Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интенсивность тензора деформаци скоростей деформации

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются еще некоторыми гипотезами, общий вид которых устанавливается с помощью качественных физических рассуждений или же подбирается из соображений простоты. Принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения постоянных, входящих в используемые полуэмпирические соотношения.  [c.14]


Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются затем еще некоторыми гипотетическими закономерностями, общий вид которых устанавливается с помощью качественных физических рассуждений или же просто подбирается наудачу из соображений простоты. Далее принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения неопределенных постоянных, входящих в используемые полуэмпирические соотношения. Если результаты проверки оказываются удовлетворительными, то полученные выводы распространяются на целый класс турбулентных течений, родственный тем, к которым относились выбранные для проверки теории эмпирические данные.  [c.19]

Повреждение, обусловленное интенсивным порообразованием по границам зерен в материале, может приводить к значительному его разрыхлению. В этом случае проведение независимого (несвязного) анализа НДС и развития повреждений в материале дает значительные погрешности. Например, отсутствие учета разрыхления в определенных случаях приводит к существенному занижению скорости деформации ползучести и к снижению скорости накопления собственно кавитационных повреждений. В настоящее время связный анализ НДС и повреждаемости базируется в основном на феноменологических подходах, когда в реологические уравнения среды вводится параметр D, а в качестве разрушения принимается условие D = 1 [47, 50, 95, 194, 258, 259]. Дать физическую интерпретацию параметру D достаточно трудно, так как его чувствительность к факторам, определяющим развитие межзеренного повреждения, априорно предопределена той или иной феноменологической схемой. Так, во многих моделях предполагается, что D зависит только от второго инварианта тензора напряжений и деформаций и тем самым исключаются ситуации, когда повреждаемость и, как следствие, кинетика деформаций (при наличии связного анализа НДС и повреждения) являются функциями жесткости напряженного состояния.  [c.168]


В заключение рассмотрим понятие о тензоре скоростей деформации и интенсивности скоростей деформации сдвига (уг). Если через е, гу, бг обозначить скорости относительных удлинений элементарного объема в направлении координатных осей, а через у г/. Уг — скорости угловых деформаций, то тензор скоростей деформаций примет вид  [c.100]

Анизотропное упрочнение первоначально изотропного материала отличается зависимостью сопротивления деформированию от ориентации тензора скорости деформации по отношению к тензору упрочнения в процессе предшествующего деформирования, и кривая интенсивность напряжений — интенсивность деформаций зависит от пути нагружения. В статических испытаниях анизотропное упрочнение наиболее рельефно проявляется в возникновении следа запаздывания за угловой точкой билинейного пути нагружения. Изменение сопротивления в зависимости от пути импульсного нагружения является основой импульсной обработки материала с целью направленного формирования его характеристик прочности и пластичности. Представление анизотропного упрочнения как результата суммирования изотропного упрочнения и кинематического (связанного с изменением пути предшествующего нагружения) [430] позволяет описать поведение материала при сложном нагружении.  [c.12]

Под процессом установившейся ползучести в сложном напряженном состоянии будем понимать такой. процесс изменения деформаций во времени, при котором интенсивность скоростей деформации остается неизменной. При этом вследствие однозначной зависимости между и G/ интенсивность напряжений также остается постоянной, хотя каждая из компонент напряжения, вообще говоря, изменяет свое значение во времени. Для простоты расчетов, в последующем эти изменения напряжений учитываться не будут и при установившейся ползучести компоненты тензора напряжений будут считаться постоянными. Это будет отражать то напряженное состояние, которое асимптотически устанаВ ливается в теле при ползучести.  [c.238]

Скорость изменения формы элемента среды описывается квадратичным инвариантом тензора скорости деформации — интенсивностью скоростей деформации сдвига  [c.138]

Кроме того, по формулам (1.29а) можно определить компоненты тензора скорости деформации и интенсивность скорости деформации. Правда, последнюю величину проще подсчитать по формуле (4.10).  [c.119]

Действительно, при самой общей постановке задачи пластического формоизменения тела, в мысленно выделенной его материальной частице не представляется возможным установить определенной связи между напряжениями и деформациями или между напряжениями и скоростями протекания деформации. Если, как это следует из современного учения о конечной пластической деформации, направления главных осей и вид напряженного состояния выделенной материальной частицы в большинстве реальных случаев деформации совпадают с направлениями главных осей и видом тензора (определенной совокупности векторов) скорости деформации, то интенсивность напряженного состояния частицы зависит не только от интенсивности скорости деформации, но и от интенсивности итоговой (за весь предшествующий процесс) деформации, от степени деформации и от температуры.  [c.202]

При изучении плоских контактных задач теории упругости с нелинейным износом и процессов квазистатического взаимодействия твердых тел с тонким покрытием, реологические свойства которого описываются уравнениями установившейся нелинейной ползучести со степенной связью между интенсивностями тензоров напряжений и скоростей деформаций, приходят к необходимости решения интегрального уравнения  [c.133]

Определяются компоненты eij тензора скоростей деформации и интенсивность скоростей деформации Н как функции координат, времени и введенной эквивалентной вязкости.  [c.151]


О и, следовательно, интенсивность тензора скоростей деформации I — =  [c.409]

В условиях простого нагружения (см. гл. 3) главные направления тензоров напряжения и скорости деформации совпадают. Опытные данные свидетельствуют о приближенном подобии тензоров напряжения и скорости деформации. Имеется также зависимость между интенсивностями касательных напряжений т,- и скоростей де<] рмации сдвига Ц1, характерная для данного материала при данной температуре.  [c.92]

Инварианты тензора скорости деформации. Инварианты тензора и девиатора можно получить из формул (2.6), (2.8) заме юйе ,. .., иа. . ., Выпишем лишь выражение интенсивности скоростей деформации сдвига  [c.27]

Наиболее простой теорией ползучести при сложном напряженном состоянии является теория установившейся ползучести изотропного материала. Эта теория основана на следующих допущениях 1) изменения объема являются упругими 2) главные направления тензора напряжений и тензора скорости деформации ползучести совпадают 3) интенсивность скоростей деформаций ползучести является однозначной функцией интенсивности напряжения.  [c.99]

Одноосное напряженное состояние — один из многих вариантов состояний, встречающихся в деталях машин. Поэтому его моделирование — это только часть задачи описания реологических и прочностных свойств материала. Дополнительно требуют решения две проблемы моделирование при пропорциональном нагружении произвольного вида и моделирование при непропорциональном нагружении. Как будет показано ниже, для структурной модели они сводятся к обобщению модели на произвольное напряженно-деформированное состояние. Это обобщение основано на постулате изотропии Ильюшина [35], согласно которому, в частности, при пропорциональном нагружении с произвольным видом напряженного состояния отсутствует влияние первого и третьего ш-вариантов тензора напряжений (см. главу А1) на реологические свойства, а девиаторы напряжений и деформаций взаимно пропорциональны. Для идеально вязкого (или идеально пластического) тела эти рассуждения однозначно определяют модель при произвольном напряженном состоянии критерий текучести Мизеса, зависимость скорости ползучести от интенсивности напряжений.  [c.188]

Здесь pf, 5 — компоненты тензора скоростей неупругой деформации и девиатора напряжений ПЭ (s = а - а ,/35у, где g символ Кронекера а — интенсивность напряжении ПЭ JiO = Упругие свойства всех ПЭ одинаковы для упру-  [c.189]

Неупругое изменение объёма (разрыхление), следуя уравнению (3.173), определяется величиной накопленной неупругой деформации и имеет место только в случае зависимости поверхности нагружения от первого инварианта тензора напряжений, т. е. в случае, когда Ф О-Для получения уравнения для скорости накопленной неупругой деформации необходимо продифференцировать по времени интенсивность активных напряжений и приравнять это выражение и выражение (3.168). Итак  [c.120]

Скорость объемной деформации z z = fifh. Компоненты тензора-девиатора скоростей деформации ri>-q> = Лч>г = Лгг = 0, г = = Т1 = — 8/3=- /3/г, r)s = 2/j/3/i. Интенсивность скоростей сдвига Г1= — 2Н/ у/ЗН). Примем, что материал подчиняется эллипти- fe KOMy условию текучести. По ассоциированному закону течения (1.29) при с=0 имеем у+aedij/2, где Х =  [c.77]

Сложное напряженное состояние материала в волнах нагрузки при импульсном нагружении характеризуется значительной величиной среднего (гидродинамического) давления. Для металлических материалов объемное сжатие является упругим, и эффекты вязкости влияют только на связь тензоров — девиа-торов напряжений и деформаций. Независимо от конкретного напряженного состояния интенсивности напряжений, деформаций и скоростей деформаций связаны единой зависимостью  [c.132]

Относительная скорость е изменения объема выражается формулой e = E -6jj. Компоненты тензора-девиатора скоростей деоормации обозначим = еб /З. Интенсивность скоростей деформаций сдвига равна = При чистом сдвиге т равна скорости сдвига. При равномерном всестороннем сжатии или растяжении г = 0.  [c.9]

Кинематически допустимым скоростям i соответствуют кинематически допустимый тензор скоростей деформаций ё, = = 0,5(i7 j+tTj i), а также удельная скорость изменения объема = е,у5ц и интенсивность скоростей деформаций сдвига fi = где —тензор-девиатор скоростей де-  [c.88]

В ряде работ, например [1, 2], было показано, что интенсивность процессов ползучести и накопление поврежденности в разных точках неравномерно прогретого тела можно оценивать по величинам удельной могцности рассеяния W = aijirnj., где сг - и r)ij — соответственно компоненты тензоров напряжения и скорости деформаций ползучести. Если внешние термосиловые нагрузки стационарные, то при высоких температурах процессы, отражаюш,ие внутреннее состояние в теле, достаточно быстро выходят на установившийся режим, и в каждой точке тела могц-ность рассеяния принимает стационарное значение Wk — Введем среднюю по объему тела величину удельной мощности  [c.314]

