Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера естественные

Одним из первых высказал идею закона сохранения энергии М. В. Ломоносов. В работе Рассуждение о твердости и жидкости тел , в письме к Эйлеру от 5 июля 1747 г. Ломоносов писал Все перемены в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимается, столько же присовокупляется к другому. Так, ежели где убудет несколько материи, то умножится в другом месте... Сей всеобщий естественный закон простирается и в самые правила движения ибо тело, движущее своей силой другое, столько же оныя у себя теряет, сколько сообщает другому, которое от него движение получает .  [c.10]


Читатель легко обнаружит идентичность уравнений Эйлера (47) и уравнений Лагранжа достаточно в качестве функции (Ц —ядра рассматриваемого функционала (41) —взять лагранжиан L. Отсюда сразу следует естественность введения в рассмотрение функционала следующего вида  [c.275]

Движение точки можно спи- Дифференциальные у р а в-сать в проекциях на оси Н е Н И Я д В И жения ТОЧКИ естественного трехгранника В форме Эйлера. В кинематике двумя уравнениями изучили три способа определения  [c.118]

Естественным обобщением понятия устойчивости Эйлера на упругопластические системы в свете второй элементарной концепции устойчивости является следующее состояние равновесия упругопластической системы является устойчивым, если система после статического приложения и последующего снятия малой возмущающей силы стремится вернуться в свое исходное состояние, пребывая в малой окрестности невозмущенного состояния [5].  [c.319]

Отметим, что уравнение движения точки в естественной форме успешно применял для решения задач динамики еще более чем два века назад Л. Эйлер.  [c.321]

Уравнения (12) называются дифференциальными уравнениями криволинейного движения свободной материальной точки в проекциях, на оси естественного трехгранника. Эти уравнения были впервые получены Л. Эйлером. Заметим, что уравнения (12) применяют в том случае, когда траектория материальной точки известна, т. е. известны для каждой точки траектории направления осей естественного трехгранника и радиус кривизны.  [c.452]

Уравнения (10) называются дифференциальными уравнениями криво-линейного движения несвободной материальной точки в проекциях на оси естественного трехгранника, или уравнениями в форме Эйлера.  [c.483]

Таким образом, для вариационного уравнения бУ = О уравнениями Эйлера—Остроградского являются дифференциальные зависимости Коши (5.76) и дифференциальные уравнения равновесия (5//7), а естественными граничными условиями — условия (5.78) и (5.79).  [c.106]

Полезно решить задачу на проектный расчет сжатого стержня, но, естественно, подобрать исходные данные так, чтобы формула Эйлера была применима в конце решения это необходимо проверить. Едва ли имеет смысл решать задачу на подбор сечения стержня по формуле Тетмайера — Ясинского, так как это потребует слишком много времени.  [c.198]

Система уравнений теории упругости и граничные условия представляют собою уравнения Эйлера и естественные граничные условия некоторой вариационной задачи. Построим следующий функционал  [c.253]


Не следует смешивать понятие равномерного (или неравномерного) движения данной (одной) частицы жидкости с понятием одновременного равномерного (или неравномерного) движения множества жидких частиц . Кроме того, необходимо учитывать, что при определении рассматриваемых понятий применительно к случаю неустановившегося движения исходят из представлений Эйлера (а не Лагранжа см. 3-2). В связи с этим, рассматривая векторное поле скоростей, отвечающее данному моменту времени, считают, что если это поле является так сказать однородным в отношении скоростей (т. е. в пределах данного поля векторы скоростей всюду одинаковы и по их значению и по их направлению), то такое движение может быть названо равномерным в данный момент времени если же это поле скоростей является неоднородным, то отвечающее ему движение, естественно, должно быть названо неравномерным в данный момент времени.  [c.92]

Формула (9.20) называется формулой Эйлера, ее легко получить непосредственно из формулы (9.19), если рассмотреть установившееся абсолютное движение жидкости или газа, для которого = 0. Естественно использовать этот простой и непосредственный вывод формулы Эйлера, однако предыдущий вывод тоже несложен и вместе с этим полезен для более глубокого понимания сущности этой задачи и относительного движения.  [c.112]

