Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термообработка поверхностная,

Наименее трудоемкими являются лабораторные методы испытаний. Лабораторным исследованиям обычно подвергаются машиностроительные материалы и отдельные детали, изучаются термообработка, поверхностное упрочнение, шероховатость поверхности и т. д. В лабораторных условиях трудно воссоздать полный комплекс реальных условий работы данного узла или детали. Поэтому, если такие испытания ставятся с целью решения конкретной задачи проектирования или производства узла, то их результат должен быть проверен на стенде или в эксплуатации.  [c.28]


Соединение Условия эксплуатации не подвергнутых специальной термообработке подвергнутых специальной термообработке (поверхностная закалка)  [c.379]

При шлифовании заготовок после термообработки поверхностный слой необходимо по возможности сохранить, следовательно,сла-гаемые 7) i нужно исключить из расчетной формулы.  [c.142]

Газопрессовая сварка применяется для соединения ответственных деталей подвижного состава железных дорог (рельсы, буферные стержни, рессорные листы, паровозные дышла и др.), при изготовлении трубопроводов, арматуры железобетона, в производстве инструмента и др. Возможно использование горелок для термообработки (поверхностная закалка и нормализация и др.) изделий.  [c.402]

Если по конструктивным соображениям все же необходимо применить шлицевой валик легкой серии, то необходимо рабочие поверхности зубьев подвергнуть термообработке (поверхностной высокочастотной закалке), затем шлифовке.  [c.97]

Осталивание. Технологический процесс осталивания (железнения) имеет много общего с процессом хромирования. Он также состоит из трех этапов подготовки, покрытия и последующей обработки детали. Осталивание применяют для восстановления деталей с неподвижной посадкой без дополнительной термической обработки, для создания подслоя (при восстановлении деталей с большим износом) при последующем хромировании и для восстановления деталей с последующей термообработкой поверхностного слоя.  [c.62]

После такой термообработки поверхностный заэвтектоидный слой будет иметь структуру отпущенного мартенсита с включениями глобулярных карбидов. Структура сердцевины определяется химическим составом стали. При цементации углеродистой стали из-за низкой прокаливаемости сердцевина имеет феррито-перлит-ную структуру.  [c.174]

Выбор способа восстановления зависит от конструктивно-технологических особенностей и условий работы деталей, величины их износов, эксплуатационных свойств самих способов, определяющих долговечность отремонтированных деталей, и стоимости их восстановления. Конструктивно-технологические особенности деталей определяются их структурными характеристиками — геометрической формой и размерами, материалом и термообработкой, поверхностной твердостью, точностью изготовления и шероховатостью поверхности характером сопряжения (типом посадки) условиями работы — характером нагрузки, родом и видом трения, величиной износа за эксплуатационный период. Знание структурных характеристик деталей, условий их работы и эксплуатационных свойств способов позволяет в первом приближении решить вопрос о применимости того или иного нз них для восстановления отдельных деталей. При помощи такого анализа можно установить, какие из деталей могут восстанавливаться всеми или несколькими способами и какие по своим структурным характеристикам допускаю только один способ восстановления.  [c.330]


После термообработки поверхностный слой приобретает твердость до НЯС 65.  [c.323]

Термообработка. При направлении лазерного луча на поверхность металла тонкий поверхностный слой быстро нагревается. По мере перемещения луча на другие участки поверхности происходит быстрое остывание нагретого участка, Так производят закалку поверхностных слоев, приводяш,ую к существенному повышению их прочности. Лазерная закалка позволяет избирательно увеличивать прочность именно тех участков поверхности, именно тех детален, которые в наибольшей мере подвергаются износу. Так, лазерную закалку применяют в автомобильной промышленности для упрочнения головок цилиндров двигателей, направляющих клапанов, шестерен, распределительных валов и т. д. На Московском автозаводе им. Ленинского комсомола производится поверхностная закалка корпуса заднего моста автомобиля Москвич при помощи лазера на СО .  [c.298]

Для зубчатых колес с твердостью поверхностного слоя зубьев НВ 350, а также для зубчатых колес, закаленных при нагреве ТВЧ с обрывом закаленного слоя у переходной поверхности, и зубчатых колес со шлифованной переходной поверхностью, независимо от твердости и термообработки их зубьев, шр = 6 для зубчатых колес с нешлифованной переходной поверхность.ю при твердости поверхности зубьев НВ > 350 niF = Я Nfo — базовое число циклов рекомендуется принимать для всех сталей = 4 10 Nfe — эквивалентное число циклов перемены напряжений.  [c.134]

Марка стали Сечение s, мм Механические свойства (при поверхностной закалке (Тз и Oj- относятся к сердцевине, HR и поверхности) Термообра- ботка Ориентировочный режим термообработки 1 3 — закалка О — отпуск, с указанием > температуры нагрева н охлаждающей среды М — масло В —вода Н — нормализация  [c.195]

Химико-термическая обработка заключается в насыщении поверхностного слоя углеродом (цементация) или азотом (азотирование) с образованием (в последнем случае) нитридов железа и легирующих элементов. При комплексных процессах (цианирование, нитроцементация) поверхность насыщается одновременно углеродом и азотом с образованием карбидов и карбонитридов. Эти виды термообработки придают поверхности высокую твердость и износостойкость. В.месте с тем они увеличивают прочность (особенно в условиях циклической нагрузки) благодаря образованию в поверхностном слое напряжений сжатия.  [c.166]

При нагреве в процессе термообработки в поверхностном слое нередко происходят химические и фазовые изменения, например в сталях — обезуглероживание (разложение цементита с образованием непрочной ферритной корки).  [c.292]

На рис. 197 показаны остаточные напряжения в поверхностном слое после закалки ТВЧ, отпуска и наклепа. Закалка (кривая 1) создает остаточные напряжения сжатия 73 кгс/мм на глубине до 0,8 мм. Отпуск при 100°С несколько снижает напряжения сжатия (кривая 2) в связи с превращением мартенсита закалки в мартенсит отпуска. С дальнейшим повышением температуры отпуска (постепенное превращение мартенсита отпуска в троостит) напряжения сжатия существенно уменьшаются (кривые 3, 4) и при 400°С (полное превращение мартенсита в троостит) практически исчезают (кривая 5). Наклеп (кривые 6-8) создает в поверхностном слое напряжения сжатия 80 кгс/мм почти независимо от вида предшествующей термообработки (при сопоставлении попарно кривых 3 — 7 и 4-8 отчетливо видно наложение напряжений сжатия, вызванных наклепом, на постепенно снижающиеся с повышением температуры отпуска закалочные напряжения).  [c.320]

Назначение — после нормализации или без термообработки крюки кранов, муфты, вкладыши подшипников и другие детали, работающие при температуре от —40 до 450 °С под давлением, после ХТО — шестерни, червяки и другие детали, к которым предъявляются требования высокой поверхностной твердости при невысокой прочности сердцевины.  [c.51]

Представляется очевидным, что высокопрочная стальная арматура из стержней или полос, термообработанная для придания большей твердости (Я > 40) и находящаяся под действием растягивающих напряжений, в случае контакта с проникающей сквозь бетонное покрытие водой окажется подверженной КРН. Термообработка иногда приводит к обезуглероживанию (а значит, смягчению) поверхностного слоя. В этом случае КРН не происходит, пока в результате общей коррозии не будет удален внешний слой металла и не обнажится более твердый и чувствительный к КРН подслой. Вывод исключать контакт влаги о такими сталями или использовать менее прочные стали.  [c.245]


Кажется, что для невесомости тела необходима невесомость каждо его точки. Это приводит к требованию отсутствия взаимных давлений между точками тела или к отсутствию внутренних напряжений в теле. Но такие напряжения всегда имеются при невесомости вследствие естественной связи точек тела друг с другом, на которую можно влиять, например, термообработкой, изменением температуры и т. д. При невесомости тела как целого не обязательно отсутствие даже дополнительных напряжений, создаваемых движением тела. Достаточно равенства нулю напряжений в точках поверхности тела, создаваемых другими, соприкасающимися телами (связями), а для абсолютно твердого тела — равенства нулю главного вектора и главного момента поверхностных сил.  [c.239]

Пример 4. Произвести проверочный расчет конца вала, передающего крутящий момент. Диаметр вала d=20 мм. Закладную призматическую шпонку подобрать по ГОСТу. Передаваемая мощность N=7,5 кВт. Частота вращения вала п=725 об/мин. Материал вала — сталь 40ХН. Термообработка — поверхностная закалка ТВЧ.  [c.300]

В результате термообработки поверхностный слой приобретает структуру мелкоигольчатого мартенсита (рис. 149, б) и изолированных участков остаточного аустенита (до 30—50 %). Большое значение имеет прокаливаемость цементованного слоя, под которой понимают способность стали образовывать структуру мартенсита с 59—62 HR на заданном расстоянии от поверхности. Образование в цементованном слое карбидов и внутреннее окисление, уменьшая количество легирующих элементов в аустените, снижает прокаливаемость цементованного слоя. Карбиды добавочно уменьшают прокаливаемость, играя роль готовых центров распада аустенита, снижая его устойчивость. Недопустимо образование карбидной сетки, резко повышающей хрупкость слоя. Изолированные карбиды также могут снизить вязкость цементованной стали, особенно в углах и на торцах деталей. Увеличение интенсивности охлаждения повышает прокаливаемость слоя.  [c.237]

Например, цементация сталей проводится в аустенитной области диаграммы состояния Ре-РсзС. Цементации подвергают низкоуглеродистые стали (цементуемые стали). В качестве насыщающих сред (при цементации такие среды называют карбюризаторами) используют древесный уголь с добавками углекислых солей углеродсодержащие газы расплавы солей с добавками карбидов. Максимальное возможное насыщение поверхностного слоя определяется линией SE диаграммы - линией предельной концентрации углерода в аустените. Цементованная сталь при охлаждении от температуры цементации испытывает эвтекто-идное превращение, вследствие чего насыщенный углеродом слой (диффузионный слой) приобретает сложную структуру на поверхности - перлит + цементит, глубже - перлит и затем - перлит + феррит. Конечная цель цементации - получение высокотвердого поверхностного слоя при сохранении вязкой сердцевины достигается последующей (после насыщения углеродом) закалкой и низким отпуском. После термообработки поверхностный слой изделия состоит из высокоуглеродистого мартенсита, сердцевина - из низкоуглеродистого вязкого мартенсита (при достаточной прокаливаемости) или сохраняет ферритно-перлитную структуру доэвтектоидной стали.  [c.74]

Процесс получения эмаль-проводов с двойным покрытием под названием медис, разработанный корпорацией Мицубиси (Япония), за-, ключается в нанесении электроосаждением слоя акрилонитрильного сополимера, последующей термообработке для образования сплошной пленки, нанесении поверхностного слоя эмаль-лака и окончательной термообработке. Поверхностный слой при этом имеет толщину 5— 10 мкм. Взаимодействие основного покрытия с поверхностным приводит к образованию термостойкой пленки. Некоторые свойства эмаль-проводов медис приведены ниже  [c.78]

Предусматривать соответствующее снятие напряжеЕШЙ (термообработкой, поверхностной обработкой, ультразвуковым вибратором).  [c.204]

Решение. Для получения передачи небольших размеров принимаем для шестерен и колес сталь 40ХН. Термообработка — поверхностная закалка ТВЧ. Поверхностная твердость — HR 45-50.  [c.274]

Основные меры повышения стойкости штампа 1) повышение стойкости окончательного ручвя путем применения предварительного, подготовки заготовки, применения многоштучной штамповки 2) равномерный подогрев штампов перед началом работ до 1 = 50Ч-200° контроль в процессе работы температуры заготовки 3) охлаждение и смазка штампов 4) борьба с окалиной электронагрев заготовки, безокислительный нагрев, гидроочистка от окалины, механическая очистка 5) подбор более стойких штамповых сталей, повышение механических свойств сталей путем специальной термообработки поверхностная закалка, наплавка твердыми сплавами 6) хорошее состояние молота регулировка направляющих, своевременный ремонт мест крепления штампов 7) соблюдение рекомендуемых норм при выполнении конструктивных элементов штампов площади зеркала, веса верхнего кубика, центра штампа.  [c.558]

Примем для колес сталь марки 40 ХН с гермообрабогкой по И1 варианту, г. е. колеса и шестерни подвергаются термообработке улучшением, с последующей поверхностной закалкой с нагревом ТВЧ. Твердость  [c.157]

Марка стали Размер сечения s, мм, не болео Механические свойству (при поверхностной а и 0, относятся к сердцевине) В 1 закалке Т ермообр аботка Ориентировочный режим термообработки (3—закалка, О — отпуск, 0 указанием теьтературы нагрева и охлаждающей ср ды М—масле В—вода Н—нормализация)  [c.141]

Азотирование (насыщение поверхностного слоя азотом) обеспечивает не меньшую твердость, чем при цементации. Малая толщина твердого слоя (около 0,1.. . 0,6 мм) делает зубья чувствительными к перегрузкам и непригодными для работы в условиях повышенного абразивного износа (например, плохая защита от загрязнения). Степень коробления при азотировании мала. Поэтому этот вид термообработки особенно целесообразно применять в тех случаях, когда трудно выполнить шлифование зубьев (например, колеса с внутренними зубьями). Для азотируемых колес применяют молибденовую сталь 38ХМЮА или ее заменители 38ХВФЮА и 38ХЮА. Заготовку зубчатого колеса, предназначенного для азотирования, подвергают улучшению в целях повышения прочности сердцевины.  [c.144]


Высокие остаточные напряжения возникают при термообработке, особенно при закалке с резким охлаждением. В результате неодинаковых условий теплоотвода от поверхностных и внутренних слоев металла, а также на участках переходов образуются, зоны повышенных напряжений, нередко приводящие к появлению закалочных трещин. У материалов, которым свойственна низкая прокаливаемость, это явление усугубляется взаимодействием прокаленных и непрокаленных зон Зоны мартенсита, который обладает наибольшим удельным объемом, подвергаются сжатию действием с.межных более плотных слоев трооститной, еорбитной или перлитной структуры, в которых возникают реактивные напряжения растяжения.  [c.151]

Значительная часть выходов из строя зубчатых передач связана с погрешностями изготовления, шлифовочными при-жогами и трещинами, остаточными напряжениями растяжения зуба у переходной кривой зуба при закалке ТВЧ, обезуглероживанием поверхностного слоя и т. д. В особо напряженных колесах избегают шлифования переходной зоны после термообработки. Для этого колеса нарезают специальным инструментом с протуберанцем.  [c.160]

КелатольаО выбирать так . е виды обработки деталей, которые соэдают в поверхностном слое сжи1лаю1див напряжения - обдувка поверхности дробью, обкатка роликами а т.дг, выравнивают химсостав и структуру металла в результате термообработки.  [c.55]

Повысить надежность на стадии изготовления удается, применяя процессы, повыщающие физико-механические свойства поверхностного слоя металлических изделий прокатку, обкатку, термообработку и т. д.  [c.177]

При твердофазном рафинировании в контакте с цирконием нио-биевые пластинки или молибденовые стержни с ниобиевым электролитическим покрытием помещали в циркониевый порошок крупностью менее 100 мкм. После отжига при ИОО С микротвердость в поверхностном слое уменьшилась со 120 кг/мм до 50—60 кг/мм . Мик-ротпердость поверхностного слоя ниобия, содержащего 0,4% кислорода в исходном состоянии, снизилась с 320 до 90 кг/мм . Величина Нг после термообработки электролитического ниобиевого покрытия на молибденовом стержне изменилась с 4,00 до 3,88 кЭ. Все это указывает на глубокую очистку ниобия от кислорода. Металлографическим анализом на поверхности покрытия не обнарулсено промежуточных соединений ниобий-цирконий.  [c.72]

В процессе термообработки при температурах выше-вОО С наблю-долась существенная очистка от кислорода. Его содержание в порошках снижалось в 3—5 раз. Происходит рафинирование не только от кислорода. связанное с поверхностным оксидом и объемом металла, но и от кислорода, содержащегося в окси11)торидах тантала, плохо удаляющихся при выщелачивании продуктов натриетермического восстановления.  [c.74]


Смотреть страницы где упоминается термин Термообработка поверхностная, : [c.34]    [c.318]    [c.198]    [c.25]    [c.291]    [c.151]    [c.596]    [c.386]    [c.247]    [c.80]    [c.440]   
Установки индукционного нагрева (1981) -- [ c.0 ]



ПОИСК



Термообработка



© 2025 Mash-xxl.info Реклама на сайте