Рейнольдса Тг = —рщи], являющихся лишними неизвестными в уравнениях Рейнольдса (1.3). Вид этих неизвестных (т. е. их зависимость от пространственных координат и времени), по-видимому, должен в значительной мере определяться крупномасштабными особенностями течения, т. е. в первую очередь полем средней скорости и. При определении общего характера зависимости от и можно опереться на внешнюю аналогию между беспорядочными турбулентными пульсациями и молекулярным хаосом и попытаться использовать методы кинетической теории газов. Поскольку в кинетической теории газов очень большую роль играет понятие средней длины свободного пробега молекул 1т, в теории турбулентности при таком подходе прежде всего вводится понятие пути перемешивания I (независимо друг от друга предложенное двумя создателями полу-эмпирического подхода к исследованию турбулентности Дж. Тейлором и Л. Прандтлем), определяемого как среднее расстояние, проходимое отдельным турбулентным образованием ( молем жидкости), прежде чем оно окончательно перемешается с окружающей средой и потеряет свою индивидуальность. Другим важным понятием кинетической теории газов является понятие средней скорости движения молекул в полуэмпирической теории турбулентности ему соответствует понятие интенсивности турбулентности — средней кинетической энергии турбулентного движения единицы массы жидкости. Наконец, ньютоновой гипотезе о линейности зависимости между вязким тензором напряжений (Тц и тензором скоростей деформации ди дх] + дщ1дх1 (причем коэффициентом пропорциональности в этой зависимости является коэффициент вязкости р1тЬт) в полуэмпирической теории турбулентности Прандтля отвечает гипотеза о линейности зависимости между напряжениями Рейнольдса и скоростями деформации осредненного течения.  [c.469]


В начале тридцатых годов важные опыты были поставлены Дж. Тейлором и X. Квинни, Р. Шмидтом, Ф. Одквистом, К. Хоэнемзером. В опытах Тейлора и Квинни изучались взаимная ориентация главных осей тензоров напряжения и скорости деформации и упрочнение. Опыты Шмидта были одними из первых экспериментов, посвященных специально упрочнению при сложном напряженном состоянии (Ingг-Ar h., 1932, 3 О, 215—235 см. сборник Теория пластичности ). Подвергнув анализу ряд вариантов условия упрочнения, Шмидт обнаружил, что наиболее удовлетворительным из них является тот, по которому интенсивность касательных напряжений — функция плотности работы напряжений 8. = к (ю), Ли = о ар (к такому же выводу на основании своих опытов пришли Дж. Тейлор и X. Квинни). Оказалось, что диаграмма процесса на плоскости в координатах и мало изменяется даже с переходом от опытов с пропорциональным нагружением к нагружениям с резкими поворотами главных осей. Ф. Одквист почти сразу отметил, что не менее удовлетворительным является условие, в соответствии с которым  [c.83]

Большинство исследований, связанных с определением динамической характеристики материала, осуществлялось в условиях одноосного растяжения или сжатия, либо чистого сдвига. Существует лишь небольшое количество экспериментов, целью которых было получение динамических характеристик материала в условиях сложного нагружения. К основополагающим в этой области принадлежат работы Линдхолма [66, 67]. В них описаны результаты исследований алюминиевых к стальных образцов, подверженных совместно одноосному растяжению и сдвигу. На рис. 3 даны графики зависимостей вторых инвариантов тензоров напряжений и деформаций для различных скоростей деформаций алюминиевых образцов [67]. Исследования эти выполнены для области скоростей деформаций от 10 до 4-10 2 с Ч На графиках отчетливо видно, что с ростом скорости деформаций определенному значению интенсивности деформаций д//2 = onst отвечают все большие значения интенсивности  [c.11]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

Следуя 1, изложим синергетическую теорию мартенситного превращения, в рамках которой доля узлов п, определяющая степень перестройки одночастичных состояний, играет роль управляющего параметра [58]. Кроме п следует ввести параметр порядка и сопряженное поле <г, величины которых определяют поведение фононной моды параметр е представляет сдвиговую компоненту деформации превращения, которая определяется плотностью бозе конденсата статических ТА-фо-нонов поле а сводится к соответствующей компоненте тензора упругих напряжений. Скорость изменения управляющего параметра п задается, с одной стороны, интенсивностью диссипативных процессов, характеризуемой временем релаксации т , а с другой — влиянием коллективной моды, которое определяется ее амплитудой е и сопряженным полем сг  [c.122]


Смотреть страницы где упоминается термин Интенсивность тензора деформаци скоростей деформации : [c.3]    [c.212]    [c.112]    [c.105]    [c.154]    [c.117]    [c.106]    [c.468]    [c.480]    [c.391]    [c.546]    [c.50]    [c.487]   
Теория упругости и пластичности (2002) -- [ c.175 ]



ПОИСК



68 — Скорость и интенсивность

Деформации скорость

Деформации скорость тензор

Деформация Интенсивность деформаций

Интенсивность деформации интенсивности деформаций

Интенсивность деформаций

Интенсивность скоростей деформаций

Интенсивность тензора деформаци

Тензор деформаций

Тензор скорости

Тензоры деформации и скоростей деформации



© 2025 Mash-xxl.info Реклама на сайте