Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сложные линии и поверхности

СЛОЖНЫЕ ЛИНИИ И ПОВЕРХНОСТИ  [c.138]

Кривые линии и поверхности, ограничивающие детали сложной формы, весьма разнообразны они находят особенно широкое применение в автомобильной и авиационной промышленности. Из этой группы здесь будут рассмотрены только некоторые чертежи деталей со сложным плоским контуром и в 50 отдельные примеры чтения чертежей пространственны.х деталей, ограниченных сложными криволинейными поверхностями.  [c.222]


Поверхностная модель определяется с помощью точек, линий и поверхностей. Таким образом, ее можно рассматривать как модель более высокого уровня, чем каркасная модель, и, следовательно, как более гибкую и многофункциональную. Метод поверхностного моделирования наиболее эффективен при проектировании сложных криволинейных поверхностей, изготавливаемых из листового материала, например, элементов кузова автомобиля.  [c.14]

Установки и станки содержат электросварочное, механическое и вспомогательное оборудование [16, 26]. Установки и станки для сварки и наплавки классифицируют в зависимости от вида дугового процесса, как и сварочные автоматы, по следующим признакам по способу защиты металла в зоне сварки по виду электрода по числу дуг с раздельным или общим питанием по наличию внешнего воздействия на формирование шва. Кроме того, станки и установки различают по степени специализации — универсальные, специализированные и специальные по типу свариваемых (наплавляемых) изделий по виду свариваемых соединений — для сварки стыковых, угловых, нахлесточных или тавровых соединений по форме линии соединения — для сварки прямолинейных швов и наплавки плоскостей, сварки круговых швов и наплавки поверхностей тел вращения, сварки швов сложной формы и наплавки сложных кромок и поверхностей по расположению сварочного аппарата (головки, мундштука, горелки) относительно замкнутых поверхностей изделия — для сварки внутренних и наружных швов. Принято также различать установки и станки по габаритным размерам и массе свариваемых (наплавляемых) изделий [1] малые (легкие) — для изделий диаметром до 250 мм, длиной до 630 мм и массой до 63 кг средние — для изделий диаметром 250... 1600 мм, длиной  [c.84]

Разные типы сил. В предыдущих параграфах при рассмотрении и описании свойств сил мы прибегали к представлениям прикреплённой к телу в какой-нибудь его точке верёвки, за которую тянут, твёрдого стержня, концом которого тело толкают, и т. п. Отсюда мы пришли к представлению силы как вектора, который можно изобразить прямолинейным отрезком. Однако наблюдение над различными явлениями природы и размышление убеждают нас в том, что представление силы значительно сложнее именно, силы можно разбить на три типа объёмные, поверхностные и сосредоточенные. Объёмной силой называется сила, распределённая по всему объёму тела, например сила тяжести. В самом деле, нет даже самой малейшей частицы тяжёлого тела, которая не весила бы и, следовательно, к которой не была бы приложена сила тяжести. Поверхностной силой называется сила, распределённая по поверхности тела, например, сила трения. Наконец, сосредоточенной силой называется сила, приложенная в точке тела. Так же как геометрические точки, линии и поверхности, сосредоточенные и поверхностные силы суть чистые отвлечения реально существуют лишь объёмные силы. Однако изучение сосредоточенных и поверхностных сил так же целесообразно в механике, как и изучение точек, линий и поверхностей в геометрии. В сущности в курсе теоретической механики мы всюду будем иметь дело с сосредоточенной силой и уже от неё, разбивая поверхность или объём на бесконечно малые элементы, к каждому из которых приложена сосредоточенная сила, переходить способом пределов к поверхностным или объёмным силам.  [c.54]


Произвольную поверхность, для которой не найден простой закон ее образования, называют графической. Такие поверхности имеют часто очень сложную форму. Это поверхности гребного винта, крыльчатки, колеса водяной турбины, кулачков и т. п. Они задаются на чертеже рядом сечений параллельными плоскостями, отстоящими друг от друга на единицу длины. К графическим поверхностям относится и рельеф земной (топографической) поверхности. Этот рельеф характеризуется линиями — горизонталями, полученными при пересечении поверхности  [c.381]

Многие детали приборов и машин имеют в своей основе форму тела вращения со сложной формой поверхности. Такое тело можно рассматривать как состоящее из частей элементарных тел вращения — цилиндра, конуса, сферы и тора или кругового кольца. Детали из такого тела вращения часто конструируют путем среза части тела плоскостью, параллельной оси. При этом в пересечении поверхности тела с плоскостью среза образуются сложные линии, построение которых и рассмотрено ниже. Эти линии, являющиеся частным случаем линии пересечения поверхности вращения с плоскостью (плоскость параллельна оси), называются линиями среза.  [c.120]

Определение понятия тонкостенный стержень было дано в 1.5. Линию, делящую толщину стенки стержня пополам, назовем средней линией, а поверхность, образованную движением этой линии в направлении оси стержня, назовем срединной поверхностью. У стержней замкнутого профиля средняя линия замкнута, а у стержней открытого профиля эта линия не замкнута. Профиль тонкостенного стержня может быть сложным, содержащим несколько замкнутых профилей и участков открытых профилей.  [c.307]

Есть возможность построить незамкнутую поверхность Безье и использовать ее в топологических операциях с телами. Чтобы не обременять конструктора сложным инструментом поверхностного моделирования, в математическом аппарате пакетов твердотельного моделирования реализованы некоторые упрощенные функции построения поверхностей по образующим линиям. Эти поверхности преобразуются в тела ограниченного объема и могут использоваться в топологических операциях с телами. Например, из любого твердого тела можно вычесть объем, ограниченный  [c.19]

Точность размеров заготовок, получаемых различными способами, колеблется от сотых долей до нескольких десятков миллиметров. Естественно при этом стремление получить точность заготовки максимально приближенной к требованиям чертежа готовой детали. В этом случае иногда удается обойтись без механической обработки. Особенно возрастают требования к точности заготовок и стабильности размеров при обработке их на прутковых автоматах, станках типа обрабатывающий центр , в гибких производственных системах, робототехнических комплексах и пр. Низкая точность заготовок в автоматизированном производстве часто является причиной отказа сложных систем и линий. Поэтому точность заготовок перед запуском их на обработку в автоматизированном производстве часто приходится повышать путем предварительной обработки базовых поверхностей.  [c.32]

Среди математических наук первой является наука о вычислениях, которая основывается на единственном понятии о числе и к которой стремятся свести все остальные науки. Затем следует геометрия, которая вводит новое понятие — понятие о пространстве, В геометрии рассматриваются точки, описывающие линии, линии, описывающие поверхности, и т, д,, но в ней никоим образом не касаются времени, в течение которого осуществляются эти движения. Если ввести понятие времени, то получится более сложная наука, называемая кинематикой, которая изучает геометрические свойства движений в их соотнощениях во времени, но в которой не касаются физических причин движения. Этим последним вопросом занимается механика. Необходимо, однако, заметить, что механика не раскрывает действительных причин физических явлений и довольствуется заменой их некоторыми абстрактными причинами, называемыми силами и способными вызвать тот же механический эффект.  [c.15]

Для определения траектории (геодезической линии на поверхности вращения) возьмем снова интеграл живых сил и, рассматривая в нем г как сложную функцию от t через 0 исключим 6 при помощи интеграла площадей. Для функции 2 (6), которая определяет траекторию на поверхности, мы получим таким образом дифференциальное уравнение  [c.148]


В тех случаях, когда перемещаемые детали не имеют опорных поверхностей большой длины или достаточно длинных боковых направляющих поверхностей, а по конструкции приспособлений требуется большое вертикальное перемещение для установки детали, можно применять конвейеры-перекладчики с верхним приводом.В конвейерах этого типа по рельсам, проходящим над линией, перемещается комплект тележек с захватами, имеющими вертикальное перемещение. Такие конвейеры имеют сложную конструкцию, и применять их следует только тогда, когда другие конвейеры не могут быть использованы.  [c.107]

Механическое формообразование поверхностей. Среди многочисленных современных геометрий особый практический интерес для технологии машиностроения представляет синтетическая геометрия. В последней геометрические образы не описываются аналитически, а задаются чисто геометрически в виде синтеза структурных элементов, под которыми подразумеваются более простые и обычно не разложимые геометрические образы. Их механическое воспроизведение хорошо согласуется с работой на станках (с траекториями режущих инструментов). К таким элементам относятся линия и окружность. В более сложных случаях берется так называемая характеристика, т. е. неизменная кривая, принадлежащая данной поверхности. Характеристика может быть воспроизведена на копировальном станке или посредством следящей системы.  [c.425]

Если в вихревой теории принять дискретную схему следа, то последний будет состоять из вихревых линий и вихревых поверхностей (пелен), которые тянутся за каждой лопастью. Вследствие весьма сложной формы этих линий и пелен интегрирование, необходимое для расчета индуктивной скорости, приходится выполнять численно. В результате задача оказалась столь сложной с вычислительной точки зрения, что практически разрешимой она стала только после того, как в распоряжении инженеров-вертолетчиков появились быстродействующие электронные цифровые вычислительные машины. При нынешнем распространении ЭВМ для представления несущего винта и его следа почти всегда используют дискретную систему вихрей, если хотят получить подробную информацию  [c.83]

Если между компонентами системы возможно взаимодействие с образованием двойных, тройных и более сложных (имея в виду пятый компонент — воду) соединений, диаграмма усложняется. Каждому из соединений должен соответствовать свой геометрический образ. На диаграмме увеличивается число объемов, поверхностей, линий и точек.  [c.198]

Детали сложной формы, не имеющие обработанной базовой поверхности, которые трудно автоматически фиксировать и закреплять на позициях обработки (например, корпуса вентилей), устанавливаются в начале обработки в спутники, на которых закрепляются и проходят всю зону обработки от загрузки до выгрузки. Спутники имеют плоскости скольжения и опорные базы для закрепления в позициях обработки. Они перемещаются вдоль линии и на каждой позиции фиксируются и закрепляются. При обработке крупных деталей с выступами считается целесообразным связывать кондукторные плиты со спутниками.  [c.239]

Образование стружки при сверлении. Как уже указывалось, при работе сверла движение его слагается из вращательного движения и поступательного перемещения вдоль оси вращения. При таком сложном движении сверла все точки его режущей кромки описывают винтовые линии, следовательно, поверхность резания также принимает направление по винтовой линии.  [c.159]

Любую достаточно сложную деталь раесматривают как состоящую из более простых объектов 1) стандартных конструктивных элементов, форма и размеры которых установлены ГОСТами или нормалями 2). элементарных поверхностей (плоскостей, кругов, цилиндров, конусов и т. д.) 3) линий и поверхностей, задаваемых уравнениями 4) производных поверхностей, получаемых из элементарных путем их объединения, пересечения и других операций.  [c.564]

Согласно результатам п. 24.2 среднее расстояние между двумя фиксированными жидкими частицами в турбулентном потоке всегда растет со временем. Отсюда, в частиости, вытекает, что средняя длина любой хорды материальной (т. е. состоящей все время из тех же частиц жидкости) линии или поверхности также увеличивается. Поэтому естественно ожидать, что средние длины материальных линий и средние площади материальных поверхностей в турбулентном потоке являются монотонно возрастающими ф ик-циями времени. Физической причиной растяжения материальных линий и поверхностей является сложное искривление любой части такой линии или поверхности, создаваемое турбулентными пульсациями (ср. схематический рис. 80 на стр. 518 части 1 этой книги, на котором граница облака примеси как раз и представляет собой некоторую материальную поверхность). Это растяжение не только интересно само по себе, как одно из наглядных проявлений турбулентного характера движения, но и важно для ряда прикладных задач, поскольку, например, вихревые линии или линии магнитного поля в случае турбулентной среды с малой вязкостью и очень большой электропроводностью в первом приближении совпадают с материальными линиями, а поверхности постоянной температуры или постоянной концентрации некоторой пассивной примеси в пренебрежении молекулярной теплопроводностью и диффузией совпадают с материальными поверхностями.  [c.513]

Какую вы сложную форму ни имели предметы или дегали машин, всегда можно представить их как совокупность простейших образов точки, линии, поверхности геометрических тел или их частей. Поверхности деталей машии рфедставляют собой плоскости и поверхности вращения (цилиндрическая, коническая, сферическая, торовая, винтовая).  [c.46]

Среди инвариантных свойств ортогонального проецирования находим (Ф с 7)А(7 i 7г, ) => Ф С т. е., если фигура Ф принадлежит поверхности у i плоскости тг,, то ортогональная проекция Ф на эту плоскость принадлежит следу поверхности h y (см. 6, свойство 2 г). Поэтому, если принять за вспомогательную секущую поверхность jj I п, (или ТГ2 ), то линии rrij и rij пересечения этой поверхности с поверхностями а и /3 будут иметь горизонтальные (или фронтальные) проекции m j С hoy и n j С hoy, (m j с у. и n j с [q т. е. решение подчас сложной задачи на построение линии пересечения поверхностей а и (3 мы заменяем решением двух простейших задач 1) определить линию пересечения проецирующей поверхности jj с поверхностью а 2) определить линию пересечения той же поверхности jj с поверхностью р. Очевидно, что каждая из этих задач сводится к построению второй проекции линии, принадлежащей поверхности, если известна одна из ее проекций. Решение последней задачи состоит из многократного определения недостающей проекции точки, принадлежащей поверхности, т. е. сводится к решению позиционной задачи второго вида АЕ а (см. 40).  [c.127]


Пусть из некоторой точки внутри кристалла распространяется свет по разным направлениям. Если по любому выбранному направлению отложить из этой точки отрезки, равные Vst и v st (где t — время распространения света внутри кристалла, us и ws — лучевые скорости по данному направлению), то геометрические места концов этих отрезков для разных направлений образуют двухполостную, так называемую лучевую, поверхность. Она, вообш,е говоря, имеет сложный вид, и поэтому ее рассмотрение производят в основном по трем ее главным сечениям, нормальным к главным осям лучевого эллипсоида. Двухполостная лучевая поверхность обладает в общем случае четырьмя точками встречи внешней и внутренней полости. Две прямые линии, соединяющие эти четыре точки попарно и расположенные симметрично относительно главных направлений кристалла (рис. 10.8), обладают особым свойством — вдоль каждого из них свет распространяется с единственной для данного направления лучевой скоростью. Эти две линии являются оптическими осями первого рода.  [c.257]

Другая картина течения возникает при оо в случа5 вдува газа со звуковой скоростью при следующих параметрах внешнего потока и вдуваемого газа Ма = 4, (ру )ш= = 2,9 Н = Лош/(2Ло ) = 0.5 Тш = Т , = 1.4 5о = 0,225. Анализ линий тока, изображенных на рис. 7.3.2 сплошными кривыми со стрелками, показывает, что за точкой прекращения вдува возникает зона рециркуляционного течения. Появление этой зоны связано с эжектирующим действием потока вдуваемого газа. Любопытно, что в зоне вдува между поверхностью контактного разрыва (сплошная кривая справа от ударной волны) и поверхностью обтекаемого тела реализуется внутренняя ударная волна (сплошная кривая, замыкающаяся на рециркуляционную зону). Появление внутреннего скачка обусловлено тем, что вблизи поверхности тела скорость вдуваемого газа становится сверхзвуковой вследствие расширения звуковой струи, а зaтe [ сверхзвуковой поток резко тормозится в результате взаимодействия с внешним потоком. Штриховой кривой, как н раньше, изображена звуковая линия. Видно, что в отличи(Ь от первого случая она имеет более сложную форму и сдвинута вниз по внешнему потоку.  [c.369]

Решение одной задачи несколькими методами часто практикуется во многих опубликованных работах авторов, в том числе и в настоящей книге. Целесообразность применения нескольких методов можно пояснить на следующих примерах. В моделях из оптически чувствительного материала иногда создаются весьма значительные перемещения (например, при фиксировании деформаций), которые можно довольно точно измерить очень простыми средствами. На фиг. П.1 показаны картины полос (а) и (б) и изменение формы (б) поперечного сечения объемной модели кольца сложной формы из оптически чувствительного материала. Диаметр модели кольца составляет около 200 мм. Изменения геометрических размеров порядка нескольких десятых миллиметра в плоскости кольца вдоль обозначенных линий и перпендикулярно к поверхности можно точно измерить микрометрами и индикаторами. Относительные деформации порядка 10" можно определить с помощью микроскопа. Относительные изменения толщины порядка 10 , возникающие в срезах, также можно легко измерить стандартным компаратором. Эти измерения дополняют и контролируют результаты, получаемые с помощью поляризационнооптических измерений. Для исследования распределения нестационарных напряжений и деформаций удобно поляризационно-оптический метод сочетать с методом полос муара (фиг. П.2 и П.З).  [c.14]

Шестая группа — параллельные поверхности, из которых своеобразными являются поверхности Монжа, каналовые и циклиды. Поверхностью Монжа называется поверхность, одной из эволют которой служит торс (в простейшем случае поверхностью Монжа служит цилиндр). Каналовые поверхности образуются движением окружности переменного радиуса, центр которой находится на заданной кривой. К ка-наловым поверхностям близки трубчатые поверхности. Циклиды представляют собой более сложную разновидность каналовых поверхностей с двумя видами окружностей на них, как линиями кривизны.  [c.416]

В случае сложных неэллипсоидальных изоэнергетич. поверхностей наряду с уширением линии Ц. р. из-за процессов рассеяния (однородное уширение) возникает также т. н. неоднородное уширение, связанное с зависимостью от и if и с возникающим из-за этого разбросом Шс (см. выше).  [c.431]

Различают линейчатый и нелинейчатый глобоидные червяки, теорети ческие поверхности витков которых образовавы соответсгвенно прямой я кривой линиями, t Г. по сравнению с червячной цилиндрической передачей имеет более высокие несущую способность и КПД из-за баагоприятных условий для гидродинамической смазки (см. Гидродинамическая смазка). Однако Г. сложна в изготовлении, чувствительна к погрешностям монтажа и деформациям звеньев. Применяют обычно Г. с модифицированным глобоидным червяком, который характеризуется продольной модификацией витка. Последняя представляет собой отклонение линии 4 поверхности витка червяка от его теоретической линии 5 по определенной зависимости (см. сх. в — развертку витка).  [c.66]

Например, цементация сталей проводится в аустенитной области диаграммы состояния Ре-РсзС. Цементации подвергают низкоуглеродистые стали (цементуемые стали). В качестве насыщающих сред (при цементации такие среды называют карбюризаторами) используют древесный уголь с добавками углекислых солей углеродсодержащие газы расплавы солей с добавками карбидов. Максимальное возможное насыщение поверхностного слоя определяется линией SE диаграммы - линией предельной концентрации углерода в аустените. Цементованная сталь при охлаждении от температуры цементации испытывает эвтекто-идное превращение, вследствие чего насыщенный углеродом слой (диффузионный слой) приобретает сложную структуру на поверхности - перлит + цементит, глубже - перлит и затем - перлит + феррит. Конечная цель цементации - получение высокотвердого поверхностного слоя при сохранении вязкой сердцевины достигается последующей (после насыщения углеродом) закалкой и низким отпуском. После термообработки поверхностный слой изделия состоит из высокоуглеродистого мартенсита, сердцевина - из низкоуглеродистого вязкого мартенсита (при достаточной прокаливаемости) или сохраняет ферритно-перлитную структуру доэвтектоидной стали.  [c.74]

Метрдика определения критерия разрушения основывается на измерении величины деформации в осевом и тангенциальном направлениях, для чего на экваториальной линии бочкообразной поверхности осаживаемого образца наносится кольцевая ячейке. Осаживая образец и измеряя длину осей шллипев в направлении приложения усилия и перпендикулярно ему, можно определить величины соот ветствующих деформаций. Соотношение между укшзанными деформациями определяются условиями трения в процессе осадки, температурой бойков, а также отношением его высоты к диаметру. Если величины деформаций в осевом направлении, при которых наблюдается растрескивание образца, нанести на график в функции соответствующих им тангенциальных деформаций, то получим линию, представляющую собой границу области критических деформаций, превышение которых приводит к разрушению заготовки (см. рис. 36). Геометрические места точек, характеризующие величину деформации в момент разрушения материала, можно рассматривать в качестве критерия разрушения материала при оценке процесса штамповки изделий более сложной формы [78]. Кюном предложено проводить проектирование заготовки в следующей последовательности 1) по экспериментальным данным построить график функциональной зависимости величины растягивающих деформаций от сжимающих деформаций 2) аналитически рассчитать фактические деформации заготовки в процессе штамповки 3) сравнить значения расчетных и допустимых деформаций. Если окажется, что расчетные деформации достигают критических значений до момента завершения процесса деформирования, то возможно разрушение материала заготовки. В этом случае в размеры заготовки следует внести соответствующие коррективы так, чтобы расчетные деформации не превышали критических.  [c.118]


В последние годы для анализа структурного состояния и сложной поверхности статического и усталостного разрушения все шире используются методы фрактальной и мультифракталь-ной параметризации [41, 78-85]. Дело в том, что большинство сложных объектов и структур в природе обладают фундаментальным свойством геометрической регулярности, известной как инвариантность по отношению к масштабу, как самоподобие. Если рассматривать эти объекты в различном масштабе, то постоянно обнаруживаются одни и те же фундаментальные элементы. Эти повторяющиеся закономерности определяют дробную, или фрактальную размерность структуры. Фрактальная геометрия описывает природные формы изящнее и точнее, чем евклидова геометрия. По определению Б. Мандельброта фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому и друг другу [86]. Это простое определение фрактала не является строгим и полным. Регулярные фракталы - это прежде всего язык геометрических образов (моделей). Они принципиально отличаются от привычных объектов евклидовой геометрии, таких как прямая линия или окружность. Фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур. Эти алгоритмы трансформируются в геометрические формы с помощью компьютера. Независимо от природы и мето-  [c.140]

Фрезы с прямолинеЙ1[1ой образующей широко используются для обработки плоскостей, а с криволинейной образующей — для обработки контурно-сложных линейчатых поверхностей при большой длине направ-ляюш ей линии. Движенце подачи происходит вдоль направляющей линии, и его скорость измеряется в мм мин.  [c.21]

К существенным недостаткам электрохимического способа относятся затруднения при обра ботке малых отверстий, узких каналов и поверхностей сложного профиля, связанные с необхо,димостью применения дополнительных электродов и с их строго центричной установкой (во избежание неравномерного снятия металла), а также возможность изменения геометрических размеров деталей, например сглаживание острых углов из-за высокой концентрации силовых линий на остриях.  [c.100]

В процессе электролиза электрический ток и металл распределяется по поверхности катода неравномерно, так как сопротивление катода на разноудаленных от анода участках его различно. На ближних и выступающих местах, где выше концентрация силовых линий и меньше электрическое сопротивление, металла осаждается больше, чем на удаленных и экранированных участках катода. Иногда из-за неравномерного распределения тока при покрытии деталей сложного профиля сплощное покрытие не по-  [c.124]

При выборе конструкции ролика необходимо учитывать прочность контактирующих поверхностей корпуса аппарата и ролика. Распределение напряжений в месте контакта поверхностей аппарата и ролика весьма сложное. Корпус аппарата — это оболочка, де(] рмирующаяся при установке на ролики, и поверхности корпуса аппарата и роликов соприкасаются не по линии, а по некоторой площадке.  [c.186]


Смотреть страницы где упоминается термин Сложные линии и поверхности : [c.223]    [c.202]    [c.923]    [c.335]    [c.435]    [c.362]    [c.52]    [c.27]    [c.42]    [c.78]    [c.141]    [c.98]    [c.138]    [c.213]   
Смотреть главы в:

Черчение и рисование  -> Сложные линии и поверхности



ПОИСК



Линии поверхностей

Пересечение сферы и тора плоскостью. Пример построения линии среза на поверхности тела вращения сложной формы

Пересечение сферы итора плоскостью. Пример построения линии среза на поверхности тела вращения сложной формы

Условия пологости поверхности сложной форяы относительно поверхности отсчета, отнесенной к ее линиям кривизны



© 2025 Mash-xxl.info Реклама на сайте