Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лоренца функция

Так как функция, находящаяся в левой части неравенства (48), инвариантна при преобразованиях Лоренца, то это неравенство должно выполняться во всех системах отсчета. Если в системе отсчета S каждое из двух событий находится на поверхности светового конуса другого события, то (Дя) = О как в 5, так и в 5.  [c.366]

В трактовке Лоренца закон рассеяния на ионах решетки может быть обобщен (см. Ричардсон [5] или Вильсон [1]) распределение скоростей вводится посредством функции распределения. Рассматривая решетку, состоящую из твердых шаров, и применяя классическую статистику, Лоренц нашел, что  [c.154]


Следуя Лоренцу, возьмем в качестве f удовлетворяющую условиям (8.52) функцию  [c.152]

Здесь Ф , Wk w. k — интегральная интенсивность, полуширина (ширина на половине максимальной интенсивности) и положение центра тяжести к-го рентгеновского пика соответственно. Параметр Tj соответствует относительной доле лоренцевой и гауссовой компонент в форме профиля рентгеновского пика. Если т] — 1, форма профиля описывается только функцией Лоренца (длинные хвосты) если г = 0, — то только функцией Гаусса (короткие хвосты).  [c.34]

Погрешность в вычислении интегральной интенсивности фона в основном зависит от правильности выбора базисных линий. Поскольку рентгеновские пики на рентгенограммах наноструктурной Си преимущественно описываются функцией Лоренца, т. е. имеют длинные хвосты, то оказалось очень трудно достаточно точно определить место, где кончается рентгеновский пик и начинается фон 79-82]. Для уменьшения погрешности базисные линии выбирали таким образом, чтобы их концы совпадали с концами широких интервалов углов дифракции, в которых производилась съемка рентгеновских пиков [79-82]. Как показано в работах [80, 81], ИПД Си приводит к росту интегральной интенсивности диффузного фона рассеяния рентгеновских лучей на 6 3 %.  [c.79]

Пространственные составляющие 4-вектора образуют некоторый вектор трехмерного пространства, так как преобразование Лоренца с коэффициентами аи = аи = О, 044 = 1 есть обычный пространственный поворот, влияющий только на пространственные составляющие 4-вектора. Обратное утверждение будет, однако, неверным составляющие вектора трехмерного пространства не обязательно преобразуются как пространственные составляющие 4-вектора. Составляющие обычного вектора можно умножить на любую функцию р, не изменяя характера их преобразования при пространственном повороте. Но при этом существенно меняется характер того преобразования, которому подвергаются эти составляющие при преобразовании Лоренца. Так, например, пространственные составляющие 4-скорости Uv образуют вектор однако сам вектор v  [c.224]

В главе 6 указывалось, что первый член ковариантного релятивистского лагранжиана (6.57) является в некоторой степени произвольным. Другая возможная форма лагранжиана получается, если преобразовать принцип Гамильтона (6.48) (перейдя от времени i к местному времени т, являющемуся инвариантом Лоренца) и использовать. новую подынтегральную функцию в качестве L. Получить таким путем выражение для ковариантного гамильтониана частицы, находящейся в электромагнитном поле. Показать, что значение этого гамильтониана равно нулю. (При получении уравнений движения значение гамильтониана, конечно, не существенно, так как нас интересует только его функциональная зависимость от координат и импульсов.)  [c.261]


Например, электромагнитная сила Лоренца, действующая на частицу при наличии электрического и магнитного полей, порождается именно подобной силовой функцией. Из дифференциальных уравнений Эйлера — Лагранжа (см. ниже, гл. И, п. 10) следует, что связь между силой и силовой функцией при этом задается уравнением  [c.53]

Существование функции Лагранжа сильно облегчает эту задачу. Если функция Лагранжа L является истинным скаляром четырехмерного мира (т. е. величиной, инвариантной относительно произвольного преобразования Лоренца, или, иначе говоря, лоренц-инвариантом ), то и полученные из этой функции уравнения будут корректными с релятивистской точки зрения—тоже будут лоренц-инвариантами .  [c.356]

