Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ньютона законы движения третий

Необходимо обратить внимание на связь между обоснованием экспериментальной проверки второго закона Ньютона и его третьим законом. Одним из старейших экспериментальных способов проверки второго закона Ньютона в форме (Н1.5Ь) является исследование равномерного движения материальной точки по окружности, лежащей в горизонтальной плоскости. Движение точки М по окружности Y (рис. 105) осуществляется посредством стержня ОМ с включенным динамометром D, соединяющим точку с осью вращения. Масса стержня и динамометра должна быть настолько малой по сравнению с массой точки, чтобы влиянием этих движущихся масс на показания динамометра можно было пренебречь. При установившемся движении точки можно найти ее ускорение на основании чисто кинематических соображений, а динамометр измерит силу, с которой действует на него точка.  [c.231]


Второй И третий законы Ньютона представляют собой основные законы движения. Все остальные законы движения, как мы увидим, могут быть выведены из этих двух основных законов.  [c.107]

Законы движения реактивных летательных аппаратов основаны на разработанной в физике и теоретической механике теории движения твердого тела с переменной массой. Согласно этой теории, которая покоится на классических втором и третьем законах Ньютона, окончательный вид дифференциального уравнения движения таков  [c.415]

Сравнение векторного и вариационного методов в механике. Векторная и вариационная механики — это два различных математических описания одной и той же совокупности явлений природы. Теория Ньютона базируется на двух основных векторах на импульсе и на силе вариационная теория, основанная Эйлером и Лагранжем, базируется на двух скалярных величинах на кинетической энергии и силовой функции . Помимо математической целесообразности возникает вопрос об эквивалентности этих двух теорий. В случае свободных частиц, движение которых не ограничено заданными связями , эти два способа описания приводят к аналогичным результатам. Однако для систем со связями аналитический подход оказывается более экономичным и простым. Заданные связи учитываются здесь естественным путем, так как рассматриваются движения системы лишь вдоль таких траекторий, которые не противоречат связям. При векторном подходе нужно учитывать силы, поддерживающие связи, а потому приходится вводить различные гипотезы относительно этих сил. Третий закон движения Ньютона ( действие равно противодействию ) не охватывает всех случаев. Он оправдывается лишь в динамике твердого тела.  [c.19]

Те ученые, которые утверждают, что аналитическая механика есть не что иное, как математически отличная формулировка законов Ньютона, должно быть, полагают, что постулат А можно вывести из законов движения Ньютона. Автор не видит, как это можно сделать. Третий закон Ньютона — действие равно противодействию , конечно, не достаточно универсален, чтобы заменить постулат А.  [c.100]

Мы видим, таким образом, что при том приближении, которому соответствует постановка задачи, закон Ньютона для движения Земли (и вообще всякой другой планеты) вокруг Солнца заключает в себе два первых закона Кеплера. Что же касается третьего, то из соотношения (17), п. 9 и из равенства (38) следует  [c.194]


Кульминационным пунктом Начал является третья книга, основное содержание которой составляет изложение системы мира. Весьма интересно и важно заявление Ньютона в самом начале этой книги. Из него явствует, что сначала он написал ее, придерживаясь популярного изложения, чтобы она читалась многими. Затем, однако, он переложил сущность этой книги в ряд предложений, по математическому обычаю, так чтобы они читались лишь теми, кто сперва овладел началами. Сделал это Ньютон, по его собственному признанию, для того, чтобы те, кто, недостаточно поняв начальные положения, а потому совершенно не уяснив силы их следствий и не отбросив привычных им в продолжение многих лет предрассудков, не вовлекли бы дело в пререкания . Интересно также, что Ньютон особо подчеркивал необходимость хорошенько изучить определения, законы движения и первые три отдела первой книги, после чего можно уже прямо переходить к третьей книге и обращаться к другим предложениям, если того пожелают , лишь в тех местах, где на них сделаны ссылки. Три особо рекомендуемых для понимания третьей книги отдела первой книги посвящены первый отдел математическому аппарату (методу флюксий, или методу первых и последних отношений, которым, кстати сказать, Ньютон пользуется далеко не везде в своих Началах ) второй отдел озаглавлен О нахождении центростремительных сил и третий — О движении тел по эксцентричным коническим сечениям . Попробуем последовать указаниям Ньютона и пойти по пути, который ои наметил.  [c.166]

Многие феноменологические представления для сверхпроводников получаются по аналогии с электроном в атомном связанном состоянии (такой электрон тоже не испытывает сопротивления при движении). Третий закон Ньютона, будучи примененным к такому электрону, дает — еЕ = md ldt, что совместно с уравнениями непрерывности J = — Ne приводит к соотношению  [c.133]

Теперь наблюдатель может постулировать существование инерциальной системы отсчета как системы, в которой выполняется закон инерции (первый закон Ньютона) и считать, что в такой системе действует и второй закон Ньютона (третий закон Ньютона, как известно, должен выполняться в любой системе отсчета. Пространство 8 с инерциальной системой отсчета естественно назвать физическим. Оно обладает фундаментальным свойством однородности параллельный перенос в нем системы тел, на каждое из которых не действуют внешние силы, как целого не изменяет механические свойства системы. Время также однородно, т. е. законы движения системы не зависят от выбора начала отсчета времени. Следствием однородности времени является закон сохранения и превращения энергии, а закон сохранения вектора импульса (количества движения) системы есть следствие однородности физического пространства.  [c.12]

Основными понятиями классической механики являются понятия о пространстве и времени, о силе и массе, об инерциальной системе отсчета. Основными законами являются закон инерции Галилея — Ньютона (первый закон Ньютона), уравнение движения относительно инерциальной системы отсчета (второй закон Ньютона), закон равенства действия и противодействия (третий закон Ньютона). Эти понятия и законы были сформулированы И. Ньютоном в его гениальном трактате Математические начала натуральной философии (1687).  [c.7]

В соответствии с третьим законом Ньютона в движении осевая сила червяка равна окружной силе колеса фис. 6.33)  [c.224]

Раньше соотношение (6) в некоторых частных случаях выводилось из некой туманной аксиомы , называемой законом равенства действия н противодействия , относительно которой считалось, что она выражает содержание третьего закона движения Ньютона Любому действию всегда отвечает противоположное и равное противодействие иначе говоря, взаимные действия двух тел друг иа друга всегда равны и направлены в противоположные стороны . Если под действием Ньютон иа самом деле понимал то, что мы здесь называем силой , как это вне всякого сомнения явствует из его собственных слов, а также из того контекста, в котором он их употребляет, то приведенные выше рассуждения показывают, что эта аксиома эквивалентна аддитивности результирующих сил, независимо от возможных соотношений между силами и движениями.  [c.28]


Появление в Европе первой ракеты летающий огонь относится к 1250 г. Научного объяснения причин полета ракет в то время не было. Только после того, как в 1687 г. Ньютоном был сформулирован третий закон механики, стал понятен принцип реактивного движения.  [c.77]

Теорема о движении центра инерции была выведена в гл. III для системы, не стесненной механическими связями. Твердое тело представляет собой систему со связями, однако доказательство теоремы о движении центра инерции, проведенное в гл. III, полностью сохраняется. Наличие связей, удерживающих точки на неизменных расстояниях одна от другой, влияет на характер внутренних сил, действующих между точками, а эти силы все равно подчинены третьему закону Ньютона и взаимно уничтожаются при выводе уравнения движения центра инерции.  [c.168]

Активные силы — понятие, связанное со вторым и третьим законами Ньютона. Пользуясь принципом освобождения от связей, вместо связей можно ввести их реакции и включить реакции в число внешних сил. Этим открывается возможность для обобщений теоремы об изменении количества движения.  [c.383]

ТРЕТИЙ ЗАКОН НЬЮТОНА И УРАВНЕНИЯ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.50]

Так как в третьем законе Ньютона не содержатся кинематические элементы, то он справедлив в любых системах координат.. Этот закон описывает взаимодействие точек, благодаря этому он позволяет анализировать движение механических систем.  [c.50]

Предположим, что система состоит из п свободных дискретных материальных точек, для которых справедлив третий закон Ньютона. Тогда на основании уравнений движения (34.21) составим следующие выражения  [c.51]

В третьем законе Ньютона предполагается, что обе силы равны по модулю в любой момент времени независимо от движения точек. Это утверждение соответствует ньютоновскому представлению о мгновенном распространении взаимодействий — предположению, которое носит название принципа дальнодействия ньютоновской механики. Согласно этому принципу, взаимодействие между телами распространяется в пространстве с бесконечно большой скоростью. Иначе говоря, если изменить положение (состояние) одного тела, то сразу же можно обнаружить хотя бы очень слабое изменение во взаимодействующих с ним телах, как бы далеко они ни находились.  [c.42]

Чтобы сохранить форму второго закона Ньютона для относительного движения, вводятся фиктивные силовые поля сил инерции 1е И 1 . Если полагать, что эти силы действительно приложены к материальной точке, то обнаружится невозможность найти источник этих сил и возникает нарушение третьего закона Ньютона.  [c.443]

Действительно, если существует хоть одна инерциальная система, то всякая иная система, движущаяся относительно инерциальной системы поступательно, так, что движение ее начала будет равномерным и прямолинейным, является также инерциальной. В этой системе 1,.= 1 ,=0 и второй закон Ньютона, а значит, и закон инерции будут иметь ту форму, которая составляет основу классической механики. Точно так же в этих системах сохраняется третий закон Ньютона. Следовательно, во всех инерциальных системах механические явления описываются законами классической механики.  [c.445]

Для каждой точки системы составим дифференциальное уравнение движения. Силы, приложенные к точкам системы, разделим на внешние и внутренние. При выделении внутренни.х сил следует помнить, что система внутренних сил состоит из сил действия и противодействия , которые подчиняются третьему закону Ньютона.  [c.43]

Эта закономерность составляет содержание третьего закона Ньютона ), сформулированного им как общий механический закон, одинаково справедливый как для материальных точек, находящихся в относительном покое, так и при любом их взаимном движении.  [c.16]

Силы инерции — переносная и кориолисова—для наблюдателя, связанного с неинерциальной системой, представляются вполне реальными они вместе с остальными приложенными силами влияют на изменение движения по отношению к этой неинерциальной системе. Отметим некоторые особые их свойства. Вспоминая перечисленные в 86 законы сил, заметим, что силы инерции, пропорциональные по самому их определению массам движущихся в неинерциальных системах отсчета точек, в некотором роде аналогичны силам тяготения. Как показывается в общей теории относительности, эта аналогия имеет глубокий физический смысл. Второй особенностью сил инерции является видимое отсутствие тех материальных тел, которые, согласно третьему закону Ньютона, могли бы рассматриваться как источники возникновения сил инерции. Это обстоятельство  [c.422]

Ньютон (1642—1727). На основе более ранних исследований Леонардо да Винчи и Галилея Ньютоном были сформулированы основные уравнения движения. Были введены такие фундаментальные понятия, как импульс и действующая сила. Ньютонов закон движения решил задачу о движении изолированной частицы. Он мог также рассматриваться как общее решение задачи о движении, если только согласиться разбивать любую совокупность масс на изолированные частицы. Возникла, однако, трудность, связанная с тем, что не всегда были известны действующие силы. Эта трудность была частично преодолена с помощью третьего закона Ньютона, провозгласившего принцип равенства действия и противодействия. Это исключило неизвестные силы в случае движения твердого тела, однако движение механических систем с более сложными кинематическими условиями не всегда поддавалось ньютонову анализу. Последователи Ньютона считали законы Ньютона абсолютными и универсальными законами природы, интерпретируя их с таким догматизмом, к которому их создатель никогда бы не присоединился. Это догматическое почитание ньютоновой механики частиц помешало физикам отнестись без предубеждения к аналитическим принципам, появившимся в течение XVHI века благодаря работам ведущих французских математиков этого периода. Даже великий вклад Гамильтона в механику не был оценен современниками из-за преобладающего влияния ньютоновой формы механики.  [c.387]


Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]

Во втором дополнении к третьему закону движения Ньютон в немногих словах показывает, каким образом законы равновесия могут быть легко выведены из сложения и разложения сил, если диагональ параллелограмма принять в качестве силы, составленной из двух сил, выражаемых его сторонами однако более детально этот вопрос был исследован в работе Вариньона Nouvelle me anique , которая появилась в свет в 1725 году после смерти ее автора она содержит в себе полную теорию равновесия сил в различных машинах, выведенную только из рассмотрения сложения и разложения сил.  [c.32]

Первые два К. а. были опубликованы в 1609, третий — в 1619. К, 3. сыграли важную роль в установлении Н. Ньютоном закона всемирного тяготения. Решение задачи о движении материальной точки, взаимодействующей но этому закону с неподвижной центр, точкой (невозмущённое кеплеровское движение), приводит к формулировке обобщённых К. з.  [c.347]

Динамика зарядов. Для заданных ннеш. полей ф-ла (I) позволяет полностью описать движение любой системы зарядов. Однако задача значительно усложняется при учёте взаимодействия зарядов посредством создаваемого ими поля, к-рое имеет конечную скорость распространения и обладает собств. динамикой. В частности, взаимодействие любых двух произвольно движущихся зарядов не является центральным и не подчиняется третьему Ньютона закону механики, а энергия системы заряж. тел благодаря их эл.-магн. взаимодействию зависит от состояния поля и не равна сумме энергий каждого из тел в отдельности. Система заряж. тел подчиняется законам сохранения энергии, импульса и момента импульса только при учёте соответствующих величин, связанных с эл.-магн. полем (см. ниже).  [c.521]

В третьем отделе Ньютон рассматривает движение тел по эксцентричным коническим сечениям под действием центростремительной силы, направленной к фокусу кривой. Отдельно для эллршса (предложение И), гиперболы (предложение 12) и параболы (предложение 13) доказывается, что величина силы обратно пропорциональна квадрату расстояния до центра силы. Отсюда выводится основа второго и третьего законов Кеплера, а именно Если несколько тел обращаются около общего центра сил, причем центростремительные силы обратно пропорциональны квадрату расстояния до центра, то главные параметры орбит пропорциональны квадратам площадей, описываемых проведенными к телам радиусами в одно и то же время . И в следующем предложении При тех же предположениях утверждаю, что времена оборотов по эллипсам относятся меяеду собою, как большие полуоси в степени 2 .  [c.168]

Обш епринятая классическая формулировка закона равенства действия и противодействия была дана И. Ньютоном в его Началах натуральной философии в качестве третьего закона движения Действию всегда есть равное и противоположное противодействие ( геас1ю ) иначе, действия двух тел между собой всегда взаимно равны и направлены в противоположные стороны . В предложении XXXVII первого издания Начал (1687 г.) Ньютон рассмотрел движение вытекаюш ей через отверстие в сосуде воды и пришел к выводу, что скорость истечения равна скорости тела, которое свободно  [c.20]

Предположим, что существует инерциальная система S, в которой ско-росги всех частиц малы но сравнению со скоростью света, так что в S можно с хорошим приближением пользоваться нерелятивистской механикой Ньютона. Пренебрегая типично атомными явлениями, обусловленными существованием планковского кванта действия, мы можем в качестве такой механической системы рассматривать атомное ядро, поскольку элементарные частицы, из которых построены атомные ядра, нуклоны, настолько тяжелы, что их скорости в общем случае можно считать малыми по сравнению с с. Данное предположение означает, что собственные времена отдельных частиц в 2 практически совпадают и равны времени / в системе S и, кроме того, что силы связи между частицами мгновенны и удовлетворяют третьему закону Ньютона. Если эти силы консервативные, то в системе S они определяются как градиенты потенциальной функции V, зависящей от расстояния между частицами. В соответствии с механикой Ньютона при движении частиц сумма полной кинетической и потенциальной энергии не изменяется со временем, т. е.  [c.65]

Рассмотренные две важные теоремы называются соответственно теоремой о движении центра тяжести и теоремой моментов в относительном движении вокруг центра тяжести. Первая из них была дана Ньютоном в качестве четвертого следствия к третьему закону движения и позднее была обобщена Даламбером и Монтюкла. Вторая же, более поздняя, по-видимому, была доказана одновременно Эйлером, Бернулли и Д Арси (D A г s у).  [c.73]

Первые две книги Начал , имеющие одинаковое название О движении тел , являются теоретическим фундаментом третьей. Но как основы теоретических построений Ньютона, именно они и представляют для нас наибольшее значение. Особенно предварительный раздел ( Предисловие автора , Определения , Аксиомы или законы движения ) первой книги , в котором сосредоточены основные механические понятия и законы, составившие основу классической механики. На первый взгляд может показаться странным то, что сейчас в первую очередь ставится в заслугу Ньютону, сам автор не считал самым важным. По в действительности в этом нет ничего удивительного. Пьютон пользовался известными для его современников понятиями, законами, естественно, не подозревая о тех далеко идущих последствиях, к которым привели сделанные им уточнения понятий, добавления к законам, его собственные взгляды на механику Галилея, Декарта, Уоллиса, Гюйгенса.  [c.93]

Предположим, что можно применить данную силу по желанию тогда по второму закону движения могут быть измерены относительные массы тел, так как они обратно пропорциональны ускорениям, которые им сообщают одинаковые силы. Когда их относительные массы найдены, можно проверить третий закон, позволяя различным телам действовать лруг на друга и измеряя их относительные ускорения. Чтобы проверить закон, Ньютон сделал несколько опытов, как например измерял отскакивание от ударов упругих тел и наблюдал ускорения магнитов, плавающих U сосуде с водой. Главная трудность в опытах возникает в устранении сил, посторонних рассматриваемой системе, и, очевидно, они не Аюгут быть полностью устранены. Путем некоторого рассуждения Ньютон лришел к тому, что отрицать третий закон—-значило бы противоречить первому ).  [c.21]


В Поучении, приложенном к законам движения Ньютона, сделано несколько замечаний относительно важного свойства третьего закона. В 1742 г. Даламбер впервые сформулировал его таким образом, что стало действительно возможно выразить это свойство математически, и с тех пор оно известно под его именем ). Сущность его такова если тело подвергается ускорению, то его можно рассматривать как подвержс1Шое действию силы, равной и противоположно направленной к силе, производящей ускорение. Это можно считать одинаково правильным, нозмикла ли сила от другого тела, образующего с рассматриваемым систему, или источник ее находится вне системы. Вообще в системе любого числа тел равнодействующие всех приложенных сил равны и противоположны реакциям соответствующих тел. Другими словами, силы реакции или вызванные силы образуют системы, которые находятся в равновесии для каждого тела и для системы в целом. Это придает всей динамике форму статики и формулирует положения так, что они могут быть выражены математическими терминами. Эта формулировка третьего закона движения сделалась основной точкой для изящных и весьма общих исследований Лагранжа в вопросах динамики ).  [c.21]

Две равные массы гп1 и движутся вокруг оощего центра тяжести под действием взаимного притяжения условия движения выбираются таким образом, чтобы оно происходило по круговым орбитам с постоянной скоростью. Требуется изучить движение третьей бесконечно малой массы, притягиваемой по закону Ньютона обеими конечными массами и движущейся в той же плоскости.  [c.137]

ДЕЙСТВИТЕЛЬНОЕ ИЗОБРАЖЕНИЕ, см. Изображение оптическое. ДЕЙСТВИЯ и ПРОТИВОДЕЙСТВИЯ 3AKOH, один из осн. законов механики (третий закон Ньютона), согласно к-рому действия двух матер, тел друг на друга равны по величине и противоположны по направлению. Напр., сила, с к-рой груз, лежащий на плоскости, давит на эту плоскость, равна силе (реакции), с к-рой плоскость давит на груз сила, с к-рой Земля притягивает Луну, равна силе, с к-рой Луна притягивает Землю, и т. д. Д. и п. 3. играет важную роль при изучении движения механич. систем.  [c.147]

Отметим еще следующее. Если на точку действует некоторая сила F, то эта сила есть результат взаимодействия точки с каким-то другим телом. При этом по третьему закону Ньютона на данное тело будет со стороны точки действовать сила Q = — F (сила противодействия). С другой стороны, если мы будем применять к точке, движущейся под действием силы F, принцип Даламбера, то, вводя силу инерции J, получим, согласно уравнению (88), F- -J = 0 или J= — F. Отсюда следует, что J=Q, т. е. что сила инерции равна как вектор силе противодействия. Однако эти две силы не следует отождествлять. Сила Q есть сила, реально действующая на тело, с которым взаимодействует движущаяся точка, и равенство Q = —F выражает соотношение, вытекающее из закона действия и противодействия (уравновешивать силу F сила Q не может, так как эти силы приложены к разным телам). Сила же У = — mw, на движущееся тело (или точку) не действует, а равенство F- -J—0 вырамсает в статической форме уравнение движения точки, находящейся под действием только силы F. Эти рассуждения относятся и к случаю, когда на точку действует несколько сил, если под F понимать их равнодействующую, а под Q — геометрическую сумму сил противодействия.  [c.437]

Шарнир идеальный одностепенной он допускает относительное движение стержней только в плоскости чертежа. При этом шарнир не оказывает сопротивления изменению угла между стержнями (отсутствует момент сил трения). По третьему закону Ньютона силы П1 и П2 противоположны. По симметрии примем их горизонтальными.  [c.355]

В системе отсчета, BHsannoii с Землей (она вращается с угловой скоростью <а ), составляющая ускорения поезда, перпендикулярная плоскости меридиана, равна нулю. Поэтому и сумма проекций сил, действующих на поезд в этом направлении, также равна нулю. А это значит, что сила Кориолиса F op (рис. 2.5) должна уравновешиваться силой R бокового давления, действующей на поезд со стороны правого по ходу движения рельса, т. е. Ркор =—R- По третьему закону Ньютона, поезд будет действовать на этот рельс в горизонтальном направлении с силой R = —R. Следовательно, R = Fkop=> = 2m[v o) ]. Модуль вектора R равен i = 2mo D sin ф.  [c.52]

Обратим теперь внимание на связь между третьим законом Ньютона и законом сохранения количества движения, который был известен еще до появления рабэт Ньютона ). Вообразим, что два тела находятся во взаимодействии. Согласно взглядам современников Ньютона это взаимодействие заключалось в передаче количества движения от тела, активно действующего, телу, воспринимающему это количество движения. Пусть от первого тела второму передано количество движения К. Это количество движения К — действие первого тела на второе. Полагая, что количество движения самостоятельно возникнуть не может, находим, что количество движения первого тела должно одновременно получить отрицательное приращение —К. Это отрицательное приращение —К и является противодействием , приложенным к первому телу.  [c.232]

В основе вывода первых двух общих теорем динамики—количества движения и момента количества движения —лежит идея выделения из всех сил, приложенных к системе, внутренних сил взаимодействия меладу материальными точками системы. Внутренние силы в своей совокупности не могут влиять на такие суммарные меры движения, как главный вектор и главный момент количеств движения точек системы. Только внешние силы, дсйст-вующие на точки системы со стороны внешних тел, не принадлежащих к рассматриваемой системе, могут изменять главный вектор и главный момент количеств движения системы. В использовании этого свойства внутренних сил, представляющего собой одно из важнейших следствий третьего закона Ньютона, заключается главное значение двух первых o6uj,hx теорем динамики.  [c.105]

Вывод теоремы об изменении количества движения системы, или, как се кратко называют, теоремы количества движения, основан на идее исключения внутренних сил из днф([)ереициаль-ных уравнений движения системы материальных точек (1). Пользуясь третьим законом Ньютона о равенстве действия и противодействия, можно утверждать, что главный вектор внутренних сил V равен нулю  [c.107]


Смотреть страницы где упоминается термин Ньютона законы движения третий : [c.380]    [c.53]    [c.107]    [c.297]    [c.18]   
Физические основы механики (1971) -- [ c.106 ]



ПОИСК



Закон Ньютона третий

Закон Ньютона,

Закон движения

Закон третий

Новая форма третьего закона Ньютона. Закон сохранения количества движения

Ньютон

Ньютона закон (см. Закон Ньютона)

Ньютона законы движения

Ньютона третий

Ньютона) третий закон Ньютона)

Третий закон Ньютона и уравнения движения механической системы



© 2025 Mash-xxl.info Реклама на сайте