Естественные уравнения (Эйлер). Возьмем на траектории начало О дуг. Движение по этой кривой определено, если дуга ОМ — S является известной функцией времени. Проведем касательную МТ в сторону положительных дуг (рис. 128). Условимся считать скорость положительной, если движение происходит в сторону МТ, и отрицательной, если оно происходит в обратную сторону. Тогда скорость по величине и знаку будет ds  [c.269]

Сравнение векторного и вариационного методов в механике. Векторная и вариационная механики — это два различных математических описания одной и той же совокупности явлений природы. Теория Ньютона базируется на двух основных векторах на импульсе и на силе вариационная теория, основанная Эйлером и Лагранжем, базируется на двух скалярных величинах на кинетической энергии и силовой функции . Помимо математической целесообразности возникает вопрос об эквивалентности этих двух теорий. В случае свободных частиц, движение которых не ограничено заданными связями , эти два способа описания приводят к аналогичным результатам. Однако для систем со связями аналитический подход оказывается более экономичным и простым. Заданные связи учитываются здесь естественным путем, так как рассматриваются движения системы лишь вдоль таких траекторий, которые не противоречат связям. При векторном подходе нужно учитывать силы, поддерживающие связи, а потому приходится вводить различные гипотезы относительно этих сил. Третий закон движения Ньютона ( действие равно противодействию ) не охватывает всех случаев. Он оправдывается лишь в динамике твердого тела.  [c.19]

Замечательное свойство вариационных задач заключается в том, что в них всегда автоматически возникает нужное число граничных условий. Эти граничные условия, не обусловливаемые имеющимися внешними обстоятельствами, следуют из сути вариационной задачи. Для наличия стационарного значения эти дополнительные граничные условия существенны в такой же степени, как и выполнение дифференциальных уравнений Эйлера — Лагранжа. Появление этих дополнительных условий связано с граничным членом в Ы. Наложенные извне (внешние) и естественные граничные условия, вместе взятые, обеспечивают единственность решения.  [c.93]

При изложении вариационных принципов мы не будем придерживаться исторической последовательности, а начнем с принципа Гамильтона , который является наиболее прямым и наиболее естественным преобразованием принципа Даламбера в минимальный принцип. Из него при некоторых ограничениях мы сможем получить более старые формы принципа, применявшиеся Эйлером и Лагран-жем, а также принцип Якоби.  [c.136]

Если эти оси проходят через центр тяжести тела, то согласно Эйлеру, которому мы обязаны их открытием, их называют главными осями их называют также естественными осями вращения или вообще главными осями, независимо от того, проходят ли они через центр тяжести или нет.  [c.364]


В процессе развития вариационных принципов и методов телеологические аргументы и идеи постепенно естественно отпадают, так как им нет места в подлинно научном знании..Уже Эйлер убедился в том, что каузальное объяснение совсем не эквивалентно телеологическому описанию явлений, но имеет перед последним то очевидное преимущество, что любая проблема механики может быть решена без помощи принципа наименьшего действия, в то время как применение последнего требует при рассмотрении конкретных задач предварительного знания их решения.  [c.790]

Трёхгранник естественный 68 Углы Эйлера 76  [c.653]

Естественно, что исследование возможных форм движения выходит за рамки расчетной схемы Эйлера — Лагранжа. Это самостоятельная теория устойчивости движения, основные положения которой тесно связаны с именем А. М. Ляпунова. К этому вопросу мы еще вернемся в дальнейшем.  [c.113]

Пример использования вариационного пути получения дифференциальных уравнений и естественных граничных условий в механике твердого деформируемого тела. Пример 15.1. Получить уравнение равновесия изогнутого стержня как уравнение Эйлера вариационной проблемы о минимуме функционала потенциальной энергии системы 1).  [c.444]

