Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория термоупругости задачи классическая

Уравнения и задачи термоупругости являются дальнейшим уточнением соотношений и задач классической теории упругости если моментная теория упругости, основы и методы которой были изложены в главах I и IX, представляет математическую теорию, которая вследствие гипотез, положенных в ее основу, нуждается в экспериментальной проверке и подтверждении, теория термоупругости вышла из этой стадии развития и концепция напряженного состояния, как результат взаимодействия полей деформации и температуры, [составляющая сущность термоупругости, приводит к выводам, хорошо согласующимся с наблюдаемыми фактами.  [c.373]


Такое изучение стало возможным сравнительно недавно, хотя история термоупругости как научной дисциплины восходит к истокам классической теории упругости. Трудности задач динамической термоупругости в известной мере связаны с тем, что система уравнений (1.1) не принадлежит ни одному из основных типов уравнений математической физики (см. гл. I, 15, п. 1), и построению ее теории предшествовали обширные исследования по теории граничных задач эллиптических дифференциальных уравнений в частных производных.  [c.373]

Монография известного польского ученого В. Новацкого представляет собой учебник повышенного типа по теории упругости. От известных руководств по этому предмету книгу отличает то, что автор положил в основу связанную задачу термоупругости, а классическую теорию упругости и теорию температурных напряжений изложил как ее частные случаи.  [c.4]

Кроме сдвиговой теории можно рассматривать уравнения обобщенной классической теории слоя для задач термоупругости.  [c.97]

Поскольку в процессе термообработки в элементах конструкций могут возникать значительные температурные напряжения, необходимо уметь выбрать соответствующие оптимальные режимы термообработки, которые обеспечивали бы сравнительно низкий уровень температурных напряжений. Такая задача поставлена и решена на базе классической теории оболочек в работе [121. В качестве критерия выделения оптимальных температурных полей, обеспечивающих сравнительно низкий уровень температурных напряжений, в [12] принято условие минимума функционала упругой энергии оболочки. Ниже в такой постановке решена экстремальная задача термоупругости для бесконечной трансверсально-изотропной цилиндрической оболочки.  [c.213]

Исследования по термоупругости сначала стимулировались задачами о термоупругих напряжениях в элементах конструкций. Они проводились на основе теории, разработанной Дюамелем (1838) и Нейманом (1841), которые исходили из следующего предположения полная деформация является суммой упругой деформации, связанной с напряжениями обычными соотношениями, и чисто теплового расширения, соответствующего известному из классической теории теплопроводности температурному полю.  [c.5]

Исследования связанных задач термоупругости получили интенсивное развитие за последние десять лет при этом наиболее полно разработана теория плоских термоупругих волн [74—78, 86, 91]. В 9.5 рассматривается одномерная задача о распространении плоских гармонических термоупругих волн расширения в неограниченной среде, а в 9.6 — двумерная задача о распространении этих волн вдоль поверхности полупространства. На основании решений обеих задач можно выяснить природу термического возмущения упругих волн и, в частности, оценить результаты классической теории волн Релея [27].  [c.274]


Найдено также обобщение известного представления решения уравнений классической теории упругости Б. Г. Галеркина [7] на случай связанной задачи термоупругости [54]  [c.278]

Предлагаемая книга — продукт второго направления. В ней, на современном уровне математической строгости, впервые с одинаковой в принципе полнотой, изложена общая теория трехмерных граничных задач статики, колебаний и общей динамики для линейных уравнений с постоянными и кусочно-постоянными коэффициентами классической теории упругости, термоупругости и моментной теории упругости.  [c.10]

Сформулировать задачи, аналогичные задачам III и IV классической теории (см. I, 14 п. 1) для уравнения термоупругих колебаний, и доказать теоремы единственности.  [c.122]

В простейшем и наиболее важном для приложения случае линейной теории однородных изотропных упругих тел задача сводится к разысканию интегралов вырожденной гиперболической системы дифференциальных уравнений теории упругости или системы уравнений термоупругости, которая не относится к классическим каноническим типам, удовлетворяющих в некоторой области D X [О, оо) заданным начальным и граничным условиям (I, 14 и 15).  [c.312]

