Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решения и канонические преобразования

Решения и канонические преобразования 103- 18  [c.76]

РЕШЕНИЯ И КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ  [c.96]

S 103—118. РЕШЕНИЯ И КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ 99  [c.99]

Углубленный курс классической механики долгое время считался обязательной частью учебных планов по физике. Однако в настоящее время целесообразность такого курса может показаться сомнительной, так как студентам старших курсов или аспирантам он не дает новых физических понятий, не вводит их непосредственно в современные физические исследования и не оказывает им заметной помощи при решении тех практических задач механики, с которыми им приходится встречаться в лабораторной практике. Но, несмотря на это, классическая механика все же остается неотъемлемой частью физического образования. При подготовке студентов, изучающих современную физику, она играет двоякую роль. Во-первых, в углубленном изложении она может быть использована при переходе к различным областям современной физики. Примером могут служить переменные действие— угол, нужные при построении старой квантовой механики, а также уравнение Гамильтона — Якоби и принцип наименьшего действия, обеспечивающие переход к волновой механике, или скобки Пуассона и канонические преобразования, которые весьма ценны при переходе к новейшей квантовой механике. Во-вторых, классическая механика позволяет студенту, не выходя за пределы понятий классической физики, изучить многие математические методы, необходимые в квантовой механике.  [c.7]


Шестая глава посвящена важнейшему разделу механики — гамильтонову формализму. Основная цель этого раздела — представить математические аспекты гамильтоновой динамики как мощный аппарат решения широкого круга задач механики, физики и прикладной математики. В лагранжевом подходе проблема решения уравнений лежит вне рамок лагранжева формализма. Положение меняется в гамильтоновом подходе, который позволяет получить решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. Вся информация об эволюции системы содержится в одной функции — гамильтониане в результате канонического преобразования можно получить новый гамильтониан, который в определенном смысле мал . Более того, поскольку все операции ограничены рамками группы движения кососимметричной метрики, то удается создать универсальные алгоритмы построения приближенных решений. В рамках гамильтонова подхода изложены теория специальных функций, каноническая теория возмущений, метод усреднения нелинейных систем, методы анализа движения системы в быстропеременном внешнем поле и т.д. Особый интерес представляет лекция 30, в которой развит метод Дирака удвоения переменных, позволяющий представить в гамильтоновой форме систему нелинейных уравнений общего вида и получить решения уравнений, описывающих сингулярно-возмущенные системы, решения алгебраических и трансцендентных уравнений, разрешить проблему обращения интегралов и т.д. В лекции 32 приведено решение задачи о движении релятивистской частицы в гиперболическом волноводе, представляющей интерес для проблемы сепарации частиц по энергии и удельному заряду. В рамках канонического формализма рассмотрена задача о движении протонов в синхрофазотроне.  [c.8]

Ясно, что если е = О, то величины Qi и Д в силу уравнений движения будут постоянными. Тем самым мы еще раз доказали теорему 9.4.2 Якоби. Закон движения, соответствующий функции Гамильтона Но, имеет вид преобразования координат, в котором изменяется только 1, а величины а,-, Д, г = 1,..., 71 принимаются постоянными. Закон движения с функцией Гамильтона Я дается точно такими же формулами, что и закон движения с функцией Гамильтона Но, но координаты 1,..., о , Д,..., Д заменяются решением системы канонических уравнений с функцией Гамильтона еНх.  [c.696]

Нам удалось, используя теорию канонических преобразований, заменить интегрирование гамильтоновой системы (3) интегрированием гамильтоновых систем (2) и (5) из общих рещений (1) и (6) этих систем суперпозицией получаем общее решение системы (3)  [c.173]


Ясно, что существует и обратное каноническое преобразование, превращающее координаты q t) и импульсы p(t) в постоянные величины q io) и p io). Получение такого преобразования, очевидно, эквивалентно полному решению задачи о движении данной системы. В начале этой главы указывалось, что решение задачи о движении системы можно свести к нахождению такого канонического преобразования, при котором все импульсы получаются постоянными. Сейчас мы видим, что, кроме того, возможно такое каноническое преобразование, при котором постоянными величинами становятся не только импульсы, но и координаты. В следующей главе мы рассмотрим каждую  [c.286]

Говоря о применении канонических преобразований к решению задач механики, мы указывали на два метода. Один из них относится к тому случаю, когда гамильтониан системы остается постоянным. В этом случае существует такое преобразование, при котором новые канонические координаты являются циклическими, и тогда интегрирование новых уравнений движения становится тривиальным. Другой метод состоит в отыскании такого канонического преобразования, которое осуществляет переход от координат q t) и импульсов p t) к начальным координатам q to) и начальным импульсам p to). Уравнения преобразования, связывающие старые и новые канонические переменные, будут при этом иметь вид  [c.301]

Резюме. Наиболее эффективным инструментом для исследования и решения канонических уравнений являются преобразования координат фазового пространства. Вместо того чтобы пытаться непосредственно интегрировать уравнения, ищется некоторая новая система координат, которая больше подходит для решения задачи, чем первоначальная система. Для этого процесса в нашем распоряжении имеется широкий класс преобразований. Они называются каноническими преобразованиями .  [c.227]

Эта схема интегрирования Г амильтона была упрощена и улучшена Якоби. Главная функция Гамильтона должна удовлетворять сразу двум уравнениям в частных производных. Решение этой задачи практически невозможно без более широкой схемы интегрирования, предложенной Якоби. Производящая функция S зависящего от времени канонического преобразования определяет все движение фазовой жидкости, удовлетворяя лишь одному уравнению в частных производных  [c.262]

Важная роль производящей функции в задаче о движении. В теории канонических преобразований нет более важной теоремы, чем та, которая утверждает, что произвольное каноническое преобразование полностью характеризуется заданием одной-единственной функции S — производящей функции этого преобразования. Подобным же образом и канонические уравнения характеризуются одной функцией —функцией Гамильтона Н. Эти две фундаментальные функции можно связать между собой определенными соотношениями. Для решения задачи о движении достаточно рассмотреть функцию Гамильтона и попытаться упростить ее с тем, чтобы канонические уравнения стали непосредственно интегрируемыми. С этой целью можно применить подходящее каноническое преобразование, причем это преобразование зависит от одной функции S. Поэтому вместо решения целой системы канонических уравнений можно свести задачу к решению одного уравнения, дифференциального уравнения в частных производных.  [c.264]

Поскольку сама функция S не входит в дифференциальное уравнение, а входят только ее частные производные, решение определяется с точностью до аддитивной постоянной. Эта постоянная, однако, не входит в каноническое преобразование и поэтому она с самого начала может быть опущена. Оставшиеся п — 1 константы можно отождествить с Qi,. .., Qn—1-  [c.269]

Существенное достоинство этого метода интегрирования заключается в той его особенности, что выражения (71), (74) или (75) для общего решения автоматически вводят произвольные постоянные тс, х в канонической форме, в том смысле, что зависимости, которые они устанавливают между /7, и тс, х, образуют каноническое преобразование.  [c.298]


Практический смысл канонических преобразований состоит в упрощении уравнений движения, в выборе таких новых координат в фазовом пространстве, которые более удобны для решения задачи о движении системы, нежели исходные старые координаты. Метод канонических преобразований является широко распространенным и эффективным методом исследования гамильтоновых уравнений.  [c.338]

Приближенное решение исходных уравнений получится из равенств (56) при помощи формул указанного выше канонического преобразования Биркгофа, выражающих старые переменные через новые. Несложно проверить, что в рассматриваемом случае чисто мнимых корней характеристического уравнения линеаризованной системы уравнений движения величины Л/г к = 1, 2,..., п) также будут чисто мнимыми, Л/г = гП/г (/с = 1, 2,..., п), и, следовательно, старые переменные будут рядами синусов и косинусов аргументов, кратных П/г .  [c.402]

На основе высказанных идей В. И. Арнольдом [86 ], Ю. Мозером [120, 121] и другими математиками был разработан метод построения точных решений систем (1) с гамильтонианом (219), (221). В его основу положена операция перехода от канонических уравнений (1) с одним гамильтонианом к аналогичным уравнениям с другим гамильтонианом при помощи специально выбираемого канонического преобразования,, и такую цепочку преобразований следует осуществлять бесконечное число раз.  [c.241]

Описанные исходные предпосылки позволили доказать, что последовательность канонических преобразований (и, следовательно, ряды (263), представляющие решение гамильтоновой системы (1)) сходится, если начальные условия (х , G n-  [c.247]

Гамильтонов формализм сам по себе не обеспечивает безусловного интегрирования динамических систем. У спех этого метода связан прежде всего с использованием аппарата канонических преобразований Якоби, нахождением подходящей системы обобщенных координат и производящей функции, позволяющих определять интегралы движения. В этой ситуации, прежде чем дать решение исследуемой задачи, приведем некоторые сжатые сведения из теории интегрирования гамильтоновых систем [12, 109].  [c.201]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Задачи построения полного интеграла уравнения Гамильтона — Якоби и общего интеграла канонической системы, как доказывается в теории дифференциальных уравнений, математически эквивалентны. Степень трудности их, вообще говоря, одинакова. Однако может быть отмечен ряд частных случаев, когда уравнение Гамильтона — Якоби может оказаться более податливым, чем каноническая система. Об этом говорится в п. 10.14. Более важно то обстоятельство, что решение (10), получаемое с помощью теоремы Якоби, является каноническим преобразованием, а это, как мы увидим в главе 11, значительно упрощает форму уравнений возмущенного движения.  [c.537]

Решение. Рассматриваемый интеграл является решением дифференциального уравнения х = /(ж) с начальным условием ж(0) = 0. Вводя фазовое ж, р-пространство и гамильтониан Н = р /(ж), мы получим возможность использовать методы теории канонических преобразований. Рассмотрим функцию Якоби ж = 8п ( , к) — эллиптический синус.  [c.450]

Мы начинаем изучение самого плодотворного метода теоретической физики — гамильтонова формализма [8, 15, 16, 28, 40, 156, 262]. В современной физике гамильтоновы системы занимают весьма важное место. С одной стороны, они описывают практически все явления, изучаемые в классических теориях гамильтонов формализм является основой квантовой механики и теорий вторично-квантовых полей [15, 156-158]. С другой стороны, теория канонических преобразований позволяет развить универсальные методы получения точных и приближенных решений систем нелинейных уравнений.  [c.250]

Полный интеграл. Уникальная особенность канонических преобразований состоит в том, что, в принципе, можно получить решение системы алгебраическим способом, угадав преобразование к новым переменным ж, р ж, р, в которых гамильтониан Н = 0. Тогда ж, р — произвольные постоянные, а КП ж, р ж, р является решением уравнений Г амильтона. Путь к строгому решению этой задачи нашли У. Г амильтон и К. Якоби. Полагая, например, в (26.15) Я = О и заменяя в гамильтониане импульсы в соответствии с (26.14) частными производными Рп = = дЕ/дхп, получим уравнение  [c.278]


Книга состоит из десяти глав. По охватываемому материалу I Vi главы соответствуют в целом традиционным курсам механики. Задачи остальных четырех глав связаны с тематикой спецкурса Методы интегрирования канонических систем . В отличие от лагранжева формализма гамильтонов подход позволяет в принципе найти решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. В этом аспекте канонический формализм является мощным рабочим методом, позволяющим получить приближенное решение широкого круга физических и математических задач [1]. Рассмотрены проблемы, относящиеся к интегр ированию нелинейных уравнений, преобразованиям Дарбу и Фрелиха, ВКБ-приближению, определению собственных векторов и собственных значений, гамильтоновой теории специальных функций. Дополнительные преимущества дает метод удвоения переменных, позволяющий использовать канонический формализм для решения нового класса задач алгебраических и трансцендентных уравнений, сингулярио-возму-щенных уравнений, построению Паде-аппроксимантов, обращению интегралов и т. д. Широта диапазона рассматриваемых проблем обусловлена возможностью приведения к гамильтоновой форме нелинейных систем общего вида и универсальностью используемых методов интегрирования.  [c.3]

Процедура нормализации гамильтонианов и канонических преобразований позволила решить некоторые задачи из теории устойчивости, которые раныре не поддавались решению. Приведем некоторые из них 1 виде теорем.  [c.236]

Первое издание книги опубликовано издательством Московского университета в 1988 г. Во втором издании книги приведены решения 160 новых задач. Включена новая глава 11 Релятивистская механика . Теперь сборник содержит решения 560 задач, иллюстрируюш их приложения методов теоретической механики к исследованию широкого круга проблем. Представлены задачи по всем разделам классической механики динамика частицы во внешнем поле и тел переменной массы, динамика системы частиц, уравнения Лагранжа, линейные и нелинейные колебания, динамика твердого тела, электромеханика, уравнения Гамильтона и канонические преобразования. Задачи по электромеханике рассмотрены в рамках лагранжева формализма. Включены также 42 задачи по релятивистской динамике, которые отсутствуют в известных сборниках задач по механике. Ряд задач, представляюш их различные аспекты одной проблемы, представлен в нескольких разделах сборника. Значительно расширен раздел, включаюш ий множество задач, иллюстрируюш их применение новых методов интегрирования систем нелинейных уравнений обш его вида, представленных в гамильтоновой форме.  [c.5]

Решение. Рассматриваемый интеграл является решением дифференциального уравнения x-=f x) с начальным условием л (0) = =0. Вводя фазовое л-, р-пространство и гамильтониан H=pf x), мы получи.м возможность использовать мощные методы теории канонических преобразований. Рассмотрим функцию Якоби. г= =sn(/, k) — эллиптический спиус. В этом случае f=  [c.319]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

В литературе дифференциальное уравнение (7.9.22) часто называют дифференциальным уравнением в частных производных Гамильтона — Якоби . Это название совершенно справедливо. Несмотря на фундаментальную важность функции расстояния Гамильтона, его первоначальная схема была неприемлема для целей практического интегрирования. Замечательное открытие Гамильтона дало Якоби ключ к каноническим преобразованиям, что в свою очередь расширило рамки применимости метода самого Гамильтона. С помощью функции Якоби S, на которую наложено гораздо меньше условий, можно найти и гамильтонову lF-функцию. Но было бы практически невозможно найти U -фyнкцию непосредственно путем решения двух совместных уравнений в частных производных. Связь между этими двумя теориями будет обсуждаться более подробно в следующей главе.  [c.263]

Резюме. Канонические преобр азования характеризуются однон-единственной функцией, производящей функцией. Поэтому задача нахождения некоторого канонического преобразования, которое бы упрощало функцию Гамильтона и делало бы уравнения непосредственно интегрируемыми, эквивалентна задаче о нахождении только одной функции. Эта функция определяется одним уравнением в частных производных. Задача решения системы канонических уравнений заменяется задачей решения этого уравнения.  [c.265]

Геометрически это решение канонических уравнений можно интерпретировать следующим образом. Первоначальные мировые линии движущейся фазовой жидкости образуют бесконечное семейство кривых и заполняют все фазовое пространство. Интересующее нас каноническое преобразование производит такое отображение пространства самого на себя, которое выпрямляет эти мировые линии, превращая их в бесконечное мнооюество параллельных прямых линий, наклоненных под углом 45° к оси времени /.  [c.267]

Резюме. Вместо того чтобы пытаться непосредственно интегрировать канонические уравнения, мы можем применить процесс преобразования. При этом для консервативной системы отыскивается каноническое преобразование, переводящее функцию Гамильтона Н в одну из новых переменных. Для реоном-ной системы ищется зависящее от времени каноническое преобразование, преобразующее Н в нуль. В обоих случаях найденное преобразование решает задачу о движении, так как в новой системе координат канонические уравнения могут быть непосредственно проинтегрированы. Для нахождения искомого преобразования и его выполнения нужно найти какое-либо полное решение уравнения в частных производных Гамильтона — Якоби.  [c.275]

Прямая проверка предыдущих результатов. Результаты, относящиеся к характеристической функции Н, не зависящей от t, были выведены в предыдущем пункте как следствия из результатов, полученных в п. 35 при более общем предцоложении, что функция Н зависит явно от t мы пришли к правилу для определения общего решения канонической системы, вводя только полный интеграл W (с гессианом, не равным нулю) уравнения Н = Е, в которое t не входит. Представляет интерес найти снова эти результаты прямым путем, аналогичным тому, который был использован в п. 35 для общего случая, т. е. обращаясь к каноническому преобразованию, которое в этом случае не будет зависеть от f и потому будет вполне каноническим.  [c.305]