Теорема Нетер гласит, что всякому непрерывному преобразованию координат, обращающему в нуль вариацию действия, при котором задан также закон преобразования функций поля, соответствует определенный инвариант, т. е. сохраняющаяся комбинация функций поля и их производных ). Так, инвариантности лагранжевой функции относительно смещения начала отсчета в пространстве (однородности пространства) соответствует закон сохранения количества движения инвариантности лагранжевой функции относительно смещения начала отсчета времени (однородности времени) соответствует закон сохранения энергии инвариантности относительно пространственных поворотов (изотропности пространства) соответствует закон сохранения момента количества движения. Инвариантность относительно преобразований Лоренца ), т. е. вращений в плоскостях (х,/), (у,/), (2,0, приводит к обобщенному закону сохранения движения центра тяжести. Таким образом, в четырехмерном пространстве времени имеем всего десять фундаментальных законов сохранения.  [c.863]

В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, которые определяют преобразования волновых функций.  [c.863]

Отметим, что релятивистское требование состоит в лоренц-инвариантности L dt, но не самой функции L] L есть  [c.404]

Рис. 1.2. Зависимость безразмерной функции Лоренца от безразмерной температуры для некоторых жидки.х металлов Рис. 1.2. Зависимость безразмерной функции Лоренца от <a href="/info/106815">безразмерной температуры</a> для некоторых жидки.х металлов
Рис. 1.2. Зависимость безразмерной функции Лоренца от приведенной температуры Т=7 /7 пл Рис. 1.2. Зависимость безразмерной функции Лоренца от приведенной температуры Т=7 /7 пл
Эргодические свойства газа Лоренца. Функц. анализ и его прил., 1979,.  [c.281]

Таким образом, релятрвистские пространственные уравнения движения в случае действия на систему сил Лоренца аналогичны уравнениям ньютонианской механики. Отличие заключается только в виде функции Лагранжа.  [c.300]

Постояниая Лоренца Ь Ы) при водородных температурах, где L(0) - оказывается функцией величины магнитного поля Я при увеличении поля она увеличивается. При температурах жидкого гелия под-]юбное и.чучение зависимости L H) enie не проведено. В этой области следует ожидать, что L H) = L 0) = L .  [c.279]

Принцип устойчивости требовался в основных космогонических задачах Лагранжем, Лапласом, Пуассоном, Пуанкаре, Ляпуновым. Наиболее широкое употребление он получил через применение теоремы Лагранжа об устойчивости равновесия при существованни силовой функции для описания развития равновесий медленно изменяющихся механических систем. Основные законы физики, как-то законы Гука, энтропии, закон всемирного тяготения Ньютона, сила Лоренца — удовлетворяют необходимым условиям принципа устойчивости ).  [c.247]


Вывод функции fa, прнведенный здесь, принадлежит Лоренцу. Обозначим  [c.49]

Аналогичные формулы имеют место для Fy и F . Таким образом, обобщеяяий потенциал силы Лоренца (14) определяется формулой (17). Для функции Лагранжа L имеем выражение  [c.81]

Не следует думать, что пространственные составляющие 4-вектора Kv можно отождествить с составляющими обычной силы. Единственное, что здесь требуется уравнением (6.29),— это то, чтобы при р->0 составляющие Кг стремились к составляющим Fi. Так, например. Кг может равняться произведению Fi на некоторую функцию от р, стремящуюся к единице при р->0. Точные С001 ношения здесь, конечно, зависят от характера преобразования Лоренца для составляющих сил. К решению рассматриваемой задачи можно подойти двумя путями.  [c.225]

Теперь, чтобы довести до конца рассмотрение вопроса о допустимых системах отсчета, хотя бы в виде кратких указаний, мы перейдем от специальной теории относительностщ которую мы рассматривали до сих пор, к общей теории относительности (Эйнштейн, 1915 г.). В специальной теории относительности имеются правомерные системы отсчета, преобразующиеся друг в друга путем преобразований Лоренца, и неправомерные системы отсчета, например, системы, движущиеся ускоренно относительно правомерных. В общей же теории относительности допускаются всевозможные системы отсчета преобразования между ними не должны, подобно (2.10), быть линейными или ортогональными, а могут быть заданы произвольными функциями = fk xiy Х2у жз, Х4). Таким образом, речь идет о системах отсчета, произвольно движущихся и произвольно деформированных по отношению друг к другу. При этом пространство и время утрачивают последние черты той абсолютности, которой они обладали в основоположениях Ньютона. При подобных рассмотрениях даже евклидова геометрия оказывается недостаточной для этой цели и должна быть заменена значительно более общей геометрией, основание которой было заложено Риманом. При этом возникает задача придать физическим законам такую форму, которая делала бы их справедливыми для всех рассматриваемых систем отсчета, другими словами, придать им форму, инвариантную по отношению к любым точечным преобразованиям x j = //г(ж1,. .., Х4) четырехмерного пространства. В разрешении этой задачи и заключается положительное содержание общей теории относительности. Очень сложная в математическом отношении форма.  [c.28]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]

