Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Форма с применением твердого сплава

ФОРМА С ПРИМЕНЕНИЕМ ТВЕРДОГО СПЛАВА  [c.91]

С каждым годом расширяется область применения твердых сплавов для изготовления технологической оснастки, особенно штампов. При этом в 30—100 раз повышается стойкость штампов, пресс-форм, высадочного и другого инструмента по сравнению с изготовленными из обычной инструментальной стали.  [c.164]

Угол наклона главной режущей кромки X сказывает влияние на целый ряд факторов процесса резания. Особое значение он имеет для формы стружки, направления ее сбега и упрочнения резца. Угол изменяет первоначальное положение места контакта резца и заготовки. При >. > О место контакта удаляется от вершины, что способствует упрочнению резца. Поэтому при обработке с ударной нагрузкой (прерывистое резание) или при наличии неравномерного припуска рекомендуется применять резцы с положительным углом наклона кромки (в пределах 12—15°). С этой точки зрения угол X приобретает большое значение для резцов с пластинками твердого сплава, особо нуждающихся в упрочнении главной кромки. Для строгальных резцов в силу специфичности их работы необходимо также применять положительные углы X в пределах не менее 10—15°, При обработке закаленной стали угол X повышается до 25—ЗЬ°, При малых значениях угла X влияние его на работу резца сказывается незначительно. Поэтому для токарных резцов (проходных, подрезных и др,) универсального применения главную режущую кромку следует располагать параллельно опорной плоскости, т, е, при Я, = 0. В практике встречаются рекомендации затачивать токарные резцы с углом X = 4- 5°. Такое усложнение головки резца не оправдывается.  [c.156]


Сплавы первой группы (как насыщенные газом, так и свободные от него) дают сосредоточенную усадочную раковину в соответствии с ходом затвердевания при постоянной температуре. Характерной чертой их кристаллизации являются быстрое нарастание прочной наружной корки и непрерывное передвижение фронта кристаллизации от стенок формы с постепенным опусканием уровня жидкости. При образовании твердой корки со стороны верхней поверхности образуется закрытая усадочная раковина. Повышение давления приводит к уменьшению размеров усадочной раковины, что требует применения меньших прибылей, и увеличению наружной усадки.  [c.58]

Формы пластинок показаны на рис. 3 и 4, а основные размеры и назначение их — в табл. 2—4. Форму и размеры пластинок выбирают в соответствии с формой и размерами режущей части инструментов. Рекомендации по выбору марок твердого сплава и быстрорежущей стали при различных технологических условиях применения инструментов приведены в табл. 5 и 6.  [c.141]

Основная сложность горячего прессования заключается в выборе материала пресс-формы, который должен иметь достаточную прочность при температурах прессования, не реагировать с прессуемым порошком, быть дешевым. При температурах прессования 500. .. 600 °С в качестве материала применяют жаропрочные стали на основе никеля, при температурах 800. .. 900 °С - твердые сплавы. В случае более высоких температур прессования (до 2500. .. 2600 °С) единственным материалом для пресс-форм служит фафит. Однако низкая производительность, малая стойкость пресс-форм (10. .. 12 прессовок), необходимость проведения процесса в среде защитных газов ограничивают применение горячего прессования и обусловливают его использование только в  [c.473]

Литейные сплавы. Механические свойства литого магния следующие Ста = 115 МПа, 8 = 8%, 30 НВ (кгс/мм ). В литых магниевых сплавах повышения механических свойств добиваются измельчением зерна посредством перегрева расплава или его модифицирования добавками мела или магнезита. При этом в расплаве образуются твердые частицы, становящиеся центрами кристаллизации. Для предотвращения возгорания магниевых сплавов их плавку ведут в железных тиглях под слоем флюса, а разливку — в парах сернистого газа, образующегося при введении серы в струю металла. При литье в песчаные формы в смесь вводят специальные добавки (например, фториды алюминия) для уменьшения окисления магния. Среди литейных магниевых сплавов широкое применение нашли сплавы МЛ5 и МЛ6, отличающиеся повышенными литейными и механическими свойствами (табл. 8.2). Они могут упрочняться как гомогенизацией и закалкой на воздухе (Т4), так и добавочным старением (Тб). Аналогично (по режиму Тб) упрочняются коррозионностойкий сплав МЛ 12 и жаропрочный МЛ 10 (с рабочей температурой до 300 °С).  [c.178]


По твердости (90-95 HRA), тепло- и износостойкости минералокерамические материалы превосходят твердые сплавы. Микролит характеризуется высокой химической стойкостью и достаточными прочностными свойствами. Инструменты с пластинками микролита не теряют своей твердости при нагревании в процессе работы до 1200 °С. Поэтому очень эффектно их применение при чистовой и получистовой обработке чугунных изделий, цветных металлов и их сплавов, неметаллических материалов в случае высоких скоростей и при небольших глубинах резания и подачи. Технология изготовления пластинок микролита следующая подготовленный порошок формуют, прессуют, а затем спекают при температуре 1750-1900 °С. К державкам инструментов пластинки припаивают или прикрепляют механически.  [c.193]

Итак, создание математических моделей процессов пластической деформации металлов и сплавов, включение их в соответствующие пакеты прикладных программ предусматривают глубокое изучение и практическое использование математического аппарата линейной алгебры, теории отображений, проекционно-сеточных методов, теории аппроксимаций. Необходимо также уметь записывать основные зависимости механики деформируемого твердого тела, в матричной форме, наиболее удобной для постановки и решения краевых задач с применением ЭВМ.  [c.14]

Твердые сплавы выпускаются в виде изделий, напаиваемых на режущий инструмент, неперетачиваемых и перетачиваемых пластинок, призматических сплошных столбиков, а также в виде смеси с пластификатором. Изделия из пластинок изготовляются из марок твердых сплавов, предусмотренных ГОСТ 3882—77 для режущего инструмента а готовые пластинки могут поставляться с износостойкими покрытиями. Технические условия на твердосплавные изделия регламентированы ГОСТ 4872—75. Формы и условные обозначения твердосплавных изделий, предназначенных для напайки на режущий инструмент, их конструкции и размеры, а также область применения установлены ГОСТ 2209—69, ГОСТ 17163—71, ГОСТ 20312-74, СТСЭВ 124—74, СТСЭВ 126—74 СТ СЭВ 118—74, а механически закрепляемых пластин — ГОСТ 19042—73 — ГОСТ 19086—73. Заготовки неперетачиваемых пластинок и стружколомов (ОСТ 48-93—75) отличаются от готовых изделий в основном диаметром вписанной окружности d и толщиной 5, имеющих припуск на шлифование. Они имеют несколько исполнений для пластинок нормальной, повышенной, высокой и особо высокой степеней точности и различаются припуском на диаметр и толщину. Форма и размеры стружечных канавок на передней поверхности заготовок режущих пластинок имеют два исполнения с припуском по толщине на шлифование опорной и передней поверхностей н е припуском на шлифование только опорной поверхности. В справочном приложении 1 к ОСТ 48-93—75 указаны форма и размеры выборок на опорных поверхностях заготовок режущих пластинок, имеющих стружечные канавки на передней поверхности. Технические требования к заготовкам приведены в ОСТе. Заготовки получают те же условные обозначения, что и сами пластинки с добавлением впереди цифры 3 для цифрового и буквы В — для буквенно-цифрового обозначения.  [c.89]

Описанный принцип нашел применение и для электроалмазного сверления. Обработку осуществляют на модернизированных вертикальносверлильных станках, имеющих число оборотов шпинделя до 2000 в минуту. Режущим инструментом служит алмазное сверло, состоящее иэ металлического корпуса трубчатой формы и имеющее на конце кольце из алмазоносного слоя. Высота этого слоя 3—5 мм, ширина— 1—2 мм.. Для подачи электролита в зону резания в выступающей части алмазоносного слоя делают пазы (их количество и конфигурация обусловливаются размерами сверла и другими факторами). Чтобы можно было сравнить эту технологию с другими видами металлообработки, приводим сравнительные данные, полученные при сверлении в деталях из твердых сплавов отверстий диаметром 10 мм.  [c.136]

По форме (рис. 125, а, б, в) развертки изготовляют цилиндрические, применяемые для обработки цилиндрических отверстий, и конические, используемые для конических отверстий. По способу применения различают развертки ручные и машинные, используемые на сверлильных, токарных и револьверных станках. По конструкции развертки могут быть хвостовые и насадные, цельные и сборные, постоянного диаметра и регулируемые, с вставными ножами из быстрорежущей стали или из твердого сплава.  [c.247]


Заготовками для твердосплавных рабочих частей штампов служат бруски, диски и пластины из твердых сплавов как в окончательно спеченном виде, так и пластифицированные. Применение пластифицированных заготовок дает возможность получить полуфабрикаты, близкие по форме и размерам к заданным. Заготовку пластифицированного материала обрабатывают на металлорежущих станках. Полуфабрикаты из пластифицированных заготовок подвергаются окончательному спеканию при температуре 1350— 1450°С в водородной среде, при этом они приобретают все свойства твердого сплава. Так как при спекании происходит усадка —  [c.46]

Основными условиями являются правильный выбор марки твердого сплава, формы и размера пластинки правильное назначение геометрических элементов режущей части сверла правильное и надежное закрепление пластинки в корпусе сверла, который должен обладать достаточной жесткостью и прочностью высококачественная заточка сверл с обязательной их доводкой применение смазывающе-охлаждающей жидкости (обычно эмульсии, 8 ч- 10 л/мин), надежное закрепление инструмента в патроне или другом приспособлении надежное закрепление заготовки своевременная переточка инструмента правильный выбор оборудования для скоростного сверления (достаточно мощного, высокоскоростного и жесткого) применение быстродействующих приспособлений, автоматических упоров и других элементов малой автоматизации, способствующих снижению вспомогательного времени.  [c.274]

В рассмотренных выше диаграммах мы встречались лишь с п е р-в и ч н ы м и превращениями, связанными с переходом из жидкого в твердое состояние. Однако кроме первичных превращений в сплавах часто наблюдаются вторичные превращения, т. е. совершаемые уже в затвердевших вполне сплавах при их охлаждении или нагревании. Эти превращения имеют весьма важное значение в практике, так как обусловливают возможность применения к сплавам различного вида термической обработки. Пример этому мы видели в простых металлах, где отжиг для размельчения зерна связывали с наличием аллотропического превращения ( 11). В сплавах также могут встречаться аллотропические превращения как простейший вид вторичного превращения. Наряду с ними могут быть превращения и другого вида, которые, конечно, должны выражаться на диаграмме состояний соответствующими линиями. Рассмотрим некоторые, наиболее важные для практики виды таких вторичных превращений в сплавах и форму линий, какими они выявляются на диаграмме состояний.  [c.87]

Обработка абразивной струей применяется для повышения чистоты поверхности без изменения формы и размеров обрабатываемой детали. В этом случае тонкий абразивный порошок во взвешенном состоянии подается с жидкостью под давлением воздуха 6 ат через сопло, изготовленное из твердого сплава при этом абразивные зерна направляются на обрабатываемую поверхность с большой скоростью и сглаживают ее микронеровности. Содержание абразива в смеси составляет 30—50% по весу. Широкого применения в промышленности этот метод еще не получил в связи с некоторыми трудностями его осуществления.  [c.194]

Применение электроискрового способа целесообразно там, где затруднительна или невозможна обработка резанием. Основным преимуществом электроискрового метода перед обработкой резанием является возможность образования при помощи латунного проволочного электрода сквозных и глухих отверстий малых диаметров (0,15—0,3 мм), отверстий с любой формой поперечного сечения, отверстий с криволинейной осью применяя в качестве электрода пластину или диск, можно получить тонкие прорези и щели. При этом все виды обработки могут производиться в материалах любой твердости, в том числе и твердых сплавах. Для ускорения обработки большого числа отверстий при изготовлении сит и сеток проволочные электроды закрепляются на нужных расстояниях в пластинах, образуя таким образом групповой электрод. Обработкой отверстий сложного профиля в волочильных фильерах удается удешевить их производство и расширить область применения холодного волочения. Электроискровой метод применяется при изготовлении и ремонте штампов, приспособлений и оборудования (например, для извлечения сломанного инструмента), а также при затачивании и доводке инструмента.  [c.200]

Обработка ультразвуковыми колебаниями получила применение при прорезке отверстий различной формы с прямыми и криволинейными осями, нарезании в них резьбы, при обработке рабочих полостей штампов, обрезке заготовок, по профилю, при гравировании и дает хорошие результаты при обработке весьма твердых и хрупких материалов (закаленная сталь, твердые сплавы, алмазы и другие драгоценные камни, стекла, керамика и т. п.).  [c.200]

Механической обработке в виде грубой обдирки резанием поддаются только детали простой формы из сплавов, не содержащих кобальта, с применением резцов из твердого сплава. Кроме того, детали из всех сплавов можно шлифовать электрокорундовыми кругами в два приема (грубое и чистовое шлифование). Для грубого шлифования можно применять электроискровую обработку. Перед механической обработкой можно применять отжиг для уменьшения твердости и хрупкости.  [c.365]

Литые сплавы обладают достаточной устойчивостью против старения. По результатам ряда исследований естественное магнитное старение магнитных литых сплавов зависит от следующих факторов 1) оно усиливается с уменьшением длины магнита при данном поперечнике 2) старение усиливается от частичного размагничивания переменным магнитным полем. Сплавы железо—никель—алюминий и особенно железо — никель — алюминий — кобальт отличаются сравнительно высокой стоимостью. Механической обработке в виде грубой обдирки резанием с применением резцов из твердого сплава поддаются только детали простой формы из сплавов, не содержащих кобальта. Кроме того, детали из всех сплавов можно шлифовать электрокорундовыми кругами в два приема (грубое и чистовое шлифование). Для грубого шлифования можно применять электроискровую обработку. Перед механической обработкой можно применять отжиг для уменьшения твердости и хрупкости.  [c.310]


Большие перспективы имеет применение твердых сплавов для изготовления зуборезного инструмента. Червячные фрезы из твердых сплавов при работе на станках повышенной жесткости позволяют довести скорости резания до 300 м/мин, что в несколько раз больше скоростей, допускаемых фрезами из быстрорежущей стали. Монолитные твердосплавные центровочные сверла можно использовать не только для сверления, но и для исправления формы центровых отверстий после закалки. Наибольшее применение для изготовления монолитного инструмента, особенно фрез и метчиков, нашли сплавы ВК6М, ВК8М, ВКЮМ, ВК6 и ВК8. Развертки из сплава Т5КЮ предназначаются для съема слоев толщиной до 0,05 мм в материалах с твердостью HR 50—52.  [c.19]

Державки для пластинок из твердого сплава находят все большее применение в Германской Демократической Республике. В одном из выпусков Института технологии и организации машиностроения (г. Карл-Маркс-Штадт) приводятся различные конструкции державок, надежно фиксирующих пластинки твердого сплава различной конфигурации. В державках имеются гнезда, точно соответствующие форме пластинки из твердого сплава. В основу всех этих конструкций положен единый оригинальный принцип механического зажима этих пластинок в специальном гнезде разрезной пружинящей державки с помощью винтов.  [c.202]

Токарные станки обладают широкими технологическими возможностями. Кроме обработки цилиндрических и плоских торцовых поверхностей резцами на них можно выполнять сверление, зенке-рованне и развертывание центрального отверстия детали, нарезание резьбы и накатывание рельефа, накатывание мелкомодульных зубчатых колес, притирку и доводку поверхностей тел вращения и др. На прецизионных токарных и токарно-расточных станках выполняют тонкое точение, характерное применением высоких скоростей резания v (от 100 до 1000 м/мин), малых величин подач = 0,080 мм/об и меньше), небольших глубин резания t (0,1 — —0,05 мм). При тонком точении деталей из цветных сплавов применяют алмазные резцы, а при обработке деталей нз черных металлов — резцы с пластинами твердого сплава. Тонкое растачивание и обтачивание на прецизионных токарных станках обеспечива- ет получение стабильной точности диаметральных размеров по 1-му классу, отклонение формы не более 0,003—0,005 мм и шероховатость V 10. Прн этом режущий инструмент имеет большую стойкость (от 200 до 400 ч между переточками). При тонком точении на резец (и обрабатываемое изделие) действуют весьма небольшие силы резания.  [c.216]

Электрохимическая обработка. В основе этого метода обработки лежат явления электролиза, обычно — явления анодного растворения металла обрабатываемой заготовки с образованием различных неметаллических соединений. При применении нейтральных электролитов образуются гидраты окиси металла [например, Fe (0Н)2 или Fe(OH)g], которые, выпадая в осадок, пассивируют обрабатываемую поверхность и забивают межэлектродный зазор. Чтобы удалить указанные продукты из зоны обработки, электролит прокачивают через межэлектродный промежуток с большой скоростью. Прокачивание обеспечивает также охлаждение электролита, позволяет довести плотность тока при обработке до нескольких сот ампер на квадратный сантимер, получить очень большой съем металла в единицу времени (до десятков тысяч кубических миллиметров в минуту). Процесс характеризуется также полным отсутствием износа электрода-инструмента и независимостью точности и шероховатости поверхности от интенсивности съема, т. е. возможностью получить большую точность и низкую шероховатость при высокой производительности. Обработка в проточном электролите применяется при изготовлении деталей сложного профиля из труднообрабатываемых сталей и сплавов (например, пера турбинных лопаток, полостей в штампах и пресс-формах), в том числе— изготовляемых из твердых сплавов, при прошивании отверстий любой формы.  [c.143]

После обработки на твердый раствор практически во все> случаях применяют закалку. Иногда практикуют закалку немедленно после ковки. Экономичной и безопасной закалочой средой для малолегированных сплавов или сплавов, где активность формирования у -фазы низка, является вода, но е применении к сплавам с повышенным легированием (например, Astroloy) закалка в воду может вызвать растрескивание. Альтернативной закалочной средой может служить масло или горячая соляная ванна. В связи с возможностью управлять процессом закалки повышенной привлекательностью обладает закалка в полимерные среды. В настоящее время эмпирически выбирают форму детали, в которой она подлежит закалке, подготовку ее поверхности, продолжительность переноса, условия перемешивания закалочной среды и другие параметры однако все большую помощь в этом выборе начинает оказывать компьютер.  [c.216]

Повышения прожзводительности при нарезании зубчатых колес можно добиться путем применения червячных фрез, оснащенных твердосплавными пластинками. По конструкции — это фрезы, в основном, сборные, за исключением фрез ме.пкомодульиых, которые изготовляются це.чиком из твердого сплава с остроконечными зубьями. Использование в сборных фрезах остроконечной формы зубьев позволяет увеличить задние углы для режущих кромок и получить в связи с этим более высокую стойкость инструмента. Последние годы в конструкциях червячных модульных фрез широко используются многогранные неперетачиваемые пластинки, Применение фрез с твердосплавными зубья повышает производительность труда в 2...3 раза в результате форсирования режимов зубофрезерования и увеличения стойкости примерно в 5...8 раз. При фрезеровании зубчатых колес с высокими скоростями (до 200 м/мин) повьпнается и качество обработанных поверхностей зуба колеса. Наиболее эффективно применение твердосплавных фрез при обработке зубчатых колес из труднообрабатываемых материалов и после термической обработки.  [c.153]

В зарубежной металлообработке также во все больших масштабах находят применение сверхтвердые синтетические и природные материалы. Среди них, в основном, две группы материалов материалы на основе алмазов и материалы на основе нитрида бора. Последние под торговым названием боразона появились в последние годы в продаже. К режущим материалам на основе алмазов следует отнести двухслойные пластинки под названием мегадиамант фирмы Дженерал электрик (США), трех-, четырехгранной или круглой форм с подложкой из твердого сплава и соединенным с ней в процессе синтеза тонким (около 0,7 мм) слоем поликристаллов алмаза, предназначенных для напайки на режущие инструменты пластинки фирмы Дебир (Англия) также круглой и квадратной форм из твердого сплава (диаметр до 9,52 мм) с тонким (0,5 мм) слоем нового материала под названием синдайт, состоящего из поликристаллов алмаза со связкой в виде кобальта или никеля.  [c.95]

Приведенные требования по шероховатости должны выдерживаться и при переточках резцов. Вместе с этим следует отметить данные ряда фирм, в частности фирмы Карболой (США), из которых следует, что при обеспечении достаточной точности формы твердосплавных пластинок после спекания (за счет ужесточения требований к технологии изготовления пластин, пресс-оснастке) нецелесообразно подвергать режущие кромки пластинок шлифованию, особенно пластинок для получистовых и черновых работ. Объясняется это тем, что поверхность пластинок после спекания имеет равномерную мелкозернистую структуру, достаточно хорошо сопротивляющуюся нагрузкам и хорошо удерживающую смазку. В результате ш 1ифования поверхность сглаживается, но при этом возникают поверхностные дефекты микротрещины, выкрашивания, микросколы, заостренные кромки. Все это способствует снижению работоспособности пластинок, повышению затрат на их эксплуатацию. Опыт применения нешлифованных по передней и задней грани пластинок твердого сплава имеется и на отечественных предприятиях, что подтверждает возможность использования таких пластинок для оснащения резцов.  [c.132]


Этот процесс открыт, исследован, разработан для промышленного применения лауреатами Государственной премии Б. Р. Лазаренко и Н. И. Лазаренко в 1943 г. Его успешно применяют для получения отверстий различной формы, с криволинейными осями и очень малых диаметров, фасонных полостей, профильных канавок и пазов в деталях из твердых сплавов и закаленных сталей в штампах, пресс-формах, волочильных глазков, узких щелей, сит, режущем инструменте, для упрочнения поверхности инструментов, извлечение из отверстий сломанных сверл, метчиков, винтов, шпилек, болтов, для электропечатания, электрозаписи и других видов обработки.  [c.646]

В настоящее время широко применяют минералокера-мический материал ЦМ-332 — микролит, а также термокорунд. По твердости (90—95 HRA), тепло- и износостойкости они превосходят твердые сплавы. Микролит характеризуется высокой химической стойкостью и достаточными прочностными свойствами. Инструменты с пластинками микролита не теряют своей твердости при нагревании в процессе работы до 1200 °С. Поэтому очень эффектно их применение при чистовой и получистовой обработке чугунных изделий, цветных металлов и их сплавов, неметаллических материалов в случае высоких скоростей л при небольших глубинах резания и подачи. Технология изготовления пластинок микролита следующая подготовленный порошок формуют, прессуют, а затем спекают при температуре 1750—1900 °С. Пластинки можно получить также горячим литьем под давлением (шлакерный метод). К державкам инструментов пластинки припаивают или прикрепляют механически.  [c.117]

Оснащение резцов твердым сплавом. Режущая способность резцов возрастает в десятки раз, если их рабочую часть оснастить твердым сплавом. По конструкции твердосплавный резец представляет собой пластинку твердого сплава, закрепленную на призматическом стержне — державке. Форма пластинки твердого сплава может быть самой различной. На заводах находят применение резцы-с призматическими пластинками (рис. 119, а), с многогранными пластинками (рис. 119, б), с круглыми чашечными пластинками (рис. 119, в) и других форм. Наиболее распространены резцы, состоящие из стальной державки с припаянной к ней призматической пластинкой твердого сплава. При напайке резцов в пластинках часто образуются трещины, что ведет к разрушению резцов. Поэтому применяют механическое крепление пластинок твердого сплава. Для механического крепления выпускают многогранные пластинки, которые по мере затупления одной грани используют другую неработавшую грань.  [c.241]

В горячем состоянии хорошо куется, прокатывается и штампуется. Детали несложной формы удовлетворительно штампуются в холодном состоянии. Сваривается удовлетворительно дуговой сваркой с применением защитной атмосферы (аргон) и контактной (точечной, роликовой и стыковой) без применения защитной атмосферы. Удовлетворительно обра батывается резанием. Коррозионная стойкость высокая. Непригоден для изготовления трущихся деталей В горячем состоянии куется, прокатывается и штампуется. Технологическая пластичность ниже, чем у сплава ВТ1 и ОТ4. Сваривается аргонно-дуговой и контактной сваркой. При сварке деталей сложной формы необходим пооперационный отжиг для снятия напряжения. Удовлетворительно обрабатывается резанием. Для механической обработки сплава рекомендуется применять резцы из твердых металлокерамических сплавов кобальтовольфрамовой группы. Коррозионная стойкость высокая. Обладает низкими антифрикционными свойствами, для изготовления трущихся деталей непригоден  [c.189]

