Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние Влияние поверхностной пластической деформации

Влияние поверхностной пластической деформации 1. 318-324  [c.348]

Влияние поверхностной пластической деформации на усталостную прочность валов с прессовыми посадками [3]  [c.230]

Сталь износоустойчивая ). После закалки в воде с температуры 1050° сталь имеет структуру аустенита в процессе эксплуатации под влиянием поверхностной пластической деформации аустенит распадается и образует мартенсито-карбидную структуру на поверхности изделия, которая и определяет высокое сопротивление истиранию. Строение высокомарганцовистой стали в литом состоянии показано на рис. 138. На фотографии видны полиэдры аустенита с резко выявленной дендритной структурой, характеризующей процессы образования зерен у-твердого раствора.  [c.373]


Работы по влиянию предварительной пластической деформации (дробеструйная обработка, обкатка роликами и т. п.) показали, что эти традиционные способы поверхностного упрочнения многих деталей не дают заметного повышения кавитационной стойкости. Этот метод, очевидно, можно применять для упрочнения поверхности деталей, изготовленных из нестабильных аустенитных сталей. При холодных пластических деформациях в этих сталях имеет место мартенситное превращение, способствующее повышению износостойкости поверхностных слоев, что особенно важно для деталей, находящихся в контакте с кавитирующим потоком жидкости,  [c.31]

Многими исследованиями доказано отрицательное влияние правки валов на их усталостную прочность. В связи с этим предварительная и окончательная термическая обработка должны обеспечивать минимальное коробление валов при их изготовлении, что наиболее легко достигается при нагреве в вертикальном положении. Необходимо также обеспечить высокую усталостную прочность валов, высокую износостойкость коренных и шатунных шеек. Это осуществляется путем выбора состава стали и технологии упрочняющей обработки (термической и химико-термической обработкой, поверхностно-пластической деформацией),  [c.579]

Обобщение приведенных данных разрешает считать, что влияние напряжений и пластических деформаций на скорость коррозии и электрохимические характеристики металла невелико и связано главным образом с механическим нарушением поверхностной защитной пленки или с изменением условий формирования ее.  [c.63]

Наклеп при резании. Механические свойства слоя металла, прилегающего к обработанной поверхности, изменяются микротвердость и хрупкость его повышаются, появляется множество мелких, невидимых простым глазом трещин. Это изменение механических свойств поверхностного слоя металла под влиянием его пластической деформации при резании носит название наклепа.  [c.148]

Твердость и прочность поверхностного слоя повышается на глубину 0,2—1,0 мм в нем создается благоприятное распределение остаточных напряжений по сечению детали и изменяется форма и ориентация кристаллических зерен в направлении более эффективного их сопротивления пластической деформации и разрушению резко снижается чувствительность металла к поверхностным дефектам. Дробеструйный наклеп устраняет неблагоприятное влияние на усталость обезуглероженного поверхностного слоя стальных деталей.  [c.237]


Особенно благоприятные условия для развития усталостных трещин появляются у коленчатых вал"ов, подвергавшихся ремонту. После механической обработки значительно снижается твердость металла на рабочей поверхности, существенно перераспределяются остаточные напряжения, понижается жесткость вала. Вместо имевшихся в поверхностном слое остаточных напряжений сжатия могут возникнуть напряжения растяжения, благоприятствующие развитию усталостных трещин. При ремонте обычно уменьшается поперечное сечение шеек коленчатого вала и, следовательно, понижается его жесткость, поэтому во время работы двигателя при той же нагрузке возрастают деформации и повышается напряженность отдельных участков вала. При повышении напряженности увеличивается влияние адсорбции и коррозии и возрастает интенсивность развития усталостных трещин. Для увеличения долговечности при ремонте шейки коленчатых валов целесообразно подвергать поверхностной пластической деформации, термической обработке и другими способами упрочняющей технологии.  [c.104]

Вредное влияние микронеровностей поверхности во многих случаях смягчается пластической деформацией, вызываемой в поверхностном слое механической обработкой и распространяющейся на некоторую глубину, зависящую от режимов резания и, в частности, от величины подачи. При грубой обточке она может достигать 1 мм и более, а при шлифовании и полировании измеряется сотыми долями миллиметра и микрометрами. Пластическая деформация поверхностного слоя может повысить предел выносливости на 10—20 %.  [c.672]

Такие виды обработки образуют остаточные деформации и изменение свойств материала детали на незначительную относительную глубину, распространяющуюся на сотые или десятые доли высоты или диаметра сечений. В результате разгрузки (после местной пластической деформации, увеличения объема вследствие химико-термического насыщения или структурных превращений вследствие закалки) в поверхностном слое образуются значительные остаточные напряжения сжатия, достигающие предела текучести и более высоких значений. Прочность поверхностного слоя увеличивается в некоторых случаях этот слой становится хрупким и возрастает влияние асимметрии цикла нормальных напряжений на усталостное разрушение.  [c.156]

Изменение состояния поверхностных слоев металла проявляется в виде пластической деформации и механического упрочнения, хемосорбции и диффузии из смазочной среды и образования вторичных структур. На эти процессы большое влияние оказывают поверхностно-активные вещества, раскрытию механизма взаимодействия которых с материалом поверхности посвящена специальная литература 126 166].  [c.250]

Вопрос износостойкости металлорежущего инструмента — один из основных в области металлообработки. Исследованию закономерностей его изнашивания, физике процессов, определяющих интенсивность износа, влиянию на износ различных факторов и в первую очередь режимов резания, выбору рациональной геометрии инструмента посвящена обширная литература [110]. В зоне резания протекают разнообразные процессы, такие как пластическая деформация поверхностного и срезаемого слоя, возникновение высокотемпературных зон, адгезионные процессы (образование нароста), фазовые превращения и др.  [c.316]

Особое влияние на работоспособность изделий оказывает механическая обработка, которая придает окончательные форму и свойства рабочим поверхностям деталей. Обработка металлов резанием сопровождается сложными физическими процессами, вызывающими пластические деформации, наклеп и нагрев поверхностного слоя. В результате получается поверхностный слой со своеобразными физическими свойствами, которые являются следствием данного метода обработки и его режимов (см. гл. 2, п. 2).  [c.469]


Некоторые трудности использования (5.26) связаны с точным определением пластической деформации материала. Формула показывает существенное влияние деформации на количество циклов теплосмен до возникновения термоусталостных трещин в поверхностном слое мет алла. Поскольку степень показателя А<0,5 (для аустенитных сталей [189]), то с увеличением деформации материала количество циклов No довольно быстро уменьшается.  [c.238]

При работе, например, деталей газовых турбин, двигателей внутреннего сгорания воздействие термоусталостных напряжений сопровождается газоабразивным изнашиванием, коррозионным разрушением поверхности. Одним из эффективных способов защиты поверхности от воздействия продуктов сгорания является нанесение специальных покрытий. Известно, что усталостные трещины (в том числе и термоусталостные) зарождаются обычно на поверхности изделия. Поэтому важно знать характер влияния покрытия на кинетику термоусталостного разрушения. Защищая основной металл от воздействия среды, т. е. увеличивая тем самым долговечность, покрытие может стеснять пластическую деформацию поверхностных слоев, способствовать возникновению и росту трещин, уменьшать надежность детали.  [c.128]

Процесс контактной усталости отличается признаками, характерными для любого вида усталости (образование и постепенное развитие трещин, наличие в ряде случаев физического предела усталости, влияние концентрации напряжений, зависимость долговечности от нагрузки) и некоторыми индивидуальными. К иим относятся специфическое напряженное состояние при контактном нагружении, значительная пластическая деформация поверхностного слоя, явления трения и износа, протекающие параллельно с контактной усталостью, расклинивающая роль смазки, попадающей в трещины, а также некоторая условность критерия разрушения, связанная с тем, что контактно-усталостные выкрашивания в отличие от обычных усталостных разрушений приводят не к внезапным, а к постепенным отказам.  [c.272]

