Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Количество движения и кинетическая энергия точки

Из изложенного видно, что, когда сила зависит только от времени t или только от расстояния х, для решения задач можно пользоваться первыми интегралами, которые в этих случаях дают соответственно теоремы об изменении количества движения и кинетической энергии точки. Примеры таких решений рассмотрены в 33 (п. 1 и п. 8). Если же сила зависит О от скорости движения, то общие теоремы первых интегралов не дают, и для решения соответствующей задачи необходимо непосредственно интегрировать дифференциальное уравнение движения.  [c.355]


СЭ (Af)] p обозначим соответственно количество движения и кинетическую энергию той же массы М жидкости, проходящей через живое сечение А В за то же время dt (рис. 3-24,6).  [c.106]

Пример 11.1. Повторить решение задачи, указанной в примере 9.3, применив теоремы об изменении количества движения и кинетической энергии точки.  [c.114]

Количество движения и кинетическая энергия точки.  [c.265]

Обозначим через КД (М) и КЭ (М) соответственно количество движения и кинетическую энергию некоторой массы М жидкости, проходящей через живое сечение АВ за время <И (см. схему а). Через [КД (М) 1ср и [КЭ (М) 1ср обозначим соответственно количество движения и кинетическую энергию той же м а ссы М жидкости, проходящей через живое сечение А В за то же время сИ (см. схему б).  [c.84]

Определить уравнения движения диска О, давление на ось блока В, количество движения и кинетическую энергию системы и кинетический момент диска и относительно точки соприкосновения диска о рельсом через 1 с после начала движения.  [c.341]

Если данная система изолирована от действия всяких внешних сил, так что на ее точки действуют только внутренние силы, то будут ли изменяться количество движения и кинетическая энергия этой системы Что можно сказать о движении центра масс такой системы  [c.837]

Отсюда следует, что если количество движения Pi остается постоянным, то определяемая формулой (6.41) энергия Т также будет постоянной. В противном случае можно было бы перейти к другой системе, и тогда по формулам преобразования Лоренца мы получили бы новые составляющие pi> выражающиеся через Pi и Т, откуда следует, что количество движения уже не было бы постоянным. Таким образом, законы о сохранении количества движения и кинетической энергии более уже не разделяются в специальной теории относительности они образуют один закон —закон о постоянстве 4-вектора р .  [c.228]

Количество движения и кинетическая энергия, как указывает Энгельс, являются основными мерами механического движения. Из теоремы о количестве движения следует, что эффект действия силы, выражающийся в изменении количества движения материальной точки, измеряется импульсом этой силы. Как увидим в следующем параграфе, эффект действия силы, выражающийся в изменении кинетической энергии материальной точки, измеряется рабо-  [c.406]


Основными динамическими характеристиками движения точки являются количество движения и кинетическая энергия.  [c.265]

Пусть твердое тело вращается вокруг неподвижной точки О, которую примем за начало инерциальной системы координат 04 2 з- Если 1 — мгновенная угловая скорость твердого тела, то момент количеств движения и кинетическая энергия тела определяются формулами  [c.118]

Каждое из этих семи всеобщих уравнений движения выглядит так или иначе, в зависимости от того, для какого объекта оно составлено, написано ли оно для одной материальной точки, для твердого тела, совершающего определенное движение, или для изменяемой механической системы. Они могут быть написаны в конечном или в дифференциальном виде. В зависимости от условий задачи приходится выбирать уравнение и форму его, соответствующую заданным условиям. При этом полезно иметь в виду, что если проекции силы являются функциями времени, то часто бывает возможно проинтегрировать уравнения проекций количества движения. Уравнение кинетической энергии дает интеграл в тех случаях, когда силы являются функциями расстояния. Этим часто определяется выбор того или другого уравнения для решения задачи. Выводу семи всеобщих уравнений движения для различных движущихся объектов посвящены 35—37.  [c.132]

Пуля, попадая в контейнер баллистического маятника, движется затем вместе с контейнером как единое целое. Количество движения и кинетический момент относительно точки подвеса маятника, которые имела пуля до попадания в контейнер, сохраняются. Им соответствуют первые интегралы уравнений движения. Кинетическая энергия системы уменьшается за счет тепловых потерь.  [c.388]

Основываясь на геометрическом смысле констант с я Су легко можно было бы показать, что других зависимостей между ними не существует. Если, вместо интегралов (18.27), иметь в виду эквивалентные им скалярные интегралы (18.19) и (18.21), то можно высказать следующее положение между шестью первыми интегралами (18.1,9) и (18.21) существует одна зависимость (18,28), Следовательно, законы изменения количества движения и кинетического момента могут дать пять независимых первых интегралов. Шестой независимый интеграл, как мы увидим, даёт в некоторых случаях закон изменения кинетической энергии.  [c.162]

Приведем основные теоремы об изменении для динамического описания точки переменной массы в традиционном изложении, опираясь при этом, главным образом, на работу [177]. Говоря о теоремах изменения, следуя традиции, будем иметь в виду важнейшие теоремы динамики об изменении количества движения, кинетического момента и кинетической энергии точки переменной массы, поскольку именно в этих теоремах сконцентрированы характерные свойства движения и законы сохранения кинетических величин.  [c.66]

В связи с эти.м приобретают большое значение приближенные методы решения задач пограничного слоя, среди которых распространенными являются методы, основанные на использовании уравнений пограничного слоя в интегральной форме. К таким уравнениям относятся уравнение количества движения, уравнение кинетической энергии, уравнение энергии. Приближенность этих методов заключается в отказе от удовлетворения дифференциальных уравнений пограничного слоя для каждой отдельной частицы жидкости. Уравнения пограничного слоя удовлетворяются только в среднем по толщине пограничного слоя ери выполнении граничных условий и контурных связей на стенке и при переходе к внешнему потоку. С точки зрения инженерной практики такой подход оправдывается тем, что часто прп проектировании различных технических устройств нет необходимости в детальном знании профилей скорости и температуры достаточно иметь данные о распределении коэффициентов трения и теплообмена по обтекаемой поверхности или о распределении толщины пограничного слоя и интегральных его характеристик.  [c.52]


Т. е. 1) дифференциал кинетической энергии материальной системы на бесконечно малом ее перемеи ении равен алгебраической сумме элементарных работ всех сил на соответствующих перемещениях их точек приложения 2) приращение кинетической энергии материальной системы на конечном ее перемещении равно алгебраической сумме полных работ всех сил на соответствующих перемещениях их точек приложения. Слова всех сил означают в обоих случаях всех заданных сил и реакций связей или всех внешних и внутренних сил. В законах количеств движения и кинетических моментов внутренние силы не фигурировали, ибо их главный вектор и главный векторный момент относительно любого центра равны нулю но алгебраическая сумма работ внутренних сил в общем случае материальной системы не равна нулю, как показано в п. 5° 2 она равна нулю в частном случае абсолютно твердого тела, но уже для упругого тела не равна нулю ).  [c.206]

Мы сравнили между собой все три закона в применении к одной и той же механической задаче — покажем теперь более глубокое принципиальное отличие закона III от законов I, II. Количество движения и кинетический момент — это понятия чисто механические, в отличие от них энергия, работа, мощность являются не только механическими, но и физическими понятиями мы можем, например, говорить о мощности электрического тока, о работе, идущей на нагревание тела, — в этом последнем случае, зная механический эквивалент теплоты ), мы можем от механических величин перейти к термическим.  [c.218]

Закон количеств движения дает одно векторное уравнение, т. е. три скалярных уравнения столько же дает закон кинетических моментов наконец, закон изменения кинетической энергии дает одно скалярное уравнение. Таким образом, все три основных закона позволяют написать в общей сложности семь дифференциальных уравнений. Этих семи уравнений в общем случае может оказаться недостаточно для нахождения движения каждой точки материальной системы кроме того — и это главное — в эти семь уравнений могут входить и реакции связей например, в законах количеств движения и кинетических моментов автоматически исключены внутренние силы, но те реакции связей, которые являются внешними силами, в эти уравнения войдут таким образом, хотя три основных закона динамики имеют определенный физический смысл, тем не менее они не дают возможности решить общую задачу динамики несвободной материальной системы.  [c.308]

Если в законах количеств движения и кинетических моментов в самом общем случае были исключены внутренние силы, то в законе изменения кинетической энергии в общем случае фигурируют работы либо внешних и внутренних сил, либо заданных сил и реакций связей ) мы видим теперь, что при некоторых дополнительных оговорках, наложенных на характер связей, можно записать этот закон в форме (14.12), т. е. исключить все реакции связей.  [c.398]