Широкое применение получили токарные резцы, режущая часть которых оснащена неперетачиваемыми пластинками из твердого сплава. Пластинка, предназначенная для одностороннего использования, имеет лезвия только с одной стороны. Другая ее сторона служит опорой. На виде сверху неперетачивае-мые пластинки имеют форму многогранников и число 2 лезвий равно числу ее граней. Многогранные пластинки, предназначенные для двустороннего исполь-  [c.169]

Горячее прессование. При таком прессовании технологически совмещаются процессы формообразования и спекания заготовки с целью получения готовой детали. Горячим прессованием получают детали из твердых сплавов и специальных жаропрочных материалов. Изготовляемые детали характеризуются высокой прочностью, плотностью и однородностью материала. При горячем прессовании применяют графитовые пресс-формы. Высокая температура порошка позволяет значительно уменьшить необходидюе давление. Горячее прессование имеет и существенные недостатки низкую производительность, малую стойкость пресс-форм (4—7 прессовок), необходимость проведения процесса в среде защитных газов, которые ограничивают применение даппого способа.  [c.622]

Для получения сложных пустотелых отливок применяют керамические стержни. Применение керамических форм рационально для сложных отливок с целью сокращения объема механической обработк л. Этим методом экономически целесообразно получать литейную оснастку (горячие ящики и модели) из чугуна, стали и цветных сплавов, кокили из чугуна (иногда без последующей механической обработки), распределительные аппараты паровых турбин, штампы для горячей объемной штамповки, вырубные штампы, шта .шы для жидкой штамповки стали массой до 1 т, сложную технологическую оснастку, сложный инструмент нз твердых сплавов для механической обработки. Керамические формы используют для отливки форм, в которых получают изделия пз хрусталя н стекла. Широкое применение способ нашел в ювелирной про.мышленности для отливки украшений из драгоценных металлов, а также в зубопротезной промышленности.  [c.189]

С мс мента применения головок, армированных твердыми сплавами, самой распространенной формой головки бура является однодолотчатая, так как, армированная твердым сплавом, она настолько повысилась в стойкости, что с успехом может применяться для работы на самых крепких породах. По своей же форме она самая производительная.  [c.34]

Для разрезания слоистых армированных реактопластовТи в первую очередь конструкционных стеклотекстолитов (КАСТ-В, СТ-911, ВФТ С, ЭФ32-301, ФН, СК-9Ф) эффективно применение дисковых фрез с пластинками из сплава В Кб другие твердые сплавы, тем более быстрорежущая сталь, не рекомендуются для применения. Зубья фрез должны иметь переменно-наклонное (чередующееся) расположение (рис. 13) или вогнутую форму режущей кромки (рис. 14). Такая форма режущей кромки выполняется электроискровым способом.  [c.34]

Резец с клиновидной рифленой вставкой конструкции 1ГПЗ показан на рис. 25, в. Применение вставки и державки с рифлениями дает возможность повысить надежность крепления и правильно установить вставку относительно державки резца. На рис. 26 показаны резцы с неперетачиваемыми твердосплавными пластинками конструкции ВНИИ. Резец состоит из державки I с запрессованным в нее штифтом 3. На штифт свободно надевают многогранную твердосплавную пластинку 2, которую закрепляют заклиниванием между штифтом и задней опорной стенкой державки с помощью клина 4 и винта 5. Угол клина, равный 30—32°, обеспечивает надежное крепление и расширяет допуск на изготовление головки резца. Пластинки твердого сплава имеют трех-, четырех-, пяти- и шестигранную форму с диаметром описанной окружности около 18 мм.  [c.23]


Смотреть страницы где упоминается термин Форма с применением твердого сплава : [c.110]    [c.44]    [c.169]    [c.167]    [c.186]    [c.933]    [c.58]    [c.451]    [c.233]    [c.105]   
Смотреть главы в:

Технологическая оснастка для холодной штамповки, прессования пластмасс и литья под давлением Каталог-справочник Издание2 Часть 3  -> Форма с применением твердого сплава



ПОИСК



Применение твердых сплавов

Сплавы Применение

Сплавы твердые

Твёрдые сплавы—см. Сплавы твёрдые



© 2025 Mash-xxl.info Реклама на сайте