Преимущества этого метода двоякие. Прежде всего, теперь мы имеем дело с функцией дискретной пере.менной k (по крайней мере до тех пор, пока можно считать систему заключенной в конечный, пусть даже сколь угодно большой, объем), вместо того, чтобы рассматривать функции непрерывного аргумента л . Во-вторых, теория в ее канонической форме более удобна для квантования, а сами фурьр-коэффициенты часто используются как операторы рождения и уничтожения. Наилучшим примером применения такого подхода может служить электромагнитное поле. Однако мы отложим обсужде1ше этого случая до следующего параграфа. Для электромагнитного поля возппкают присущие только этому случаю трудности, связанные с наличием условия калибровки Лоренца, и поэтому в качестве основы для нашего подхода мы выберем продольные упругие волны в одномерной сплошной среде. На этом примере мы постараемся проиллюстрировать основные идеи метода.  [c.206]


Измерения равновесий обменных реакций с сосуществуюи ими металлическими фазами. Если коэффициенты активности металлической фазы равны единице или постоянны, коэффициенты активности солевой фазы могут быть вычислены с помощью (VI1-28) и (VI1-29). Более общие уравнения могут быть получены для случая когда коэффициенты активности металлической фазы являются известными функциями состава. Кроме того Лоренц сделал расчет обменного равновесия, введя специальные функции для коэффи-  [c.138]

Для объяснения концентрационной зависимости коэффициентов активности в металлических и солевых фазах, было применено уравнение Ван-дер-Ваальса (см. гл. II, п. 4). Необходимые уравнения были выведены и обсуждены Ван-Лааром и Лорен-цом [380]. Были также рассмотрены системы с добавками других веществ [382, 378]. Концентрационные функции коэффициентов активности как металлической, так и солевой фазы содержат неизвестную постоянную Да. Необходимо определить эти константы, так же как и постоянную для закона действующих масс. Для их определения должны быть известны три пары молярных долей сосуществующих фаз Хд и Если эти константы известны, иногда может быть получено удовлетворительное аналитическое выражение для серии измерений в широкой области концентраций. Однако исследования Лоренца и его сотрудников часто подвергались критике. Кербер и Эльсен [164, 168, 176] оспаривали его экспериментальную методику. Вагнер и Энгельгардт [394] показали, что некоторые величины, приводимые Лоренцом и сотрудниками, находятся в полном противоречии с теплотами смешения, определенными Каваками [157, 158].  [c.150]

ПРАВИЛО (Стокса длина волны фотолюминесценции обычно больше, чем длина волны возбуждающего света фаз Гиббса в гетерогенной системе, находящейся в термодинамическом равновесии, число фаз не может превышать число компонентов больше чем на два ) ПРЕОБРАЗОВАНИЯ [Галилея — уравнения классической механики, связывающие координаты и время движущейся материальной точки в движущихся друг относительно друга инерциальных системах отсчета с малой скоростью калибровочные — зависящие от координат в пространстве — времени преобразования, переводящие одну суперпозицию волновых функций частиц в другую каноническое в уравнениях Гамильтона состоит в их инвариантности по отношению к выбору обобщенных координат Лоренца описывают переход от одной инерци-альной системы отсчета к другой при любых возможных скоростях их относительного движения] ПРЕЦЕССИЯ — движение оси собственного вращения твердого тела, вращающегося около неподвижной точки, при котором эта ось описывает круговую коническую поверхность ПРИВЕДЕНИЕ системы <к двум силам всякая система действующих на абсолютно твердое тело сил, для которой произведение главного вектора на главный момент не равно нулю, приводится к динаме к дниаме (винту) — совокупность силы и пары, лежащей в плоскости, перпендикулярной к силе скользящих векторов (лемма) всякий скользящий вектор, приложенный в точке А, можно, не изменяя его действия, перенести в любую точку В, прибавив при этом пару с моментом, равным моменту вектора, приложенного в точку А скользящего вектора относительно точки В ) ПРИНЦИП (есть утверждение, оправданное практикой и применяемое без доказательства Бабине при фраунгоферовой дифракции на каком-либо экране интенсивность диафрагмированного света в любом направлении должна быть такой, как и на дополнительном экране )  [c.263]