Абсолютно твердое тело представляет собой множество точек, расстояния между которыми не изменяются. В силу специфики связей движение такой системы полностью описывается теоремами об изменении количества движения, кинетического момента и кинетической энергии. Поэтому свойства движения, выделяемые этими теоремами, проявляются в динамике твердого тела особенно выпукло.  [c.443]

Аксиома 6.1.1. Количество движения, кинетический момент и кинетическая энергия твердого тела могут быть получены интегрированием по объему твердого тела в предположении, что каждый элемент объема движется как материальная точка.  [c.443]

Несмотря на то, что кинетический момент раскрывает дополнительные свойства движения механической системы по сравнению с ее количеством движения, даже совокупность этих динамических характеристик не может описать движения системы, происходящего за счет внутренних сил. Чтобы убедиться в этом, достаточно рассмотреть следующий пример. Пусть два одинаковых тела, соединенных пружиной, покоятся на гладкой горизонтальной поверхности. Растянем пружину и отпустим грузы, не сообщая им начальной скорости. Под действием внутренних сил они начнут совершать прямолинейные колебания, такие, что скорости тел в каждый момент времени равны между собой и противоположно направлены. Общее количество движения системы и ее кинетический момент относительно любой неподвижной точки тождественно равны нулю, хотя система находится в движении таким образом, в данном случае эти две величины никак не характеризуют движения системы. Поэтому в механике рассматривается еще одна мера механического движения, называемая кинетической энергией.  [c.212]

Положение обеих точек Ai и G определяется углом б между горизонтальной проекцией G и осью gx и углом <р, образованным той же проекцией G с осью gz . Движение точки С будет таким же, как если бы эта точка была материальной точкой с массой т, к которой были бы приложены все действующие на сферу внешние силы (вес, нормальная реакция горизонтальной плоскости и реакция точки М на сферу, направленная по МС). Если применить к системе теорему моментов количеств движения относительно оси gzi и теорему кинетической энергии, то получатся два первых интеграла, определяющих 6 и в функции t  [c.229]

О задаче трех и более тел. Задача п тел (п 2) состоит в следующем. В пустоте находятся п материальных точек, взаимодействующих по закону всемирного тяготения Ньютона. Заданы начальные положения и скорости точек. Требуется найти положения всех точек как функции времени. Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифференциальные уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные трансцендентные функции координат и скоростей точек.  [c.244]


Общие теоремы динамики системы материальных точек теоремы количеств движения и моментов количеств движения, а также теорема об изменении кинетической энергии имеют широкое применение при изучении движений сплошных сред и, в частности, жидкостей и газов. Они были уже применены в предыдущих параграфах при выводе основных уравнений механики сплошных сред, причем использовалось лагранжево представление движения. Остановимся на некотором своеобразии применения этих теорем, связанном с эйлеровым представлением движения.  [c.75]

Если движение системы тел (частнц) рассматривается относительно инерциальной системы отсчета А, то при переходе к другой инерциальной системе В изменяется и количество движения (импульс), и кинетическая энергия системы частиц (тел).  [c.513]

На рис. 1.1, 6 и б показаны поля скоростей при да,,шх 3, но зоны повышенных скоростей очень малы и составляют около 1/20 площади сечения. Если для этих нолей скоростей подсчитать коэффициенты количества движения и кинетической энергии, то получим 1,13 и 1,4, т. е. значения, практически мало отличающиеся от единицы. Это и понятно несмотря на большие местные отклонения скоростей в большей части се-чшгия скорость близка к среднему значению. На рис. 1.1, в величина да, ,х 2, но так как в одной половине сечения находится зона повышенных  [c.18]

Определить уравнения движения диска Д, давление на оеь блока В, количество движения и кинетическую энергию системы и кинетически . момент диска О относительно точки соприкосновения диска с рельсом через одну секунду после начала движения.  [c.315]

К вопросу усреднения неравномерных полей скоростей можно по-.дойтн и с несколько других позиций. Если при выводе соотношений (3.44) —(3,46) мы вводили средние скорости и не меняли проходной плош,ади, то для практических задач иногда целесообразно при переходе к равномерным полям скоростей деформировать границы канала. В этом случае удается сохранить одну и ту же скорость приведения независимо от метода усреднения и за счет различной деформации границы получить равномерный поток, имеющий те же расход, количество движения и кинетическую энергию, что и усредняемый поток.  [c.74]

