Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связь с классической механикой

Связь с классической механикой  [c.164]

Научные проблемы, над решением которых Марат Аксанович вместе со своими сотрудниками, аспирантами и студентами работает в Институте механики, частично связаны с классическими проблемами гидроупругости, над которыми он работал в Казани. В последние годы он начал новый цикл работ по устойчивости формы колеблющегося газового пузырька.  [c.124]

В тридцатых годах Н. Г. Четаев (1932, 1936) установил новый естественнонаучный принцип — постулат устойчивости. Проблемы устойчивости он рассматривал в тесной связи с принципами механики и физики вообще, считая, что устойчивость, явление принципиально общее, как-та должна... проявляться в основных законах природы . Глубокие корни того интересного факта, что, как он подметил, классические законы физики обладают известного рода устойчивостью, лежат, по мнению Четаева, в способе, каким эти законы были найдены.  [c.14]


Предыдуш,ий анализ показал, что из-за явной зависимости ловушки Пауля от времени движение иона в такой системе достаточно сложное. Подчеркнём, что это никак не связано с квантовой механикой, а получается только из-за зависимости от времени удерживающего потенциала. Действительно, коль скоро мы имеем дело с гармоническим осциллятором, классическая и квантовая динамика идентичны, как видно из уравнений Лиувилля для функции Вигнера.  [c.548]

На протяжении долгого времени геодезические потоки играли важную стимулирующую роль в развитии гиперболической теории. Так, например, влияние неустойчивости на глобальное поведение траекторий динамической системы, характеризуемое эргодичностью, топологической транзитивностью и т. д., отмечали еще Адамар и Морс в начале ХХ-го века, изучавшие статистику поведения геодезических на поверхностях отрицательной кривизны. И позже исследования, связанные с геодезическими потоками, привели к введению различных классов гиперболических динамических систем (систем Аносова, РЧГ-систем и НПГ-систем с мерой Лиувилля). Сами же геодезические потоки всегда были прекрасным полем применения динамических методов, что, в частности, позволяло получать интересные результаты дифференциально-геометрического характера. О связи геодезических потоков с классической механикой сказано в главе 1, 1 .  [c.157]

Уже в 5 мы указали связь уравнения волновой механики с классической механикой а именно оказалось, что центр волнового пакета всегда движется так же, как движется материальная точка, на которую действует сила, равная среднему значению классической силы, по волновому пакету. Это само по себе не означает ещё полного предельного перехода к классической механике. Действительно, ведь классическая сила может на протяжении волнового пакета очень сильно изменяться, и поэтому среднее значение классической силы может сколь угодно сильно отличаться от значения силы в центре тяжести пакета. Только тогда, когда можно построить волновой пакет, внутри которого классическая сила изменяется достаточно мало, получается совпадение со свойствами системы, выведенными из траекторий классической механики. Кроме того, волновой пакет можно рассматривать только за такой промежуток времени, в течение которого размеры пакета изменяются лишь немного. Если речь идёт о стационарных состояниях и периоди-  [c.147]


Итак, мы коротко обсудили, каким образом основные параметры состояния в классической термодинамике Т п 5 связаны с соответствующими параметрами 0 и И в статистической механике. Важная роль постоянной Больцмана к очевидна она обеспечивает связь между численными значениями механических (в классической или квантовой механике) и термодинамических величин. Здесь следует отметить еще одно уточнение величины температуры, вытекающее из уравнения (1.16). Температура является параметром состояния, обратно пропорциональным скорости изменения логарифма числа состояний как функции энергии для системы, находящейся в тепловом равновесии. Поскольку число состояний возрастает пропорционально очень высокой степени энергии, то определенная таким образом температура всегда будет положительной величиной.  [c.22]

Классическая механика исходит из предположения, что свойства пространства и времени не зависят от того, какие материальные объекты участвуют в движении и каким образом они движутся, В связи с этим возникает возможность предварительно выделить и изучить некоторые общие свойства движений. При таком изучении рассматриваются лишь общие геометрические характеристики движения, которые в равной мере относятся к движению любых объектов — молекулы или Солнца, изображения на экране телевизора или тени самолета на Земле. Если бы предметом нашего исследования были лишь свойства пространства, то мы не вышли бы за пределы геометрии. С другой стороны, если бы мы интересовались лишь течением времени, то возникающие при этом простые задачи относились бы к иной науке, которую можно было бы назвать хронометрией . Согласно данному выше определению механики, нас интересуют изменения положения некоторых объектов в пространстве и времени. До тех пор, пока мы не рассматриваем инерционных свойств движущихся объектов, нас интересует по существу лишь объединение геометрии и хронометрии. Такое объединение геометрии и хронометрии называется кинематикой. Кинематика не является собственно частью механики (поскольку при ее построении никоим образом не учитываются инерционные свойства материи) и могла бы излагаться в курсах геометрии. Однако по традиции в обычные курсы геометрии кинематика не включается, и необходимые сведения из кинематики приводятся в курсах механики. Связано это главным образом с тем, что хронометрия сравнительно бедна идеями и фактами, и поэтому, если отвлечься от потребностей механики, добавление хронометрии к обычным геометрическим построениям мало интересно с математической точки зрения.  [c.10]

Механика интересуется не только кинематическими характеристиками движения, но и установлением законов движения, т. е. определением того, каким образом движения зависят от взаимодействия материальных объектов. В связи с этим исходные предположения и постулаты, достаточные для построения геометрической картины движения, недостаточны для определения законов механики они должны быть дополнены предположениями, которые вместе с предположениями о пространстве, времени и способах введения систем отсчета (см. гл. I) составляют исходную аксиоматику классической механики.  [c.40]

Взаимодействие материи. Материальные объекты, расположенные в разных частях пространства, взаимодействуют, т. е. движение одних материальных объектов зависит от наличия других материальных объектов и их движения таковы, скажем, гравитационные, электрические, магнитные и иные взаимодействия. Физическая природа этих взаимодействий связана с понятием о физических полях, которое не укладывается в исходные представления классической механики. Так, например, с точки зрения общей теории относительности гравитационные взаимодействия материи являются следствием того, что время и пространство взаимосвязаны в единый четырехмерный континуум пространство-время , что этот континуум подчиняется законам не евклидовой, а римановой геометрии, т. е. что он искривлен , и что локальная кривизна в каждой его точке зависит от распределения материальных объектов и их движения. Таким образом, физические причины гравитационного взаимодействия материи тесно связаны с такими свойствами пространства и времени, которые не учитываются в исходных предположениях классической механики.  [c.41]


I) В соответствии с представлениями теории относительности Вселенная представляет собой четырехмерный континуум пространство-время , поэтому и мера движения должна быть четырехмерным вектором. Классическая механика, предполагая, что течение времени не связано с пространством, вводит в рассмотрение два раздельных объекта — трехмерное пространство и скалярное время. Естественно, что и мера движения в классической механике расщепляется на трехмерную векторную меру и на меру скалярную. В этом смысле скалярную меру — кинетическую энергию — можно рассматривать как проекцию четырехмерной меры из временную координату. О своеобразной связи энергии и времени в классической механике речь будет идти и далее см., например, 2 и 7 гл. VII.  [c.54]

Если локальному подходу соответствовал аппарат дифференциальных уравнений, то глобальному подходу соответствует аппарат вариационного исчисления. В связи с тем, что основы вариационного исчисления обычно незнакомы студентам к моменту, когда изучается классическая механика, автор вынужден предпослать изложению вопросов, связанных с глобальным подходом, некоторые сведения о вариационном исчислении, ограничиваясь лишь самыми необходимыми фактами мы рассмотрим к тому же не общий, а лишь частный, недостаточный для наших целей случай, когда сравниваются кривые, принадлежащие одному и тому же однопараметрическому семейству (пучку).  [c.272]

В основе классической механики Галилея — Ньютона, кроме понятия о движении, изучением которого механика занимается, лежит вводимое аксиомами Ньютона понятие о силе, где сила определяется как абстрактно представленная причина изменения состояния движения. Понятие о силе возникло из примитивного опыта и наглядного представления о мускульном усилии человека. Это представление, будучи распространено на все виды движений, вызвало значительные затруднения при стремлении ученых-механиков создать логически строгую систему механики вследствие того, что понятие о силе само по себе связано с большим количеством не всегда ясных, а иногда и противоречивых опытных соотношений. Поэтому еще до работ Ньютона некоторые исследователи [как, например, Декарт (1Й6 —1650)]  [c.14]

Время в классической механике универсально. Оно не связано с пространством и движением материальных объектов. Во всех системах отсчета, движущихся друг относительно друга, оно протекает одинаково. В теории относительности пространство и время связаны друг с другом. Они рассматриваются как единое четырехмерное пространство — время. Время при этом зависит от того, в какой системе отсчета оно рассматривается. В классической механике время опреде-  [c.223]

Физическими предпосылками, положенными в основу установления связи фрактальной размерности с предельной поперечной деформацией является следующие [18] классическая механика в однородной изотропной модели твердого тела использует три коэффициента упругости, являющихся характеристиками состояния вещества модуль Юнга Е, модуль сдвига G и коэффициент Пуассона V, определяемый отношением поперечной деформации к про-  [c.100]

Система уравнений, включающая в себя уравнения электромагнитного поля, "материальные соотношения и граничные условия, названа системой уравнений Максвелла и играет в электродинамике ту же роль, что и аксиоматика уравнений Ньютона в классической механике. Из дальнейшего станет ясно, что классическая физика зиждется на уравнениях Ньютона и Максвелла, а из проведенного краткого рассмотрения очевидна генетическая связь уравнений Максвелла с экспериментальными законами электромагнетизма.  [c.20]

Пространство и время являются формами существования (бытия) материи и как таковые являются объективной реальностью, существующей независимо от нас, независимо от нашего сознания. Многочисленные идеалистические извращения содержания понятий о пространстве и времени вызывают необходимость подробнее рассмотреть эти понятия в теоретической механике на основании философии диалектического материализма. Приведем классическое высказывание В. И. Ленина, в котором определяется содержание понятий о пространстве и времени. Признавая существование объективной реальности, т. е. движущейся материи, независимо от нашего сознания, материализм неизбежно должен признавать также объективную реальность времени и пространства, в отличие, прежде всего, от кантианства, которое в этом вопросе стоит на стороне идеализма, считает время и пространство не объективной реальностью, а формами человеческого созерцания Л- Этим высказыванием В. И. Ленина определяются материалистические представления о пространстве и времени. Необходимо отметить, что понятия о пространстве и времени внутренне неразрывно связаны с движением материи в пространстве и времени. Как будет отмечено в дальнейшем, это понятие единства материи, пространства и времени является одним из основных в современной физике.  [c.66]

Следовательно, метрика физического пространства в данном случае непосредственно связана с полем сил тяготения классической механики.  [c.529]

Это совершенно общее положение осуществляется, конечно, и в классической механике, опирающейся на преобразования Галилея. Преобразования Галилея, устанавливающие связь между координатами и временами в разных системах отсчета, двигающихся друг относительно друга, исходят из допущения, что времена в различных системах отсчета совпадают между собой, т. е. что 1=1. Это означает, что синхронизация часов в теории Галилея предполагается осуществленной путем установления связи между пунктами, где расположены синхронизируемые часы, с помощью сигналов, распространяющихся с бесконечной скоростью. Если такой сигнал выходит из Л в момент (по часам А) и часы в В в момент прихода туда бесконечно быстрого сигнала показывают /д, то синхронизация часов обеспечена, если /д == 1а.  [c.456]


Привычность преобразований Галилея, которыми в физике и механике пользовались в течение нескольких столетий, привела к тому, что преобразования эти казались вполне естественными и свободными от каких-либо допущений. В действительности же, как мы видим, эти преобразования покоятся на вполне определенном допущении относительно приема синхронизации часов, а именно, на допущении о возможности осуществить такую синхронизацию с помощью бесконечно быстрых сигналов. Именно с бесконечной скоростью синхронизирующего сигнала и связано то обстоятельство, что понятие одновременности в классической механике имеет абсолютный смысл, т. е. события, одновременные в какой-либо одной системе отсчета, оказываются одновременными и во всех остальных.  [c.456]

Классическая механика принимает в качестве времени одно абсолютное время , одинаковое для всех систем отсчета, как бы они ни двигались по отношению друг к другу. Таким образом, в соответствии с принятой степенью отвлечения, в классической механике не учитывается связь свойств пространства и времени с распределением материи. Это приводит к тому, что выводы классической механики являются приближенными. Как уже упоминалось, они тем более точны, чем меньше скорости рассматриваемых движений по сравнению со скоростью света и чем ограниченнее масштабы движений по сравнению с космическими.  [c.11]

Из опытов по фоторасщеплению дейтона известно, что его энергия связи 2,23 Мэе. С точки зрения классической механики это означает, что между нейтроном и протоном, находящимися  [c.487]

Суперпозиция в классической и квантовой физике. Суперпозиция часто встречается в классической физике это хорошо известная суперпозиция классических волн. С математической точки зрения классическая суперпозиция и суперпозиция в квантовой физике аналогичны. Именно это обстоятельство немало способствовало развитию квантовой теории. В то же время оно затрудняло осмысливание физического содержания получаемых в теории результатов, так как порождало соблазн проводить неоправданные аналогии с классическими волнами. Как писал Дирак, допущение суперпозиционных связей между состояниями приводит к математической теории, в которой уравнения движения, определяюш,ие состояния, линейны по отношению к неизвестным. Ввиду этого многие пытались установить аналогии с системами классической механики, такими, как колеблющиеся струны или мембраны, которые подчиняются линейным уравнениям, а следовательно, и принципу суперпозиции. Важно помнить, однако, что суперпозиция в квантовой физике существенным образом отличается от суперпозиции, встречающейся в любой классической теории. Это  [c.108]

Основными понятиями классической механики являются понятия материального тела, материальной точки, движения материальной точки по определенной траектории и силы как причины тех или иных особенностей движения материальных тел и точек. Хотя классическая физика в современном понимании начинается с Ньютона, основные понятия и представления, на которых она базируется, зародились задолго до него. Они постепенно возникли в человеческом сознании с самых древних времен в процессе практической деятельности человека. Практическая деятельность также свидетельствовала, что все материальные тела имеют протяженность, занимают определенное место в пространстве и располагаются определенным образом друг относительно друга. Эти наиболее общие свойства материальных тел отразились в сознании человека в виде понятия пространства, а математическая формулировка этих свойств была выражена в виде системы геометрических понятий и связей между ними. Практическая деятельность человека также свидетельствовала о том, что окружающий его материальный мир находится в процессе постоянных изменений. Свойство материальных процессов иметь определенную длительность, следовать друг за другом в определенной последовательности и развиваться по этапам и стадиям отразилось в человеческом сознании в виде понятия времени.  [c.11]

Механика точки Ньютона явилась основой для построения механики совокупностей точек, составляющих материальные тела, среды и т.д. Если движение отдельных точек описывается в соответствии с законами Ньютона, то соответствующая теория относится полностью к классической физике. Во многих случаях в механике тела или среды используется представление о сплошной среде, когда масса считается как бы непрерывно размазанной в пространстве, а движение элемента массы в бесконечно малом объеме описывается законами механики точки. Механика сплошных сред при этом условии относится также к классической физике. В связи с этим о механике твердого тела необходимо сделать такое  [c.13]

Таким образом, при больших значениях квантовых чисел мы оказываемся в области Рэлея — Джинса, где плотность излучения пропорциональна 7 в соответствии с классической электромагнитной теорией. Излучение в этой области, однако, почти полностью связано с вынужденным испусканием. Таким образом, вынужденное излучение ведет себя как классический процесс и может быть вычислено в соответствии с классической механикой. Именно поэтому излучательная способность металлов в дальней инфракрасной области весьма близко подчиняется простым соотношениям Друде — Зенера. По этой же причине в электронной технике так успешно используются уравнения Максвелла.  [c.322]

В тридцать втором издании сделана попытка, не выходя за рамки теоретической механики, отразить в какой-то степени новые проблемы техники и более полно охватить те вопросы классической механики, которые не нашли до сих пор достаточного освещения. В связи с этим в Сборник введены новые разделы, содержащие задачи по пространственной ориентации, динамике космического полета, нелинейным колебаниям, геометрии масс, аналитической механике. Одновременно существенно дополнены новыми задачами разделы кинематики точки, кинематики относительного дзихсения и плоского движения твердого тела, динамики материальной точки и системы, динамики точки и системы переменной массы, устойчивости движения. Небольшое количество новых задач введено также почти во все другие разделы Сборника некоторые задачи исключены из него. Сделаны также небольшие перестановки в размещении материала. В конце Сборника в качестве добавления приведена Международная система единиц (СИ).  [c.8]

В любом случае, однако, предполагаются выполненными исходные предположения, сформулированные в 2. Отход от этих предположений невозможен в пределах классической механики и приводит к построению иных систем механики. Такая ситуация возникает, например, при отказе от описанных гыше представлений о пространстве и времени и от принципа относительности Галилея. Именно отказ от этих исходных представлений о времени и пространстве и предположение о том, что уравнения и законы механики должны быть инвариантны (или ковариантны) по отношению не к преобразованиям Галилея, а к иным преобразованиям-преобразованиям Лоренца, привели к появлению релятивистской механики. С этими исходными представлениями связаны ограничения, в пределах которых законы классической механики могут применяться при изучении движения объектов реального мира.  [c.66]

Современная физика привела к представлениям о пространстве и времени, в значительной мере отличающимся от представлений классической механики. Необходимо в связи с этим отметить, что великий русский геометр Н. И. Лобачевский почти за 80 лет до появления работ по теории относительности утверждал, что геометрия Ещклида, возможно, принадлежит не к физическим, а абстрактным геометрическим системам. Действительные пространственные соотношения в физическом мире определяются физической геометрией, в общем случае не совпадающей с геометрией Евклида. Установить, какая именно геометрия является физической, можно экспериментально. Выдвинутую им геометрическую систему Н. И. Лобачевский называл воображаемой , но полагал, что в известных условиях физического бытия звездных систем найденные им соотношения могут быть подтверждены физическими наблюдениями и опытами.  [c.67]


Это, кратко говоря, связано с тем, что количественное отклонение реальных законов механических движений от законов классической механики проявляется либо при больших скоростях, приближающихся к скорости света в пустоте, либо вблизи колоссальных скоплений вещества, таких, какие, например, существуют в Солнце. Р1збирая некоторую систему координат как условно неподвижную систему, мы вносим, конечно, ошибку, но чаще всего эта ошибка количественно невелика, и мы практически получаем возможность пользоваться подвижной системой как условно неподвижной. Об этом будет подробнее сказано в той части этой книги, в которой рассматриваются основные положения динамики. Для кинематики существенным является отнесение геометрии физического пространства к евклидовой геометрии. Выбор неподвижной системы координат в кинематике зависит от условий конкретной задачи и не связан с физическими предположениями, о которых шла речь выше.  [c.68]

Законы классической механики, излагаемые в т. I, дают нам возможность рассчитывать с исключительной точностью движение различных тел Солнечной системы (включая кометы и астероиды) знание этих законов позволило предсказать существование новых планет и открыть их. Эти законы подсказывают нам, как могли образоваться звезды и галактики, вместе с законами излучения они дают хорошее объяснение наблюдаемой связи между массой и яркостью звезд. Астрономические применения законов классической механики — это наиболее кpa ивыe но не единственные примеры их успешного использования. Мы постоянно применяем эти законы в повседневной жизни и в технических науках.  [c.21]

В статике рассматривались механические силовые взаимодействия материальных тел в равновесных их состояниях. В кинематике были установлены методы изучения происходящих в пространстве и во времени механических движений материальных тел и их систем, но вне связи с механическими взаимодействиями, обусловливающими эти движения. Динамика ставит целью изучение движения материальных тел в связи с механическими взаимодействиями между ними. При этом динамика заимствует у статики законы сложения сил и ириведеиия сложных их совокупностей к простейшему виду и пользуется принятыми в кинематике приемами описания движений. Задачей динамики является установление законов связи действующих сил с кинематическими характеристиками движений и применение этих законов к изучению частных видов движений. Лучше всего это сформулировано самим Ньютоном (1642—1726), создателем классической системы механики. Динамика должна, говорит он, по явлениям движения распознать силы природы, а затем по этим силам изъяснить остальные явления ). Эта формулировка точно передает сущность динамики и будет подробно разъяснена в дальнейшем.  [c.9]

Абсолютное время рассматривается как одинаковое во всех взаимно движущихся системах отсчета, что находится в противоречии с конечностью скорости света, а также скорости распространения электромагнитных возмущений и радиосигналов. Вопрос о связи между отсчетами времени в двух взаимно движущихся инерциальных системах отсчета в настоящее время решается просто и наглядно благодаря использованию радиолокационного метода ). Об этом будет частично идти речь в гл. XXXI, посвященной основным понятиям специальной теории относительности. Сейчас, подчеркнем это еще раз, в классической механике Ньютона используется абсолютное время , единое во всех движущихся друг по отношению к другу системах отсчета.  [c.10]

В седьмой главе изложена теория флуктуаций термодинамических величин в равновесных системах и рассмотрены ее приложения к обоснованию фундаментального положения неравновесной термодинамики — соотношений взаимности Онзагера. Представление о флуктуациях выходит за рамки классической равновесной термодинамики, и в учебных пособиях по термодинамике теория флуктуаций обычно не излагается. Теория флуктуаций использует как положения классической термодинамики, так и выводы статистической механики. В связи с этим изложены некоторые положения классической равновесной статистической механики Гиббса и на их основе дан вывод формулы Больцмана для расчета флуктуаций термодинамических величин в изолированных системах и далее — в открытых системах, обменивающихся с окружающей средой энергией и веществом. Рассмотрены условия термодинамической устойчивости систем по отношению к непрерывным изменениям параметров состояния и их взаимосвязь с флуктуациями термодинамических переменных. Получены выражения для средних квадратов флуктуаций основных термодинамических величин. Проанализированы границы применимости термодинамической теории флуктуаций особое внимание уделено предположе-  [c.5]

Рассмотрим в качестве примера, иллюстрирующего важность соотношения неопределенностей для анализа явлений микромира, движение электрона в основном состоянии атома водорода. В теории Бора точечный электрон движется по орбитам, которые квантованы. Однако его движение по квантованной орбите ничем не отличается от механического перемещения частицы вдоль траектории в классической механике. В рамках квантовой механики нельзя говорить о движении электрона по траектории, но можно говорить о вероятности местонахождения электрона в той или иной области пространства. Это обстоятельство также связано с принципом неопределенности если электрон зафиксирован в какой-то точке пространства в какой-то момент времени, то его импульс, а следовательно, и скорость становятся полностью неопределенными и понятие траектории теряет смысл. Распределение вероятностей координат 3j/eKTpoHa в атоме водорода рассмотрено в 30. Здесь достаточно заметить, что имеются вероятности пребывания электрона достаточно далеко от ядра и достаточно близко. Наиболее вероятным расстоянием в основном состоянии является расстояние до первой боровской орбиты в теории Бора. Это заключение в принципе может быть подтверждено экспериментально. В настоящее время проведено достаточно много измерений распределения плотности электронного облака в атомах и эти измерения находятся в хорошем согласии с предсказаниями квантовой механики.  [c.120]

Использование для этого объекта квантовой механики термина материальная точка обусловлено в первую очередь тем, что он проявляет себя в наблюдении как единый объект пространственно-временной локализации, которая характеризуется четырьмя координатами (x,y,z,t), как и у материальной точки классической механики. Другое важное обстоятельство, обусловившее название маге-риальная точка для этого объекта, связано с его ролью в теории он в квантовой теории выступает элементарным объектом аналогично материальной точке, которая является элементарным объектом в классической теории. Так же как и в классической механике, более сложные системы, например атомы, изучаются на основе законов, управляющих движением составляющих их материальных точек с учетом взаимодействия между ними. Такой подход 1ЮЗВОЛИЛ успешно описать громадное разнообразие квантовых систем, начиная от глюонов, адронов и кончая материальными системами вселенских масштабов, и подтвердил спра-  [c.404]

Эйнштейн и его сторонники также не сомневались в правильности предсказаний квантовой механики, но их убеждение в неполноте квантовой механики еще более укрепилось, потому что предсказываемые ею корреляции не могут быть в рамках теории объяснены физическими связями. Эта ситуация привела к появлению большого числа работ по теории скрытых параметров. Цель создания такой теории состояла не в том, чтобы решить проблемы, которые не могла решить квантовая механика, а в том, чтобы получить результаты квантовой механики в рамках классических представлений. Поэтому вопрос об экспериментальном выборе между теорией скрытых параметров и квантовой механикой не мог быть даже поставлен и никакие эксперименты по этому вопросу в течение более 30 лет не планировались и не ставились. Лишь в 1964 г. Беллом было показано, что при самых общих предположениях в определенных ситуациях между результатами теории скрытых параметров и квантовой механики существуют числовые расхождения, которые можно исследовать в эксперименте. Таким образом, соответствующие эксперименты могли сделать возможным выбор между теорией скрытых параметров и квантовой механикой. Больше того, уже первоначальный анализ показал, что в противовес общепринятому убеждению в то время (середина 60-х годов) не было ни одного прямого экспериментального подтверждения справедливости корреляционных предсказаний квантовой механики. В связи с Э1им эксперимен-  [c.416]

В конце XVIII в. главное внимание и усилия учёных-теоретиков были направлены на псследование и преодоление указанных математических трудностей (задачи небесной механики, развитие общей теории дифференциальных уравнений, вариационные принципы и т. д.). Исходные уравнения движения рассматривались в общем виде в связи с этим была распространена точка зрения о сводимости физических явлений к механическим движениям и о законченности механики как науки. Основная трудность усматривалась в интегрировании дифференциальных уравнений механики. Известное положение Лапласа гласило дайте начальные условия, и этого достаточно, чтобы предсказать всё будущее и восстановить всё прошедшее. Однако нужно заметить, что даже в рамках классической механики теоретическую проблему о составлении дифференциальных уравнений движения нельзя считать простой и уже принципиально разрешённой. Как раз задача о составлении уравнений движения, задача о действующих силах, т. е. о правых частях дифференциальных уравнений движения, является основной задачей физических исследований, причём даже в условиях возможных применений классической механики эта задача не разрешена в очень многих случаях. В тех же случаях, когда для простейших приложений существует необходимое приближённое решение, оно нуждается в постоянных уточнениях.  [c.27]



Смотреть страницы где упоминается термин Связь с классической механикой : [c.20]    [c.106]    [c.12]    [c.275]    [c.54]    [c.277]    [c.252]    [c.110]    [c.189]    [c.7]    [c.6]    [c.98]   
Смотреть главы в:

Применение теории групп в квантовой механике Изд.4  -> Связь с классической механикой



ПОИСК



Газ классический

Механика классическая



© 2025 Mash-xxl.info Реклама на сайте