После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора—Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Галгильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.827]

Предположим, что мы произвели некоторое каноническое преобразование гамильтоновых уравнений некоторой данной задачи. Уравнения сохранили свою форму, но гамильтонова функция Н(д, р) превратилась в функцию Н д, р) новых переменных д ир. Если мы умеем интегрировать новые гамильтоновы уравнения, то решение исходных уравнений будет немедленно найдено и задача тем самым решена. В общем случае новые уравнения могут не иметь никаких преимуществ перед исходными в отношении интегрируемости. Но Якоби показал, что если можно построить такое каноническое преобразование, которое преобразует гамильтонову функцию Н(д, р) в Н(р), которая содержит только переменные р, то полученные уравнения Гамильтона могут быть немедленно проинтегрированы и, следовательно, динамическая задача решена. Таким образом, метод Якоби состоит в замене прямого интегрирования уравнений Гамильтона отысканием соответствующего канонического преобразования. Этот метод Якоби для интегрирования уравнений Гамильтона является примером преобразования одной математической проблемы в другую. Вместо попыток прямо интегрировать уравнения Гамильтона, мы ищем решение совершенно другого рода уравнения. Подобная же картина имеет место для случая связи между конформными преобразованиями и задачей Дирихле.  [c.832]

Мы только что акцентировали внимание на том, что каноническая теория возмущений для случая, когда степеней свободы больше, чем одна, ведет к расходящимся рядам. Иногда удобно для решения уравнений движения (мы приведем пример в следующем параграфе) использовать старые переменные wi и которые, конечно, остаются канонически сопряженными переменными и для возмущенной системы, поскольку они получаются из и С1к каноническими преобразованиями. Это особенно удобно, когда мы имеем дело с вырожденной системой. Простейший случай вырождения мы встретили в гл. 6, где некоторые v/ оказались просто одинаковыми. В задаче Кеплера оказалось даже, что Vj=V2=V3. В этом случае можно вместо величин J, определяемых соотношениями (6.224) — (6.226), использовать любую их линейную комбинацию и, в частности, умноженные на 2л величины а , и а , введенные нами в 6.1. Если обозначить умноженные на 2л величины а , и з через J , Ji и Уз", а канонически сопряженные переменные — через W , inii и w i , то мы придем к невозмущенной системе, для которой  [c.197]

Принциниальпым является вопрос о сходимости последовательности канонических нреобразований. В классической постановке (применительно к рядам, представляющим решение, а пе к последовательностям преобразований) этот вопрос рассматривался Пуанкаре [12], который получил отрицательный результат. Другие авторы фактически уточняли результаты Пуанкаре. В метрической концепции оказалось возможным доказать сходимость последовательности канонических преобразований. Основные результаты в этом направлении получили В. И. Арнольд 86] для гамильтоновых систем и Ю. Мозер [121] для уравнений -В частных производных эллиптического вида. Пе имея возможности излагать в полном объеме теоремы указанных авторов, рассмотрим два существенных момента в вопросе о сходимости канонических нреобразований (259).  [c.245]

При автоматизированном конструировании геометрические модели применяют для описания геометрических свойств объекта, конструирования (формы, расположения в пространстве) решения геометрических задач (позиционных и метрических) преобразования формы и положения геометрических объектов ввода графической информации оформления конструкторской документации. Основные типы геометрических моделей аналитические, алгебрологические, канонические, рецепторные, каркасные, кинематические и геометрические макромодели.  [c.259]


Смотреть страницы где упоминается термин Решения и канонические преобразования : [c.355]    [c.8]    [c.514]    [c.264]   
Смотреть главы в:

Аналитические основы небесной механики  -> Решения и канонические преобразования



ПОИСК



Вид канонический

Г Л A R А VII КАНОНИЧЕСКИЕ преобразования 1 Прее бразования координат как метод решения задач механики

Преобразование каноническо

Преобразование каноническое

Преобразования канонически



© 2025 Mash-xxl.info Реклама на сайте