Аналогично показанному в настоящем разделе выводу может быть сделан вывод дифференциальных уравнений равновесия и совместности деформаций в теории упругости, в теории пластин и оболочек и т. д. Одновременно с уравнениями могут быть получены все естественные граничные условия ). Можно показать, что уравнения Эйлера инвариантны при преобразовании подынтегральной функции в функцию от новых независимых переменных. Методы вариационного исчисления удовлетворяют тому требованию, что минимум скалярной величины (функционала) не зависит от выбора координат. Это наиболее естественным образом соот-  [c.448]

Математическое выражение, называемое принципом наименьшего действия, у Эйлера естественно вытекало из его работ по отысканию кривых, обладающих экстремальными свойствами. Однако, если геометрическая задача блестяще решалась методом изопериметров , то в случае механического движения приходилось ограничиваться решением уже решенных задач (а posteriori), так как указать из общих соображений, какая именно величина в том или ином случае будет иметь максим ум и минимум, не удавалось. Это ограничивало сферу применения и эвристическое значение принципа наименьшего действия у Эйлера. Еще одно ограничение универсаль-  [c.788]

Отметим, что тензор Эйлера естественным образом введен ДЛЯ деформированного состояния, и компоненты напряжений являются по определению функциями Xi, Рассмотрим теперь, следуя Прагеру [И], еще некоторые тензоры напряжений, связывая их с недеформиро-ванйым состоянием.  [c.26]

Математическое выражение, называемое принципом наименьшего действия, у Эйлера естественно вытекало из его работ по отысканию кривых, обладающих экстремальными свойствами. Однако если геометрическая задача блестяще решалась методом изопериметров , то в случае механического движения приходилось ограничиваться решением уже решенных задач, так как указать из общих соображений, какая именно величина в том или ином случае будет иметь максимум и минимум, не удавалось. Это ограничивало сферу применения и эвристическое значение принципа наименьшего действия у Эйлера. Еще одно ограничение универсальности его характера явствовало из того, что у Эйлера он органически связан с законом живых сил и имеет место только там, где применим последний.  [c.198]

Дифференциальные уравнения движения Движение точки можно материальной точки в форме Эйлера, описать в проекциях на оси кинематике МЫ изучали три способа естественного трехгранника определения движения точки 1) вектор-двуия уравнениями цый, 2) в прямоугольных координатах,  [c.270]

Отметим, что если Q 3(1(2) отвечает некоторому оператору А 50(3), то матрица —Q дает тот же оператор. Поэтому присутствие половинных углов Эйлера в выражениях для параметров Кэли-Клейна вполне естественно. Имеем взаимно однозначное соответствие между одним оператором из 50(3) и парой матриц (Q, —Q) из 3(1(2). Можно сказать, что Q есть двузначная функция операторов из 80(3).  [c.110]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]

Проектируя основное уравнение (13.3) на естественные оси, получим естественные уравнения движения материальной точки (уравнення движения в форме Эйлера)  [c.243]


Вид дифференциальных уравнений для углов Эйлера ф, 0, ф убеждает, что в случае тяжелого гироскопа в кардаповом подвесе нутационные движения оси гироскопа так же, как и в случае Лагранжа, играют ведущую роль. Поэтому интегрирование естественно начинать с первого уравнения, из которого  [c.200]

Теперь покажем, что уравнениями Эйлера—Остроградекого и естественными граничными условиями для функций щ, реализующих минимум функционала П, являются уравнения равновесия (4.12) и граничные условия (4.21).  [c.100]

Другая вариационная постановка задачи кручения бруса базируется на принципе минимума потенциальной энергия системы (см. гл. V, 5). В этом случае приходим к функционалу /7, уравнением Эйлера—Остроградского которого является уравнение Лапласа (7.54) для функции кручения ф (оно получено из уравнений равновесия Ламе), естественными граничными условиями — граничные условия (7.55) для функции ф. Читателю, желаю1Цему ознакомиться с такой постановкой вариационной задачи кручения, можно рекомендовать книгу [35].  [c.179]

Теория гироскопических приборов и гироста-билиааторов естественно не ограничивается изложением только физической стороны рассмотрения движения гироскопов. В основе изложения теории гироскопов и гироскопических стабилизаторов лежит аналитическое исследование дифференциальных уравнений движения гироскопов. Дифференциальные уравнения движения гироскопов составляются либо с помощью обобщенных уравнений Эйлера, либо на основе Лагранжевых дифференциальных уравнений движения. Кратчайший путь для составления обобщенных уравнений Эйлера достигается применением теоремы моментов количества движения в той ее форме, которую иногда называют теоремой Резаля.  [c.32]

В XVII—XVIII вв. трудами ряда крупнейших ученых математиков и механиков (Эйлер, Бернулли, Лагранж) были установлены основные законы и получены исходные уравнения гидромеханики. Эти исследования носили главным образом теоретический характер и, включая ряд допущений в отношении физических свойств жидкости, давали больше качественную, а не количественную оценку явлений, значительно расходясь иногда с данными опыта, который до недавнего времени не играл в гидромеханике значительной роли. Естественно, что гидромеханика не могла удовлетворить многочисленным запросам практики, особенно возросшим в XIX в. в связи с бурным ростом техники, требовавшей немедленного, конкретного решения различных чисто инженерных задач. Это и явилось причиной развития особой прикладной науки, созданной в XVIII—XIX вв. трудами Шези, Дарси, Буссинеска, Вейсбаха, Н. Е. Жуковского и многих других ученых и инженеров, которую в настоящее время называют гидравликой.  [c.6]

Этот функционал совершенно аналогичен известному функционалу Хеллингера — Вашизу варьируя напряжения, перемещения и мгновенные значения деформаций, мы получим уравнения наследственной теории упругости и граничные условия как уравнения Эйлера и естественные граничные условия для функционала (17.11.4).  [c.604]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

Более ста последуюш их лет развитие науки о равновесии и движении жидкости происходило по двум различным направлениям. Одно направление развивалось по линии строгих математических решений, используя уравнения Эйлера и принимая при этом ряд допущений (Лагранж, Лэмб, Навье, Стокс, И. С. Громека и др.). Однако наличие ряда существенных упрощений не позволило использовать полученные этим методом результаты для решения конкретных практических задач. Это заставило ученых и инженеров прибегать к экспериментированию и на основании опытных данных создавать расчетные формулы для решения разнообразных гидравлических задач, выдвигавшихся бурно развивавшейся техникой (Шези, Буссинек, Дарси, Базен, Вейсбах, Дюпюи и др.). Таким образом, независимо от аэрогидромеханики практическая гидравлика продолжала свое развитие как опытная наука, опережая первую в целом ряде областей. Однако без наличия серьезного математического аппарата она, естественно, не в состоянии была обобщить данные сложного эксперимента.  [c.7]

Принцип Клеро является естественным следствием принципа равенства давления по всем направлениям, и из последнего можно непосредственно вывести те уравнения, которые получаются из принципа равновесия жидких трубок. В самом деле, если давление рассматривать как силу, которая действует на каждую частицу и которая может быть выражена с помощью функции координат, определяющих место частицы в жидкости, то разность сил давлений, испытываемых частицей с двух противоположных и параллельных сторон, дает силу, которая стремится двигать частицу перпендикулярно к этим сторонам и которая должна быть уничтожена ускоряющими силами, приложенными к этой частице. Таким образом, если все эти силы отнести к трем взаимно перпендикулярным координатам и представить себе, что жидкая масса разделена на маленькие прямоугольные параллелепипеды, имеющие своими сторонами элементы этих координат, то мы тотчас же получим три уравнения в частных производных между давлением и заданными ускоряющими силами эти уравнения и служат для определения самого давления, а также отношения, которое должно существовать между этими силами. Этот простой способ нахождения общих законов гидростатики ведет свое начало от Эйлера (Мё-moires de Berlin за 1755) в настоящее время этот способ принят почти во всех руководствах по этой отрасли науки.  [c.241]