Для многих материалов объемное пластическое деформирование приводит к более или менее существенному повышению предела текучести, и это обстоятельство может быть благоприятным для их сопротивления малоцикловой усталости. Снятия остаточных напряжений сжатия не происходит, если поверхностный наклеп осуществляется рядом с местами интенсивного накопления макропластической деформации. Так, испытания при одностороннем изгибе призматических образцов из корпусной стали с концентратором напряжений показали благоприятное влияние поверхностного наклепа зон, прилегающих к опасному сечению на всех этапах малоциклового нагружения.  [c.165]

Особенности пластической деформации поверхностных слоев по сравнению с объемом материала могут оказать существенное влияние па процессы трения и износа. Согласно [60, 71, 73], толщина слоя с ослабленными механическими характеристиками ориентировочно равна размеру зерна. Во многих случаях эта величина соизмерима с зоной пластической деформации и разрушения при трении. В то же время при расчетах числа циклов до разрушения и интенсивности износа используются константы механических характеристик, свойственные материалу в объеме. По-видимому, это одна из причин того, что расхождение между расчетными и экспериментальными значениями интенсивности износа составляет не менее 50%, а в некоторых случаях они различаются на порядок. Количественное изучение структурных и энергетических закономерностей пластической деформации поверхностных слоев непосредственно в процессе трения необходимо для уточнения расчета сопряженных деталей на долговечность и поиска структурных критериев разрушения.  [c.27]

Как уже отмечалось, в зависимости от условий трения максимум пластической деформации перемещается по сечению материала. Характер распределения пластической деформации по глубине может оказывать влияние на связь между закономерностями структурных изменений и разрушением поверхностных слоев, что необходимо учитывать при сравнительной оценке износостойкости металлов и сплавов, работающих в различных условиях трения.  [c.45]

Разрабатывая молекулярно-механическую теорию трения, проф. Крагельский И. В. предложил рассматривать образующуюся фрикционную связь между двумя трущимися телами как некоторое физическое тело, обладающее определенными свойствами, отличающимися от свойств обоих трущихся тел [179]. Это так называемое третье тело является, некоторого рода, связью, обладающей упруго-вязким характером. На свойства этой связи оказывают влияние состояние поверхности, величина давления между телами, время контактирования, скорость приложения нагрузки и т. п. Вследствие дискретного характера контактирования выступы, имеющиеся на поверхностях трения, сглаживаются или сменяются впадинами, т. е. материал в поверхностном слое при трении непрерывно передеформируется. Рассматривая область передеформирования как третье тело , можно считать, что силы внешнего трения обусловлены силами вязкого сдвига, возникающими в деформативной области обоих тел. В этой области происходят значительные пластические деформации, обусловленные возникновением в контактных точках высоких  [c.547]

Труфяков В. И., Гиренко В. С., Михеев П. П. Влияние местных пластических деформаций на сопротивляемость сварных соединений хрупким разрушениям.— В кн. Повышение прочности и долговечности деталей машин поверхностным пластическим деформированием. Сб. докладов на Всесоюзной научно-технической конференции в феврале 1970 г. Под ред. Кудрявцева И. В. ЦНИИТМАШ. Вып. 90. М,, ОНТИ ЦНИИТМАШ, 1970, с. 147—156.  [c.264]


Анализ литературных данных показывает, что исследования почти всех эффектов, связанных с поверхностью, как правило, носят больше качественный, чем количественный характер. Первой попыткой получения раздельной количественной информации по характеристикам пластического течения поверхностных и внутренних слоев материала явились работы Крамера, который исследовал влияние поверхностной микропластической деформации на процессы деформационного упрочнения ряда ГЦК [136-142], ОЦК [112, 113] и Г11У [138] кристаллов. Так, при деформировании А1, Си, Ли, Zn, Fe, Mo и ряда других материалов (как моно-, так и поли-кристаллических) путем непрерывного удаления поверхностного слоя с образца во время процесса его деформации Крамер [138-141] обнаружил увеличение протяженности и уменьшение наклона I и И стадий деформационного упрочнения (рис. 3). Прекращение удаления поверхностного слоя при деформации вновь увеличивало коэффициент деформационного упрочнения до того же значения, как при деформировании без его удаления.  [c.13]

Наблюдаемый одновременно эффект охрупчивания (снижение энергоемкости разрушения, повышение температуры хладноломкости и т. д.) менее удовлетворительно объясняется существующей теорией деформационного старения [7]. Блокирование дислокаций примесными атомами должно увеличивать вероятность возникновения и развития хрупких трещин, так как уменьшается возможность релаксации упругих напряжений за счет пластической деформации. При этом, как показано в работах [43, 44, 45, с. 157], возрастает интенсивность температурной зависимости предела текучести по сравнению с деформированным состоянием, что обычно связывают с увеличением склонности к хрупкому разрушению при снижении температуры нагружения. Однако хрупкость деформационно состаренной стали обьйчно оказывается более высокой не только по сравнению с деформированным, но и по сравнению с исходным состоянием (например, отожженным). В то же время блокировка дислокаций после отжига должна быть более сильной, чем после деформационного старения или, по крайней мере, одинаковой. Поэтому понимание природы охрупчивания при деформационном старении требует, по-видимому, более тщательного изучения природы влияния самой деформации на хрупкость. Это можно сделать, например, с помощью энергетических схем вязкого и хрупкого разрушения [46]. С возрастанием плотности дислокаций увеличивается величина упругой энергии, запасенной в металле. Эта величина, а следовательно, и плотность дислокаций не может превосходить определенного критического значения, которое определяется наступлением разрушения. С учетом неоднородности распределения дислокаций уже небольшая предварительная деформация может создать в отдельных объемах критическую плотность дислокаций. Если при последующем нагружении только некоторые из них релаксируют в трещину, то вследствие локальности процесса разрушения это уменьшит работу зарождения трещины. Степень релаксации упругих напряжений путем пластической деформации при развитии трещины будет меньше в деформационно состаренной стали не только вследствие блокировки дислокаций примесными атомами, но и вследствие более высокой исходной плотности самих дислокаций. Другими словами, достижение критической плотности дислокаций в деформационно состаренной стали требует меньшей дополнительной деформации, чем достижение указанной плотности в исходном (отожженном) состоянии. Это можно учесть в предлагаемых уравнениях хрупкого разрушения [7] через уменьшение величины эффективной поверхностной энергии стали после деформации и старения.  [c.28]

Применяя холодную обработку давлением, необходимо учитывать влияние, которое пластическая деформация оказывает на микроструктуру и ( )изико-механические свойства металла. Изменение свойств металла зависит в первую очередь от степени пластической деформации, с увеличением которой увеличиваются все показатели сопротивления металла деформированию, т. е. металл упрочняется, повышается его твердость, предел прочности, текучести и пропорциональности. Одновременно снижаются показатели пластичности — относительное удлинение, ударная вязкость, относительное сужение. Ниже приводятся результаты исследований физических параметров качества поверхностного слоя титана (микроструктуры, поверхностной твердости, степени и глубины наклепа) при чистовой обработке давлением в зависимости от условий и режима обработки.  [c.46]

Устранение отрицательного влияния хромирования на усталостную прочность стали может быть также достигнуто созданием напряжений сжатия на поверхности детали, подлежащей хромированию. Эту поверхность подвергают упрочнению одним из методов поверхностной пластической деформации (виброупрвчне-ние, наклеп дробью при дробеструйной или гидродробе-струйной обработке, обкатка роликами и др.). В работах [8, 9 показано, что виброупрочнение высокопрочных сталей марок ЗОХГСНА (Ств = 160 кгс/мм ) и 40ХГСНЗВА (Ств — 190 кгс/мм ) перед хромированием существенно повышает выносливость этих сталей при усталостных, испытаниях на изгиб с вращением (рис, 12) и малоцикловую выносливость при испытаниях пульсирующим растяжением (рис. 13). На образцах высокопрочных сталей с концентратором напряжений подобное положительное влияние проявляется только при сравнительно низких напряжениях циклической нагрузки, когда в концентраторе напряжений исключается возможность пластической де( юрмации.  [c.37]

Пластическая деформация бывает равномерная и неравномерная. При равномерной деформации все частицы тела деформируются одинаково и образующие цилиндра или грани параллелепипеда после осаживания остаются прямыми. В производственных условиях обычно имеет место неравномерная деформация, так как при ковке в местах соприкосновения бойков с металлом возникают силы трения, препятствующие течению поверхностных слоев металла. Образуются зоны прилипания . При этом неподвижные приконтактные слои металла затрудняют протекание процесса деформации в соседних внутренних слоях. В местах у контакта бойков с металлом образуются зоны затрудненной деформации, в которых течение металла при деформации затруднено. Поэтому при ковке больше всего деформируются средние слои металла. Влиянием зон затрудненной деформации можно объяснить такие явления, как бочкообразование прн осадке и т. п. На фиг. 118 показано, что при совместной осадке трех одинаковых цилиндров деформация среднего цилиндра значительно превышает деформацию крайних.  [c.305]

Считают, что коррозия ускоряет пластическую деформацию напряженного металла путем образования поверхностных решеточных вакансий, в частности сдвоенных вакансий (дивакансий). Последние при комнатной температуре диффундируют внутрь металлической решетки сквозь зерна и границы зерен металла на порядок быстрее, чем моновакансии . Появление дивакансий облегчает пластическую деформацию вдоль плоскостей скольжения вследствие процесса переползания дислокаций. Чем выше скорость коррозии, тем больше доступность дивакансий и, следовательно, тем более выражено образование выступов и впадин, включающихся в процесс развития усталости. Существование минимальной скорости коррозии, необходимой для развития коррозионной усталости, позволяет предположить, что с уменьшением скорости коррозии снижается и скорость образования дивакансий. Концентрация див.акансий падает, и прекращается их влияние на движение плоскостей скольжения возможно такое падение концентрации, при котором дислокации аннигилируют или заполняются атомами металла.  [c.163]


Рассмотрим механизм процесса окислительного изнашивания. Про-] e ы деформирования, адсорбции и химические реакции происходит одновременно и оказывают друг на друга большое влияние. В результате деформирования повышается активность тончайших поверхностных слоев металла, его способность к адсорбции, диффузии и химическим реакциям. В свою очередь, адсорбционнь1е, диффузионные и химические процессы определяют специфику механизмов пластической деформации.  [c.132]

Существенное влияние на процесс разрушения поверхностных слоев оказывает эффект адсорбционного пластифицирования, т. е. облегчения пластических деформаций в результате действия поверхностно-активных веществ (эффект Ребиндера). Взаимодействие поверхностно-активных веществ слоя граничной смазки с поверхностным слоем металла может привести к понижению прочности и розникновению хрупкого разрушения при малой интенсивности напряженного состояния., /  [c.248]