В работе [10] проблема существования решения системы уравнений термоупругости рассматривается для анизотропного неоднородного тела. Задача определяется заданием смешанных однородных граничных условий для перемещений, напряжений, температуры и теплового потока и начальных данных для перемещений, скорости перемещений и температуры. Условия, при которых рассматривается существование единственного решения, следующие 1) существенные нижние границы для плотности и удельной теплоемкости больше нуля, 2) выполняется неравенство Клаузиуса—Дюгема о положительности произведения теплового потока на градиент температуры, 3) оператор теории упругости является положительно определенным для принятых граничных условий. Существование единственного обобщенного решения на конечном промежутке времени доказано в пространстве функций с конечной энергией, в котором перемещения суммируемы с квадратом и имеют суммируемые с квадратом первые производные, температура суммируема с квадратом и суммируем интеграл по времени от квадратов производных температуры по координатам. Вместе с тем показано, при каких условиях решение существует как классическое, т. е. имеет нужное количество непрерывных производных по координатам и времени.  [c.239]

Термоупругость описывает широкий круг явлений, являясь обобщением классической теории упругости и теории теплопроводности. В настоящее время термоупругость является вполне законченной областью записаны основные зависимости и дифференциальные уравнения, предложено несколько методов решения уравнений термоупругости, доказаны основные энергетические и вариационные теоремы, решено несколько задач по распространению термоупругих волн.  [c.757]

В книге дано сжатое и четкое изложение основных проблем классической теории упругости ее обш,ей теории, кручения и изгиба, плоской и пространственной задачи. Кроме того, в книге рассмотрены вопросы динамической теории упругости и термоупругости. Особое внимание уделено методам исследования задач упругости.  [c.6]

В конце помещены небольшие разделы, в которых рассматриваются динамические задачи (Е) и вопросы термоупругости (Р). Физик, интересующийся физическими основами классической теории упругости, может сосредоточить свое внимание на этих разделах и на разделе А.  [c.8]

Последовательное рассмотрение процессов упругого деформирования и теплопроводности в их взаимосвязи возможно только на основе термодинамических соображений. Томсон (1855) впервые применил основные законы термодинамики для изучения свойств упругого тела. Ряд исследователей [Л. Д. Ландау и Е. М. Лифшиц (1953) и др.] с помощью методов классической термодинамики получили связанные уравнения термоупругости. Однако в рамках классической термодинамики строгий анализ справедлив лишь для изотермического и адиабатического обратимых процессов деформирования. Реальный процесс деформирования, неразрывно связанный с необратимым процессом теплопроводности, является в общем случае также необратимым. Термодинамика необратимых процессов, разработанная в последние годы, позволила более строго поставить задачу о необратимом процессе деформирования и дать единую трактовку механических и тепловых процессов, нашедшую отражение в работах Био (1956), Чедвика (1960), Боли и Уэйнера (1960) и др. В связи с этим более четко определилась теория термоупругости, обобщающая классическую теорию упругости и теорию теплопроводности. Она охватывает следующие явления перенос тепла теплопроводностью в теле при стационарном и нестационарном теплообмене между ним и внешней средой термоупругие напряжения, вызванные градиентами температуры динамические эффекты при резко нестационарных процессах нагрева и, в частности, термоупругие колебания тонкостенных конструкций при тепловом ударе термомеханические эффекты, обусловленные взаимодействием полей де( юрмации и температуры.  [c.6]


Можно показать, что имеет место следующая аналогия если выполняется закон Дарси, то в стационарных задачах теории фильтрации внутренние напряжения в упругом скелете получаются из решения классической теории термоупругости, если в решение вместо aETj —2v) подставить р (а — коэффициент температурного расширения. Г —температура). На основе этой аналогии при помощи каталога решений для термоупругих коэффициентов интенсивности напряжений, приведенных в Приложении I, можно получить решение ряда задач о разрушении пористых тел.  [c.440]

В этой главе доказаны теоремы единственности для основных граничрых и начально-граничных задач классической теории упругости, микрополярной упругости и термоупругости. Рассматриваются задачи для внутренних и внешних (бесконечных) областей в случае статики, гармонических колебаний и общей динамики.  [c.85]

Теоремы единственности играют особо важную роль для математического изучения задач физики и механики без исследования единственности (или неединственности) решения математической задачи нельзя утверждать, что полученное решение действительно описывает исследуемое физическое состояние. Кроме того, мы увидим, что интересующие нас задачи классической теории упругости, микрополярной упругости и термоупругости приводят к определенным системам линейных сингулярных интегральных уравнений и для этих систем остается в силе классическая теория интегральных уравнений Фредгольма второго рода. Благодаря этому, из теорем единственности мы получим также теоремы существования.  [c.120]

В этой главе сначала подробно изучаются задачи установившихся термоупругих колебаний и затем на этой основе, подобно тому, как это делается в главе VIII, строится теория общединамических задач доказывается существование классического решения и указывается способ его построения.  [c.373]

От известных книг монографию Новацкого отличает прежде всего то, что автор положил в основу связанную задачу термоупругости, а классическую теорию упругости и теорию температурных напряжений изложил как ее частные случаи. Характерно также, что автор уделил очень большое внимание динамическим задачам теории упругости впервые в книге такого рода приводится математическое описание континуума Коссера. Монография содержит и ряд оригинальных результатов, полученных автором (кручение бруса, имеющего трещины, распространение термоупругих волн, несимметричная упругость и др.).  [c.5]

Наряду с развитием общей теории распространения термоупругих волн, гармонически изменяющихся со временем, осуществлены рещения нескольких частных задач, доведенных до удобного для анализа вида. Преимущественно это типичные задачи классической эластокинетики, которые в рамках термоупругости получили обобщение. Некоторое внимание уделено поверхностным волнам. Эти задачи были сначала обсуждены в работе Лок-кета ), а затем более подробно в работе Чедвика и Уиндла ).  [c.791]

Анализ многочисленных работ отечественных и зарубежных ученых показывает, что для решения задач теплопроводности и термоупругости кусочнооднородных тел обычно используется аппарат классической теории однородных тел, т. е. решаются уравнения теплопроводности и термоупругости для каждой части кусочно-однородного тела и удовлетворяются, те или иные условия контакта между ними. Исходя из представлений физико-механических характеристик кусочно-однородного тела (2.1), (2.2), зададимся целью получить уравнения для определения температурных поля и напряжений в кусочно-однородном теле как в едином целом.  [c.47]

Как уже отмечалось выше, основной задачей теории упругости является определение упругого (динамического, статического или колебательного) состояния среды в классической и моментной теории упругости и термоупругого (динамического, статического или колеба гельного) состояния — в теории термоупру гости.  [c.53]

Метол решения смешанных задач динамики классической теории упругости, изложенный в главе VIII, распространяется на решения основных смешанных задач динамической термоупругости. Здесь покажем это подробно на примере первой задачи, а относительно других приведем краткие пояснения и необходимые библиографические указания.  [c.405]

Было предложено несколько остроумных способов решения этой задачи. Советские физики А.Ф. Иоффе и Я. И. Френкель предложили сперва переохлаждать шар (из каменной соли) до температуры, значительно более низкой, чем температура окружающей атмосферы, а затем нагревать его в воздухе до комнатной температуры ). Более высокая температура на поверхности вызывает расширение в материале шара. Термические напряжения в нем сводятся к сжимающим напряжениям в окружном направлении в его внешних частях, из условия же равновесия следует, что центральная часть шара должна быть растянута. Таким образом, в центре шара создается состояние равномерного всестороннего растяжения. Нетрудно найти термоупругие напряжения в шаре в период процесса теплообмена. Эти напряжения определяются центрально симметричным распределением температуры (задача, рассмотренная в классической теории теплопроводности для сферы). Я. И. Френкель определил максимальные значения термических растягивающих напряжений в центре шара и установил, что в каменной соли, переохлажденной в жидком воздухе, они должны достигнуть высоких значений, которые никогда не наблюдались при испытаниях этого материала на простое растяжение или изгиб (шары из каменной соли при повторном нагреве не дают трещин). Найденные таким путем очень высокие значения сопротивления трехосному растяжению во внутренней точке тела для такого слабого материала, как каменная соль, следует считать сомнительными. Внешние части шара из каменной соли, находящиеся в основном под действиел двухосного сжатия, должны получить пластические деформации, так как этот материал обладает низким пределом текучести. Поскольку высокие значения растягивающих напряжений были вычислены на основании теории упругости, влияние пластической деформации внешних слоев шара, приводящее к уменьшению сжимающих напряжений во внешней оболочке, не было учтено, вследствие чего величина растягивающих напряжений в центральной части оказалась значительно завышенной.  [c.201]


В некоторых случаях (особенно в задачах с плоским напряженным или плоским деформированным состоянием) удобно использовать уравнения в напряжениях. В классической теории упругости такие уравнения известны как уравнения Бельтрами— Митчелла. Для несопряженной термоупругости соответствующие уравнения получил весьма простым путем Игначак и затем несколько иным путем Шоош  [c.29]

Уравнения (13) являются аналогом формул Майзеля для несопряженных задач, т. е. для упомянутой ранее теории тепловых напряжений. Аналогия состоит здесь лишь в использовании сходных функций Грина. Однако формула (13) значительно отличается от формул, данных Майзелем. В методе Майзеля нет формулы (9), поскольку температура определяется там на основе классического уравнения теплопроводности, не учитывающего влияния поля деформации на температуру. Поэтому данныеМей-зелем формулы для перемещений, соответствующие соотношению (13), отличаются большей простотой. Метод Майзеля будет изложен в 1.18 применительно к стационарным задачам термоупругости.  [c.75]

Вариационные принципы. Большое значение для приближенных решений конкретных задач имеет вариационная трактовка проблемы сопряженной термоупругости. Определению вариационных принципов теории посвящены работы [4, 17а, 18, 34, 37]. В работе [4Ь] для квазистатической задачи сформулирован вариационный принцип, аналогичный принципу Вашизу в классической теории упругости, из которого для данного случая следуют все соотношения термоупругости и смешанные граничные условия. Вместе с тем сформулированы некоторые частные вариационные принципы, вытекающие из общего принципа. В работе [4а] общий вариационный принцип применяется к расчету оболочек.  [c.240]

Третья часть посвящена динамическим задачам теории упругости. В настоящей монографии эта часть занимает необычно много места. Это объясняется стремительным развитием указанного раздела в последние годы, главным образом в области распространения упругих волн. В этой части представлены основные теоремы и методы классической эластокинетики, теории неустановившихся температурных напряжений и связанной термоупругости. В последней главе как бы синтезируется все изложенное в третьей части она заключает в себе основы теории несимметричной термоупругости. Отсюда как частные случаи получаются остальные теории, рассмотренные в третьей части.  [c.8]

Известно, что действие внешних нагрузок и массовых сил вызывает в динамических задачах не только поле перемещений и(х, О, но и сопровождающее его температурное поле 9(х,/). В принципе мы имеем дело с задачей термоупругости. Однако сложный математический характер этой теории часто приводит к непреодолимой трудности. Поэтому в классической эластокинетике также принимается упрощающее предположение, вытекающее из того факта, что при быстро изменяющихся во времени нагрузках обмен тепла посредством теплопроводности между отдельными элементами тела происходит очень медленно.  [c.549]


Смотреть страницы где упоминается термин Теория термоупругости задачи классическая : [c.121]    [c.13]    [c.273]    [c.305]   
Трехмерные задачи математической теории упругости и термоупругости Изд2 (1976) -- [ c.12 , c.13 , c.15 , c.17 ]



ПОИСК



Газ классический

Задачи термоупругости

Теория классическая

Теория термоупругости

Термоупругие задачи

Термоупругость



© 2025 Mash-xxl.info Реклама на сайте