Э. л. Бурштейн. БЫСТРОТА (продольная быстрота) — функция иро-дол])Ной (относительно осп столкновения) составляю-ще)1 Г скорости частицы, рождашще11ся в к.-л. столкновении, к-рая меняется аддитивно при продольных Лоренца преобразованиях. Широко используется при анализе. множественных процессов [1, 2 (впервые в физику множеств, процессов введена в [4])- В системе единиц, в к-рой скорость спета f =l, В. у равна , г/=1/2(и((Н-У[1 )/(1—I ll )]. Для медленных частиц (I - l). / = L ll. Для частиц высоких энергий (ё ут, где п1, — масса частицы) Б. обычно выражается через их энергию S, величину имнульса р и угол вылета I  [c.233]

Из Паули теоремы следует теперь, что для п(ь лей целого спина, полевые функции к-рых осуществляют однозначное представление группы Лоренца, при квантовании по Бозе — Эйнштейну коммутаторы [и (z), м( /)] или [м(л ), ( (у)] пропорц. ф-ции D x—y) и исчезают вне светового конуса, в то время как для осуществляющих двузначные представления полей полуцелого сниыа то же достигается для антикоммутаторов [и(х), и у)] (или [i (a ), (у)] + ) при кваа- товании по Ферми — Дираку. Выражаемая ф-лами (6) или (7) связь между удовлетворяющими линейным ур-ниям лоренц-ковариантными ф-циями поля и или v, v и операторами л, ai рождения и уничтожения свободных частиц в стационарных квантовомеханич. состояниях есть точное магем. описание корпускулярно-волнового дуализма.  [c.302]

Однако теория возмущений не всегда применима. В таких случаях пользуются др. методами, в к-рых центр, роль играют рассмотрение М. р. в целом и изучение общих свойств её матричных элементов, прямо описывающих амплитуды процессов рассеяния и рождения. Гейзенберговы локальные операторы могут быть тогда выражены через расширенную за поверхность энергии М. р. и играют важную роль, поскольку через них накладывается центральное в 5-матричном подходе условие причинности Боголюбова. Это условие приводит к обращению в нуль матричных элементов М. р. в определ. пространственно-временных областях. С др. стороны, условие унитарности в комбинации с положительностью масс всех состояний полной системы (условием спектральности) приводит к обращению в нуль фурье-образов тех же матричных элементов в определ. импульсных областях. Из этих двух свойств можно вывести, что для каждого заданного числа и сорта частиц амплитуды всех возможных реакций суть граничные значения одной аналитической функции многих комплексных переменных, фактически зависящей лишь от их лоренц-инвариантных комбинаций. Из этих свойств голоморфности можно вывести ряд непосредственно связывающих опытные факты физ. следствий. Так, в простых случаях двухчастичного рассеяния, напр. для рассеяния пионов на нуклонах, выписываются дисперсионные соотношения, выражающие вещественную часть амплитуды рассеяния через интеграл от её мнимой части (см. Дисперсионных соотношений метод). На этом пути приходят и к др. важным модельно независимым результатам, не опирающимся на конкретную форму взаимодействия, таким, как перекрёстная симметрия, правила сумм, асимптотические теоремы, результаты относительно асимптотич. автоиодельно-  [c.72]

Начнем с рассмотренения функции S (ul), описывающей полосу поглощения. Используя интегральное представление лоренциана  [c.126]

Эти две частоты определяют резонансы в функции [ш) Г (w). Данная функция изображена на рис. 4.10 длячастот1/е = 13,8см и//р = 18см найденных из ФК, и двух значений полуширины 70 лоренциана. Частоты резонансов функции F при малой полуширине 70 практически совпадают с частотами i/e и i/g, определяющими константу связи Vl .  [c.159]

Чтобы в ычислить Г по формуле (2.82), нужно знать функцию распределения p v) и параметр формы линии s. Для экспоненциальной функции распределения и для контура Лоренца выражение (2.82) принимает вид  [c.113]


Смотреть страницы где упоминается термин Лоренца функция : [c.363]    [c.230]    [c.154]    [c.153]    [c.435]    [c.152]    [c.391]    [c.135]    [c.34]    [c.45]    [c.58]    [c.364]    [c.634]    [c.26]    [c.25]    [c.262]    [c.607]    [c.34]   
Лазеры сверхкоротких световых импульсов (1986) -- [ c.16 ]



ПОИСК



Газ Лоренца

Лоренцева функция

Лоренцева функция



© 2025 Mash-xxl.info Реклама на сайте