Эти построения походят на те, какие дал Эйлер, чтобы определить вид струны в любой момент времени, исходя из ее начального вида, отвлекшись при этом от скоростей, сообщенных ей в начале движения. Следует, однако, отметить, что так как эти построения основаны только на функциях, представляющих интегралы уравнений в частных дифференциалах, то они не могут иметь более широкой области применения, чем то, какое допускает природа функций, будь то алгебраические функции или трансцендентные. А так как дифференциальное уравнение для всех точек струны и для всех моментов ее движения остается одним и тем же, то выражаемое им соотношение должно постоянно и равномерно сохраняться между переменными, в какой бы области они ни изменялись отсюда следует, что хотя произвольные функции сами пй себе имеют неопределенный вид, тем не менее, когда этот вид на известном промежутке задан начальным состоянием струны, то отсюда естественно можно сделать вывод, что эта форма должна оставаться одной и Toii же во всей области функции и что ее нельзя изменять с целью подчинить условиям, связанным с принятой неподвижностью концов струны.  [c.516]


Алгебраические первые интегралы. Случай Гесса. В случаях Эйлера, Лагранжа и Ковалевской последний из первых интегралов, приводящий к интегрированию посредством квадратур уравнений движения тяжелого твердого тела с одной закрепленной точкой (п. 24), является, как и интегралы живых сил и моментов, алгебраическим относительно неизвестных функций. Поэтому естественно, что предпринимались общие исследования вопроса о том, допускают ли и в каких случаях динамические уравнения тяжелого твердого тела, закрепленного в одной точке, помимо двух классических интегралов, какой-нибудь новый алгебраический интеграл, относительно переменных р, 1 f, Yu Тэ> Ifs Однако глубокое исследование Гюссона ), выполненное в более изящной форме Бургаттив), привело к заключению, что, помимо рассмотренных ранее случаев Эйлера, Лагранжа и Ковалевской, не существует других алгебраических интегралов, кроме интегралов живых сил и моментов.  [c.168]

Естественно, что принцип Гамильтона можно применить к выводу дифференциальных уравнений движения также и в более общих случаях такими будут, например, уравнения движения систем с него-лономными связями, изученные нами в 8 гл. V, или, чтобы указать более конкретный случай, уравнения Эйлера для твердого тела, закрепленного в одной точке и отнесенного, помимо чисто позицион-йых координат б, <р, к проекциям р, д, г угловой скорости, т. е. к трем линейным неинтегрируемым комбинациям производных Й, р,  [c.405]

М. В. Ломоносов выявил ряд общих закономерностей в природе, лежащих в основе современной науки и тех-ники. Эти закономерности являются фундаментом, на Ч. котором строится наука о металлах. Он установил прин-V, цип сохранения вещества и движения, справедливо названный всеобщим естественным законом . Основные идеи этого важнейшего закона природы ученый неоднократно высказывал уже в первых своих научных работах, относящихся к 1741—1746 гг. Но наиболее четко и полно этот закон был сформулирован Ломоносовым в его замечательном письме к выдающемуся математику Леонарду Эйлеру, также прославленному петербургскому ака(деми-ку. 5 июля 1748 г. Ломоносов писал Все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого. Так, сколько материи прибавляется какому-либо телу, столько же теряется у другого... Так как это всеобщий закон природы, то он распространяется и на правила Пвижения тело, которое своим толчком возбуждает другое к движению, столько же теряет от своего движения,  [c.18]

Отметим, что вариационный метод позволяет получать не только дифференциальные уравнения проблемы, но одновременно и недостающие 1) граничные условия. Эти граничние условия, называемые естественными, не обуславливаются внешними обстоятельствами и вытекают из сути самой вариационной задачи. Удовлетворение естественным граничным условиям необходимо для соблюдения экстремума функционала в той же мере, что и удовлетворение дифференциальному уравнению Эйлера. Совокупность наложенных извне и естественных граничных условий обеспечивает единственность решения вариационной проблемы —из поля экстремалей выделяется одна.  [c.445]


Смотреть страницы где упоминается термин Эйлера естественные : [c.160]    [c.106]    [c.16]    [c.281]    [c.73]    [c.546]    [c.457]   
Нелинейное деформирование твердых тел (2000) -- [ c.110 ]



ПОИСК



Дифференциальные уравнения Л. Эйлера в естественной форме

Оси естественные

Уравнения движения тела вокруг Эйлера (в естественной форме)

Эйлер

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте