Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение Точность

Р а в в а Ж. С. Повышение устойчивости движения, точности перемещения и положения узлов станков путем автоматической функциональной разгрузки их направляющих. Автореферат кандидатской диссертации. М., 1967.  [c.50]

Нагрузочная способность, быстродействие, быстроходность, равномерность движения, точность  [c.32]

Удельные давления непосредственно связаны с коэффициентом трения, которому в конструкциях приборных устройств уделяется большое внимание. От коэффициента трения зависят постоянство движения, точность воспроизведения перемещений и другие факторы.  [c.280]


Основной частью всех точных приборов являются механизмы, передающие и трансформирующие движение. Точность работы таких приборов зависит в основном от механической части , но и в тех приборах, в схему которых входит оптика и электротехника, точность работ в большой степени зависит от механических деталей, направляющих движение оптики, несущих контактные устройства и т. п. Основой для разработки таких норм точности и других технических условий служат результаты лабораторных и эксплуатационных испытаний и исследований.  [c.23]

Равва Ж. С., Я н к о в с к и й В. В., Дергач ев Г. В. Об оптимальном по устойчивости движения, точности положения и перемещения сближении поверхностей направляющих прецизионных станков. В сб. Механика, Куйбышев, 1973.  [c.54]

Грузоподъемность манипуляторов и ПР определяется как суммарная грузоподъемность его захватных устройств, которая представляет собой наибольшую массу детали, перемещаемую при заданных условиях (заданной скорости движения, точности позиционирования и т. д.).  [c.104]

Точность взаимосвязанных движений Точность двух взаимосвязанных линейных движений  [c.720]

При решении задач синтеза механизмов должны быть приняты во внимание все условия, обеспечиваюш,ие осуществление требуемого движения. Такими условиями являются следующие правильная структура проектируемого механизма, кинематическая точность осуществляемого движения, возможность создавать проектируемым механизмом заданное движение с точки зрения динамики и, наконец, условие, чтобы размеры звеньев проектируемого механизма допускали воспроизведение заданного движения. В настоящей главе мы остановимся на общем решении основных задач синтеза и покажем, как могут быть при этом учтены вышеуказанные структурные, кинематические, динамические и метрические условия.  [c.413]

Можно показать, что изотропные напряжения — единственные напряжения, которые не совершают работы при любом изохорном движении. Таким образом, напряжение в материале с постоянной плотностью определено лишь с точностью до аддитивного изотропного напряжения.  [c.133]

На рис. 330, а приведены примеры нанесения предельных отклонений сопрягаемых размеров деталей по СТ СЭВ 144-75 для осуществления первой прессовой посадки по 3-му классу точности в системе отверстия и посадки движения по 1 -му классу точности в системе вала (ГОСТ 2.307-68).  [c.179]

Большую точность изготовления обеспечивает метод огибания. При этом методе медленно вращающаяся заготовка зубчатого колеса входит в зацепление с выступами зуборезной рейки (гребенки), совершающей возвратно-поступательное движение, в результате чего на заготовке образуются зубья определенного профиля (рис. 394, в).  [c.215]


При псевдоожижении мелких частиц наблюдался резкий скачок величины коэффициента теплообмена слоя с поверхностью сразу после начала псевдоожижения, что, по мнению авторов, является следствием действия в механизме теплообмена обусловленной движением пузырей конвективной составляющей переноса тепла частицами. Этот скачок менее заметен в слоях крупных частиц при повышенных давлениях, что объясняется увеличение.м вклада конвективной газовой составляющей в общий коэффициент теплообмена с ростом диаметра частиц и давления в аппарате и уменьшением при этом вклада переноса тепла частицами. Как правило, в экспериментах максимальные коэффициенты теплообмена соответствовали скоростям фильтрации газа, примерно на 30% превышающим о причем экспериментально определяемые величины оптимальной с точки зрения теплообмена скорости фильтрации газа с удовлетворительной точностью совпадали с рассчитываемыми по предложенной Тодесом корреляции (3.8).  [c.72]

Хотя в настоящее время даже спектроскопические данные недостаточны для обычного применения этих расчетов ко всем веществам в широком диапазоне условий, тем не менее значения термодинамических функций для состояния идеального газа могут быть с большой точностью использованы при расчете суммы состояний для поступательного движения, жесткого вращения и гармонического колебания, если незначительно влияние одного вида энергии на другой. Вычислять термодинамические функции для неидеального газового, жидкого и твердого состояний удобнее всего с помощью эмпирических уравнений состояния.  [c.114]

Зависимости (2-43)—(2-49) пригодны для оценки ряда величин в порядке прямого конструкторского расчета, когда известны (или заданы) начальные и конечные скорости (время) и необходимо определить время (конечную скорость) и путь (или высоту) движения частиц, обеспечивающие заданную конечную скорость (время). Тогда по (2-43) и (2-46 ) находится время движения, по (2-46) и (2-49) — безразмерные комплексы Р и y, по (2-44) и (2-47) — конечная скорость, а затем по (2-45) и (2-48) — требуемая протяженность канала L. Наряду с этим приближенный метод позволяет с наперед заданной точностью оценить общий характер движения частиц путем сравнения длительности разгона с полным временем движения (выражения (2-50) —(2-52)].  [c.73]

Данные [Л. 352] являются, пожалуй, первыми сведениями, полученными в промышленных условиях. Принято, что ф =1 и (<—<т) = = 0,20б<т- На этой основе расход частиц определялся по тепловому балансу теплообменника. На точность ряда опытов оказывало влияние обратное движение (оседание) части катализатора (йт=50 мк),  [c.219]

У штамповочных молотов стойки станины устанавливают непосредственно на шаботе. Эти молоты всегда имеют усиленные регулируемые направляющие для движения бабы. Масса шабота у штамповочных молотов в 20—30 раз больше массы падающих частей. Все эти конструктивные особенности обеспечивают необходимую при штамповке точность соударения штампов.  [c.87]

Обработка металлов резанием — это процесс срезания режущим инструментом с поверхности заготовки слоя металла в виде стружки для получения необходимой геометрической формы, точности размеров, взаиморасположения и шероховатости поверхностей детали. Чтобы срезать с заготовки слой металла, необходимо режущему инструменту и заготовке сообщить относительные движения. Инструмент и заготовку устанавливают и закрепляют в рабочих органах станков, обеспечивающих эти относительные движения в шпинделе, на столе, в револьверной головке. Движения рабочих органов станков подразделяют на движения резания, установочные и вспомогательные. Движения, которые обеспечивают срезание с заготовки слоя металла или вызывают изменение состояния обработанной поверхности заготовки, называют движениями резания. К ним относят главное движение и движение подачи.  [c.253]

В работе [1] показана эффективность автоматической стабилизации контактных деформаций (сближения поверхностей) направляющих узлов станков, при которой повышается уетойчивость движения, точность положения и перемещения ползуна в широком диапазоне внешних возмущающих воздействий. При этом исследования проводились на лабораторной экспериментальной установке, оснащённой системой разгрузки направляющих магнитным полем [2]..  [c.39]


Применение АСССН резко повышает устойчивость движения, точность положения и перестановки ползуна на направляющих скольжения в широком диапазоне нагрузок и скоростей. При этом возможна перестановка ползуна на сколь угодно малую величину, однако требует беззазорности кинематической пары винт—гайка либо использования гидропривода.  [c.49]

Применение автоматической системы стабилизации сближения направляющих (АСССН) резко повышает устойчивость движения, точность положения и перемещения узлов станков [1] [2]. Одновременно повышается долговечность направляющих и соответственно долговечность станка по точности.  [c.62]

Модель в виде материальной частицы. Точечная масса (частица) является простейшей моделью реальных твердых и сыпучих тел, перемещаемых или обрабатываемых на вибрирующих поверхностях вибрационных машии и устройств. Вместе с тем приведенные в гл. I формулы и графики для определения средней скорости движения частицы дают удовлетворительное качественное объяснение, а во многих случаях и количественное описание основных закономерностей поведения реальных тел в вибрационных машинах и устройствах. При проведении расчетов конкретных устройств следует принимать во внимание допущения, при которых получены формулы для определения средней скорости движения, точность и пределы применимости этих формул. В частности, формулы, полученные без учета сил сопротивления среды, могут дать существенную погрешность для достаточно малых одиночных частиц (см. стр. 15 и рис. 2 гл. I), а такж при движении достаточно толстого по сравнению с толщиной частиц слоя сыпучего материала [2, 16, 22]. На движение слоя сыпучего материала кроме сопротивления воздуха заметно влияет также форма рабочего органа машины (трубы, лотка).  [c.86]

Количественно моторные реакции характеризуются размерами моторного поля, формами траекторий движения, скоростью их осуществления, силовыми параметрами и качеством регуляции усилий в процессах движения, точностью движения и энергетическими затратами. При оценке этих характеристик применительно к условиям реального космического полета необходимо учитывать прежде всего влияние невесомости. Наблюдения за выполнением моторных операций космонавтами во время полета космических аппаратов СССР и США, а также самонаблюдения космонавтов позволяют сделать предварительный вывод в том, что длительная невесомость не создает в координации движений космонавта таких изменений, которые могли бы привести к заметному ухудшению его работоспособности [55]. Следовательно, изученные в наземных условиях характеристики могут вполне использоваться и при прогнозировании деятельности космонавтов. Правда, результаты опытов в малогабаритных гермокабинах свидетельствуют о снижении таких характеристик, как сила и скорость движений рук, точность дозирования мышечных усилий, выносливость мышц ИТ. д., но даже минимальные физические упражнения сравнительно легко это снижение компенсируют [21]. Некоторые изменения характеристик моторного выхода космонавта-оператора возможны при длительном вращении [58], однако в большей степени это относится к среднеквадратичным отклонениям и законам распределения таких величин, как время, скорость, дальность, сила и прочее, а не к их математическим ожиданиям. Как показал ряд специальных исследований [41, 42], реакция человека на длительное воздействие комплекса факторов космического полета в целом неблагоприятна. Развивается специфическое утомление, нарушается ритмика деятельности, увеличиваются число ошибок и время латентного периода реакций, снижается мышечная выносливость.  [c.273]

Мы уже знаем, что направляющие (см. рис. 41) могут иметь различную фор му и разные профили, завпсящне от предъявляе-мы.х к ним требований — жесткости, скорости движения, точности н др.  [c.143]

Следующей важной задачей является определение положения характеристики регулятора. Для этого необходимо знать следующие величины максимально допускаемое значение размера динамической настройки Лдшах, определяемое из условия прочности слабого звена силовой цепи или мощности привода главного движения точность стабилизации АЛд, определяемую как часть допуска на размер обрабатываемых деталей максимальное и минимальное значения припуска в партии деталей, подлежащих обработке. Теперь можно определить значения подач, соот-  [c.525]

При ТИ недопустимо использование испытательных стендов с ручными приводами рабочих движений. Точность и жесткость станков, являющихся основой испытательных стендов при экспресс- и лабораторно-станочных испытаниях, должны соответствовать техническим требованиям и паспортным данным. Время эксплуатащ1и станков не должно превышать длительности одного ремонтного щясла. Предпочтительными являются станки классов П, В, О, С. До начала испытаний стенды приводят в работоспособное состояние. Для этого вращение шпинделя вкгаочают не менее чем за 10 мин до начала ТИ с целью выборки зазоров в технологической системе.  [c.217]

Показатели динамического ачества (ПДК) системы привод—ползун— направляющие скольжения — процесс трения (ППНТ) (устойчивость движения, точность перестановки и остановка узла, величина и характер изменения силы трения) являются определяющими при оценке точности и работоспособности станка.  [c.46]

Привод малых подач, рабочий орган, исполнительный механизм, направляющие (прямолинейного и кругового движений). Точность формы, относительного расположения поверхностей и параметры шероховатости обработанной поверхности определяются приводом подачи. В сверхпрецизионном оборудовании к нему относятся следующие элементы силовые базы (направляющие как прямолинейного, так и кругового движений), рабочие органы станка (например, суппорт), исполнительные двигатели привода, передачи (например, винтовые или фрикционные), мет-ролическая система и система управления, источник энергии.  [c.664]


Очевидна, что движение точки звена, совпа.аающей с центром П, как не имеющей ускорения, может быть о точностью до порядка принято за равномерное  [c.102]

Принципиально новым элементом современных технологических систем являются промышленные роботы — класс автономных машин-автоматов, нмеюш,их универсальные исполнительные органы в виде механических рук , движениями которых автоматически управляют упиверсальиые устройства. В этих машинах гармонически сочетаются механические совершенства технологических и трзнсиортпых маиши, достижимые на современном уровне развития машиностроения, т. е. высокие показатели точности, быстродействия, мощности, наде.- кности, компактности, с интеллектуальными совершенствами, которые обусловлены современным уровнем техники автоматического управления. Сюда относятся большой объем памяти, обеспечивающий большое число возможных программ действия удобство изменения программы способность контролировать правильность своих действий адаптивность способность реагировать на изменение внешней среды способность к самообучению и к оптимальным действиям.  [c.611]

При достаточно медленном течении уравнения (6-3.2) и (6.2.4) дают одинаковые напряжения, или, говоря более точно, одинаковые с точностью до членов порядка а-, где а — коэффициент замедления. Однако они дают различные результаты, если рассматривается движение с произвольной скоростью . Можно напомнить, что тензор Ривлина — Эриксена дает тейлоровское разложение достаточно гладкой предыстории деформирования, выраженной в терминах тензора Коши С, в то время как тензоры Уайта — Метцнера получаются при разложении в ряд предыстории, описываемой тензором  [c.216]

Схема широко расиространенного гидроусилителя с рычажной связью между звеньями показана на рис. 3.111. В нем выходному звену, штоку 6, сообщаются движения, согласованные с определенной точностью с перемещением звена управления, тяги 2, при требуемом усилении входной мощности.  [c.402]

Для построения изображения цилиндрической винтовой линии по данному диаметру основания цилиндра d, шагу винтовой линии Р. направлению вращения точки (по часовой или против часовой стрелки) и направлению поступапельного движения точки (вверх или вниз) окружность основания цилиндра делят на любое количеспво равных частей (на рис. 283 на двенадцать, чем больше делений, тем больше точность выполняемых построений). Точки деления нумеруют по направлению движения точки, образующей винтовую лилию (на рис. 283 — прочив часовой стрелки). Затем на контурной образующей цилиндра откладывают заданный шаг, который делят горизонтальными прямыми на то же количество равных частей точки делений нумеруют снизу вверх.  [c.147]

Несмотря на значительные расхождения между экспериментальными и расчетными данными (рис. 3.11), выражение для конвективной составляющей коэффициента теплообмена в ряде случаев [75, 76, 78, 88] довольно успешно описывает экспериментальные данные. Это позволило провести ряд специальных опытов, направленных на изучение механизма конвективного теплообмена в слоях крупных частиц. Исследования проводились на установке, подробно описанной в параграфе 3.4. Измерение коэффициентов теплообмена между поверхностью датчика-нагревателя и слоем дисперсного материала осуществлялось по методике, изложенной в 3.4.3. В данной серии опытов использовался датчик диаметром 13 мм, устанавливаемый вертикально вдоль оси колонны или горизонтально на расстоянии 62 мм от газораспределительной решетки. Слой образовывали модельные материалы — стеклянные шарики узкофракционного состава со средними диаметрами 0,45 мм (0,4—0,5), 1,25 мм (1,2— 1,3) и 3,1 мм (3,0—3,2). Их физические характеристики приведены в табл. 3.3. Коэффициенты теплообмена измерялись в псевдоожиженных слоях, затем в плотных, зажатых сверху жесткой металлической сеткой (опыты проводились в колонне из оргстекла, при этом движения частиц не наблюдалось). Эксперименты с плотн лми зажатыми слоями повторялись заметного разброса точек (вне пределов точности измерений) не наблюдалось.  [c.88]

Конструктивные присоединительные элементы с подвижным контактом образуют подвижные соединения, иапри-мер зубья зацеплений, элементы деталей подшипников каче-Г1ИЯ, элементы направляющих прямолинейного движения, поверхности кулачков и толкателей и т. п. Все такие элементы составляют кинематические пары поступательные, вращательные, винтовые и др. В подвижных соединениях сопряженные элементы обеспечивают взаимную ориентацию сопря-гаемых деталей и передачу усилий при их относительном движении по заданному закону. Изображения таких пар см. 17 Изображения соединений деталей . Размеры формы таких ). 1е ептов выгюлняются, как правило, с высокой точностью, поэтому па рабочих чертежах эти размеры имеют малые допуски.  [c.135]


Смотреть страницы где упоминается термин Движение Точность : [c.97]    [c.412]    [c.432]    [c.46]    [c.148]    [c.322]    [c.538]    [c.583]    [c.58]    [c.205]    [c.292]    [c.329]   
Справочник технолога машиностроителя Том 1 (1963) -- [ c.413 ]



ПОИСК



Весы платформенные — Нормы точности в движении

Движения в станках и точность позиционирования

Механизмы обеспечения точности положения и движения рабочих органов

Основные типы механизмов поступательного движения — Сборка механизмов поступательного движения и методы проверок на точность

Оценка точности построенной теории движения КА

Повышение точности обработки деталей типа тел вращения путем управления относительным движением технологических баз детали и режущих кромок инструмента (Б. М. Базров)

Точность относительного движения исполнительных поверхностей

Точность положения и движения исполнительных поверхностей металлорежущих систем



© 2025 Mash-xxl.info Реклама на сайте