В настоящее время имеется несколько гипотез, объясняющих влияние предварительного упрочнения на износоустойчивость. По данным работы [37], предварительное упрочнение уменьшает износ за счет деформации смятия и за счет истирания микронеровностей на контакте. Как считают авторы [43] и [101], предварительное упрочнение пластической деформацией способствует диффузии кислорода воздуха в металле и образованию в нем твердых химических соединений РеО, РегОз, Рсз04 в результате окислительного изнашивания, происходящего с ничтожно малой интенсивностью. Согласно гипотезе [109] упрочнение поверхностного слоя рассматривается как средство повышения жесткости поверхностных слоев и уменьшения взаимного внедрения при механическом и молекулярном взаимодействии. На этот счет существуют и другие теории. Так, например, по мнению А. А. Маталина [64], главным фактором, определяющим износоустойчивость, является величина остаточных напряжений после приработки изделий. Между микротвердостью поверхностного слоя и его износоустойчивостью имеется определенная связь в процессе изнашивания микротвердость поверхностных слоев после приработки стремится к оптимальному значению однако в силу одновременного влияния разнообразных факторов (шероховатость поверхности, напряженное состояние поверхностного слоя и пр.) эта связь имеет только качественный характер и не может быть использована для практических расчетов.  [c.14]

Большое влияние на образование термоусталостных трещин оказывает и неоднородная структура, разнородные дефекты и другие подобные явления в поверхностном слое металла. Необходимо учитывать и то, что при резких охлаждениях возникают дополнительно в большом количестве ранзотипные дефекты в металле, которые могут перемещаться, соединяться и т. д. Такие скопления дефектов являются местными концентраторами напряжений, приводящих к ускоренному образованию трещин и пор. Зарождение пор происходит по границам зерен из-за локализации там пластической деформации.  [c.237]

Многочисленные исследования показали, что одним из наиболее эффективных методов воздействия на состояние поверхности, приводящих к повышению циклической прочности, является предварительное поверхностное пластическое деформирование (ППД). При этом применение ППД повышает циклическую прочность не столько в области многоцикловой усталости, сколько при больших перегрузках. Известны примеры, когда применение методов ППД позволяет повысить долговечность деталей из титановых сплавов, работающих в области малоциклового нагружения, в 17 — 20 раз, а предел выносливости—в 2 раза [ 187, с. 35, 43]. Вместе с тем по сравнению с многоцикловой усталостью эффективность применения ППД для деталей, работающих в малоцикловой области, изучена меньше. До последних лет отсутствовало даже научно обоснованное объяснение влияния ППД при больших перегрузках (выше предела выносливости), так как при этом роль остаточных сжимающих напряжений не может быть решающей. Возникающие при ППД остаточные сжимающие напряжения при значительных циклических пластических деформациях неизбежно релаксируют при первых же циклах нагружения. С целью установления природы влияния ППД на малоцикловую долговечность титановых сплавов были поставлены специальные опыты по изучению влияния ППД на статическую прочность и характер деформации. Исследование проводили на цилиндрических образцах сплава ВТ5-1 диаметром 10 мм. После механической шлифовки и полировки часть образцов подвергали электрополированию до полного удаления наклепанного слоя. Поверхностное пластическое деформирование осуществляли в трехроликовом приспособлении для обкатки (диаметр ролика 20 мм, радиус профиля ролика г= 5 мм, усилие на ролик изменялось от 300 до 1200 Н при определении статической прочности и равнялось 900Н при оценке характера деформирования). Обкатку вели на токарном станке в 2 прохода при скорости вращения шпинделя 100 об/мин  [c.193]

Рассмотрим особенности роста сквозных и поверхностных усталостных трещин при одинаковой внешней загрузке крестообразной модели. Фронт сквозной и поверхностной (полуэллиптической) трещины ориентирован различным образом относительно плоскости двухосного нагружения (рис. 6.16). Поэтому стеснение пластической деформации вдоль фронта трещины неодинаково для этих двух сопоставляемых ситуаций. Однако невозможно с единых позиций описать влияние второй компоненты нагружения на рост усталостных трещин только на основе принципов механики разрущения для разных форм трещин при неизменном внешнем двухосном воздействии на плоский элемент конструкции. Необходимо вводить в анализ представление о синергетических принципах эволюции процессов разрушения металлов, включая механизм мезотуннелировання усталостной трещины и эффект макротуннелирования тре-  [c.315]

КОН бора проводились на воздухе они отчетливо выявили заметное снижение прочности при температуре ниже 811 К [37, 38]. С обнаружением интенсивной реакции между волокнами бора и расплавленной окисью бора (температура плавления 727 К) стало ясно, что одна из возможных причин разупрочнения — поверхностная реакция с воздухом. Последующие исследования проводились в атмосфере аргона, но предпринятые для исключения влияния кислорода меры были, как правило, недостаточны [И]. Напротив, если волокнО бора находится в титановой матрице, доступ кислорода к нему практически исключен это обстоятельство позволяет ответить на вопрос, применимы ли многие из этих характеристик прочности изолированных волокон к волокнам в составе композита. Роуз [28] начал в лаборатории автора работу по измерению прочности волокон бора при растяжении и сдвиге в высоком вакууме (<1,3-10- Па). Затем в статье Меткалфа и Шмитца [20] были приведены кривые температурной зависимости модуля и прочности при растяжении они представлены на рис. 13. Значения прочности были получены при кратковременном испытании с предварительной пятиминутной выдержкой при температуре испытания. Слабое увеличение прочности при повышении температуры от комнатной до 811 К объясняли тем, что приблизительно при этой температуре происходит переход от вязкого разрушения к хрупкому. С такой интерпретацией согласуются наблюдения Роуза о том, что пластическая деформация предшест-  [c.163]

В работе [74] предпринята попытка объяснить влияние механической деформации медного электрода на его анодную и катодную поляризацию в водном растворе USO4 с позиций теории перенапряжения кристаллизации при условии, что лимитирующей стадией реакций является поверхностная диффузия ад-ионов, параметры которой зависят от расстояния между ступеньками роста, т. е. от плотности дислокаций. С учетом того, что плотность дислокаций линейно связана со степенью пластической деформации, получена прямая пропорциональная зависимость скорости реакции от корня квадратного из степени деформации. Эта зависимость приближенно соответствует результатам опытов и несколько нарушается при больших деформациях. К сожалению, в этой работе не измеряли величину механического напряжения, а поскольку в случае меди деформационное упрочнение может подчиняться параболическому закону [41 ], можно объяснить результаты опытов [74 ] без привлечения теории замедленной стадии поверхностной диффузии.  [c.89]

Основную роль в увеличении сопротивления малоцикловой усталости играют возникающие при поверхностном наклепе благоприятные остаточные напряжения сжатия. Вместе с тем необходимым условием при выборе режимов поверхностного наклепа при малоцнкловой усталости является сохранение в поверхностном слое достаточной способности материала накапливать пластические деформации. Влияние остаточных напряжений от поверхностного наклепа проявляется при малоцикловых нагружениях в ослаблении процесса накопления односторонней пластической деформации и в задержке развития трещин малоцикловой усталости. Влияние изменения прочностных свойств поверхностного слоя в определенных пределах проявляется в увеличении разрушающих напряжений.  [c.165]


Кинетика пластического течения на начальной стадии деформирования и природа поверхностных источников сдвигообразо-вания широко изучались в 30—40-х годах. В результате этих исследований было установлено, что начальные акты пластического течения, как правило, связаны с поверхностными слоями кристалла [55, 56]. Позднее также на основании рентгенографических исследований аналогичный вывод был сделан в работе [57]. В дальнейшем гипотеза о преимущественном пластическом течении в приповерхностных слоях кристалла на начальных стадиях деформирования получила подтверждение электронографическими, поляризационно-оптическими, металлографическими и другими методами исследования. Наиболее сильно влияние поверхностных слоев на общий процесс макроскопической деформации проявляется на монокристаллах металлов и химических соединений в специфических условиях внешней среды (газовой, жидкой, в присутствии поверхностных пленок и т. д.) [54]. Однако апомально  [c.22]

Непосредственное измерение величины линейной деформации зерен поверхностных и внутренних слоев образца из поликристал-лического армко-железа [60] показало, что при деформировании на площадке текучести величина линейной деформации поверхностного слоя составляла 2,52%, в то время как объемные слои продеформированы всего на 0,8%,что свидетельствует о пониженном напряжении течения поверхностных слоев. Различие в напряжениях течения поверхностных и внутренних слоев материалов оказывает существенное влияние на распределение действующих и остаточных напряжений в ГЦК металлах [61]. Сплавы, претерпевающие в процессе трения фазовые превращения [62], а также сплавы, содержащие мягкую структурную составляющую [63], также имеют свойства поверхностных слоев, отличные от глубинных. Соответственно и упрочнение при пластической деформации, отображаемое зависимостью прочности от плотности дислокаций, Б поверхностных слоях (кривая 2) и на глубине (кривая 1) будет протекать различно (рис. 3) [64].  [c.23]

Влияние силы трения. Смазка является наиболее эффективным средством улучшения фрикционных характеристик пары трения — уменьшения коэффициента трения и интенсивности износа. Ее влияние на состояние поверхностных слоев сложно и многообразно. Особенно это относится к поверхностно-активным веществам. Однако и в тех случаях, когда смазка не является по-верхностно-активной, ее присутствие может оказывать существенное влияние на закономерности развития пластической деформации. Так, в работе [105] показано, что смазка заметно уменьшает градиент деформаций по глубине, способствует ее выравниваник> по сечению образца, а в отдельных случаях практически полностью защищает поверхностные слои основного материала от пластической деформации.  [c.63]

Влияние характера движения индентора. При возвратно-поступательном движении индентора сохраняется периодический характер накопления пластической деформации (рис. 45), но но сравнению с аналогичными условиями трения при движении индентора в одном направлении [116]J наблюдаются некоторые отличия. Увеличение ширины дифракционных линий (110) и (220) a-Fe на начальной стадии процесса в первом случае происходит медленнее, чем во втором. Число циклов до разрушения по результатам рентгеновского анализа составляет 11, по результатам измерения микротвердости — 13, т. е. практически равно его значению нри движении индентора в одном направлении в аналогичных условиях трения. Однако процесс нарушения сплошности развивается более интенсивно. Об этом свидетельствует более полное снятие мик-ронанряжений при установившемся значении величины блоков и вид поверхности образца, свидетельствующий о том, что разрушение охватывает значительный объем [116]. Определение интенсивности износа показало, что при возвратно-поступательном движении индентора отделение частиц износа происходит раньше, чем при движении индентора в одном направлении. Такое расхождение между закономерностями структурныхГизменений и разрушением поверхностного слоя стали 45 обусловлено тем, что при возвратно-поступательном движении индентора большое значение приобретают процессы разрушения, связанные с возникновением вакансий и ростом их плотности [117], что не влияет на ширину дифракционных линий, связанную только с плотностью дислокаций.  [c.67]

Марченко Е. А., Харач Г. М. Исследование влияния трения скольжения на распределение пластической деформации в поверхностном слое.— В кн. Проблемы трения и изнашивания, вып. 6. Киев, Техника ,  [c.113]


Смотреть страницы где упоминается термин Влияние Влияние поверхностной пластической деформации : [c.123]    [c.202]    [c.698]    [c.65]    [c.99]    [c.70]    [c.79]    [c.114]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.318 , c.319 , c.320 , c.321 , c.322 , c.323 ]



ПОИСК



Влияние деформации

Влияние пластических деформаций

Деформации поверхностные

Деформация пластическая

Пластическая деформаци



© 2025 Mash-xxl.info Реклама на сайте