Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения Л. Эйлера в естественной форме

Уравнения (10) называются дифференциальными уравнениями криво-линейного движения несвободной материальной точки в проекциях на оси естественного трехгранника, или уравнениями в форме Эйлера.  [c.483]

Подставляя эти значения в предыдущие уравнения, получим дифференциальные уравнения движения несвободной точки в так называемой естественной форме или в форме Эйлера  [c.424]

Период развития механики после Ньютона в значительной мере связан с именем Л. Эйлера (1707— 1783), отдавшего большую часть своей исключительно плодотворной деятельности Петербургской Академии наук, членом которой он стал в 1727 г. Эйлер развил динамику точки (им была дана естественная форма дифференциальных уравнений движения материальной точки) и заложил основы динамики твердого тела, имеющего одну неподвижную точку ( динамические уравнения Эйлера ), нашел решения этих уравнений при движении тела по инерции. Он же является основателем гидродинамики (дифференциальные уравнения движения идеальной жидкости), теории корабля и теории упругой устойчивости стержней. Эйлер получил ряд важных результатов и в кинематике (достаточно вспомнить углы и кинематические уравнения Эйлера, теорему о распределении скоростей в твердом теле). Ему принадлежит заслуга создания первого курса механики в аналитическом изложении.  [c.11]


Дифференциальные уравнения Л. Эйлера в естественной форме  [c.119]

Движение точки можно спи- Дифференциальные у р а в-сать в проекциях на оси Н е Н И Я д В И жения ТОЧКИ естественного трехгранника В форме Эйлера. В кинематике двумя уравнениями изучили три способа определения  [c.118]

Дифференциальные уравнения движения Движение точки можно материальной точки в форме Эйлера, описать в проекциях на оси кинематике МЫ изучали три способа естественного трехгранника определения движения точки 1) вектор-двуия уравнениями цый, 2) в прямоугольных координатах,  [c.270]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]

Теория гироскопических приборов и гироста-билиааторов естественно не ограничивается изложением только физической стороны рассмотрения движения гироскопов. В основе изложения теории гироскопов и гироскопических стабилизаторов лежит аналитическое исследование дифференциальных уравнений движения гироскопов. Дифференциальные уравнения движения гироскопов составляются либо с помощью обобщенных уравнений Эйлера, либо на основе Лагранжевых дифференциальных уравнений движения. Кратчайший путь для составления обобщенных уравнений Эйлера достигается применением теоремы моментов количества движения в той ее форме, которую иногда называют теоремой Резаля.  [c.32]


Эти построения походят на те, какие дал Эйлер, чтобы определить вид струны в любой момент времени, исходя из ее начального вида, отвлекшись при этом от скоростей, сообщенных ей в начале движения. Следует, однако, отметить, что так как эти построения основаны только на функциях, представляющих интегралы уравнений в частных дифференциалах, то они не могут иметь более широкой области применения, чем то, какое допускает природа функций, будь то алгебраические функции или трансцендентные. А так как дифференциальное уравнение для всех точек струны и для всех моментов ее движения остается одним и тем же, то выражаемое им соотношение должно постоянно и равномерно сохраняться между переменными, в какой бы области они ни изменялись отсюда следует, что хотя произвольные функции сами пй себе имеют неопределенный вид, тем не менее, когда этот вид на известном промежутке задан начальным состоянием струны, то отсюда естественно можно сделать вывод, что эта форма должна оставаться одной и Toii же во всей области функции и что ее нельзя изменять с целью подчинить условиям, связанным с принятой неподвижностью концов струны.  [c.516]

Горак выводит для склерономной и реономной неголономных систем в голономных и неголономных координатах, а также в склерономных параметрах обобщенные уравнения Ньютона, Лагранжа — Эйлера и Аппеля — Гиббса. Из этих уравнений получаются как частные случаи уравнения Больцмана, Чаплыгина — Воронца, Ценова и др. Из уравнений Горака можно получить также обобщенный принцип Гамильтона — Остроградского и обобщенные уравнения неголономной динамики в канонической и естественной формах. С целью упрощения установленных им уравнений 3. Горак строит неголономное многообразие со специальной метрикой — вселенную системы. Во вселенной системы, как оказывается, уравнения Лагранжа—Эйлера и Аппеля — Гиббса получают весьма простой вид. Во вселенной обобщаются также вариационные принципы механики — принципы Гаусса — Герца наименьшей кривизны и Гамильтона — Остроградского наименьшего действия. 3. Горак показывает, что принцип Гамильтона — Остроградского эквивалентен уравнениям линии вселенной . Рассматривая время как временной параметр и вводя понятие пространственно-временной силы , 3. Го-раку удалось значительно упростить выражения дифференциальных урав- 105 нений движения неголономной системы.  [c.105]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]



Смотреть главы в:

Гидравлика  -> Дифференциальные уравнения Л. Эйлера в естественной форме



ПОИСК



Дифференциальное уравнение в Эйлера

Оси естественные

Уравнение Эйлера

Уравнение в форме Эйлера

Уравнения естественные

Уравнения форме

Форма дифференциальная

Форма уравнением в форме

Эйлер

Эйлера естественные

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте