис. 1). Если в какой-либо момент начать разгружать образец (точка А), то зависимость между напряжением и деформацией при разгрузке изобразится прямой линией АВ, практически параллельной лннпи нагрузки 01. Деформация в точке А состоит из упругой части которая устраняется  [c.16]

Для всех твердых тел, которые наблюдал Бах, он обнаружил отклонение от линейности в зависимости напряжений от деформаций. Он утверждал, что закон Гука, образующий основу линейной теории упругости, верен только для меньшей части материалов, и притом только в определенных пределах. В 1897 г. на основании своих собственных экспериментов и анализа весьма тщательных экспериментов Дж. О. Томпсона Бах (Ba h [1897,1]) заключил, что было бы весьма нереалистичным рассматривать линейность как общий закон. Это замечание стало исходным пунктом для его более исчерпывающего изучения упругого поведения. Он подчеркнул, что при очень тщательных испытаниях важные конструкционные материалы, например чугун и сталь, для которых обычно предполагается справедливость закона Гука, ведут себя не так, как предписывается этим законом.  [c.159]

Обзор Мемке зависимостей напряжения от деформации, накопленных его предшественниками, приведенный в табл. 25, был опубликован с целью предостеречь инженеров и ученых от повторения старых и забытых исследований, и с явно выраженной надеждой, что этот обзор будет стимулировать изучение упругости без предположения о справедливости закона Гука.  [c.162]

В основе деформационной теории пластичности лежат гипотезы, предложенные Хубером [397], Мизесом [423], Хенки [395 и обобщенные на случай материала с упрочнением Надаи [200]. Она предполагает, что для упругопластических тел можно установить зависимости между напряжениями и деформациями, подобно закону Гука для упругих тел. Развитие и обоснование теории малых упругопластических деформаций связано с работами Ильюшина, поэтому часто теорию малых упругопластических деформаций называют теорией пластичности Ильюшина. Здесь принимается, что при простой активной деформации первоначально изотропного материала, свойства которого не зависят от третьего инварианта тензора напряжений, справедливы следующие три гипотезы.  [c.42]

Простейшим случаем неупругого изгиба является пластический изгиб, который имеет место при упруго-идеально-пластическом материале. Такой материал подчиняется закону Гука, пока напряжение не достигнет предела текучести, а затем в нем развиваются пластические деформации при постоянном напряжений. Диаграмма зависимости напряжения от деформации для упруго-идеально-пластического материала, имеющего одинаковые значения предела текучести а,г и модуля упругости Е при растяжении и сжатии,, представлена на рис. 9.2. Здесь видно, что упруго-идеально-нластичее-кий материал имеет область линейно упругого поведения, за которой  [c.347]


Смотреть страницы где упоминается термин Напряжения Зависимость от деформаций упругих — Закон Гука : [c.70]    [c.425]    [c.674]    [c.4]    [c.95]    [c.82]    [c.78]    [c.238]    [c.29]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.22 , c.24 , c.64 , c.114 , c.132 , c.133 ]

Прочность, устойчивость, колебания Том 1 (1966) -- [ c.22 , c.24 , c.64 , c.114 , c.132 , c.133 ]



ПОИСК



228 — Деформации — Зависимость

293 — Зависимость от напряжения упругая

597 — Деформации и напряжения

Гука)

Гука) напряжения 17 —Зависимость

Деформации 266 —Закон Гука

Деформация упругая

Зависимости между напряжениями и деформациями в пределах упругости. Закон Гука

Зависимости напряжений от деформаций

Зависимость напряжений от упругих деформаций. Закон

Закон Гука

Закон Гука (см. Гука закон)

Закон Гука напряжений

Закон упругости

Закон упругости (закон Гука)

Напряжения 5 — Зависимости

Напряжения и деформации в пределах упругости — Зависимости (по закону Гука)

Напряжения упругие

Упругость закон Гука

Упругость напряжение



© 2025 Mash-xxl.info Реклама на сайте