Метеорологи распространили идею консервативности на величины, связанные с количеством движения. Брайен [1963, 1966] предложил схемы, обеспечивающие сохранение не только вихря, но и кинетической энергии. Схема Аракавы [1966] (см. также Лилли [1965] или Фромм [1967], а также разд. 3.1.2) сохраняет вихрь, квадрат вихря, количество движения и кинетическую энергию. Но такие дополнительные усложнения схем не всегда оправданы и выгодны. Бенгтсон [1964] показал, что подобные усложненные схемы дают небольшие улучшения, незначительные по отношению к истинным данным, и в то же время могут привести к большим ошибкам в скорости волн. Однако в предельном невязком случае сохранение кинетической энергии дает возможность избежать нелинейной неустойчивости ), рассмотренной в работах Филлипса [1959] и Санд-квиста [1963]. Бенгтсон [1964] предложил схему, сохраняющую разность между кинетической энергией и (метеорологической) полной статической устойчивостью ), что полезно в задачах с большими градиентами силы тяжести.  [c.57]

При переводе курса динамики i) Ламба (Lamb) нами по возможности сохранена терминология автора даже в тех случаях, когда из всех существующих терминов для одного и того же понятия чаще применяется как раз не термин автора, а какой-либо другой. Например, нами оставлены без изменения термины . центр масс вместо чаще употребляемого центра тяжести", кинетическая энергия" вместо живой силы и т. д. Но в то же время для теорем о количестве движения, о моменте количеств движения, о кинетической энергии мы сохранили название теорема" вместо употребляемого автором названия принцип.  [c.3]

Рассматривая законы количеств движения и кинетических моментов, мы видели, что при некоторых условиях имели место законы сохранения количеств движения или кинетических моментов, представлявшие собой с математической точки зрения первые интегралы уравнений движения, ибо в них не фигурировали производные второго порядка. Сформулируем теперь аналогичный закон сохранения для рассматриваемого закона изменения кинетической энергии если все силы, действующие на точки материальной системьс, потенциальны, то во все время движения системы сумма кинетической и потенциальной энергии,  [c.211]

Для составления дифференциальных уравнений движения тела, имеющего неподпижн точку, необходимо найти выражение главного, момента количеств движения Ко (кинетического момента) и кинетической энергии Т тела в этом случае движения.  [c.340]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Из теоремы об измененнт момента количества движения следует, что при движении точки под действием центральной силы траектория точки является плоской кривой, плоскость которой проходит через центр силы. Перейдем тогда к полярным координатам в этой плоскости < 1 = г и = Т (обобщенные координаты точки). Кинетическая энергия точки  [c.374]

В динамике точки мы рассмотрим три основные теоремы теорему об изменении количества движения материальной точки, теорему об изменении кинетической энергии точки и теорему об изменении момента количества движения. Кроме того, будет рассмотрен ряд теорем, не принадлежащих к осноеш>ш, но имеющих определенное самостоятельное значение.  [c.359]

Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифферепци-альиые уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные транс-цепдентные функции координат и скоростей точек.  [c.205]

Как известно, уравнения переноса количества движения и энергии в современной молекулярно-кинетической теории выводят, исходя из решений так называемого интегро-дифференциального уравнения Больцмана. Решение уравнения Больцмана в первом приближении, т. е. когда можно пренебречь градиентами скоростей и температур по средней длине свободного пути молекул, приводит к уравнениям движения газа в форме Навье — Стокса. Второе приближение, найденное Барнетом по методу Энского—Чепмена, вводит в систему уравнений движения и теплового потока принципиально новые члены, которые существенным образом меняют законы дисперсии акустических волн. В этом случае в какой-то степени уже учитывается изменение градиентов скоростей и темпёратур на средней длине свободного пути молекул. Существует решение уравнения Больцмана и в третьем приближении. Оно 54  [c.54]


В развитии механики тел переменной массы и теория реактивного движения после Великой Отечественной войны можно наметить два этапа. Первый из них — примерно до середины 50-х годов. В этот период основное внимание уделяется движению с отбрасыванием частиц, притом главной целью является уже не столько решение отдельных задач, сколько систематическое построение теории. В значительной мере это было выполнено А. А. Космодемьянским. В его работе Общие теоремы механики тел переменной массы (J946) исходным является уравнение Мещерского, кото])ое удовлетворяется для каждой из точек системы переменной массы. Отсюда получены законы изменения главного вектора количества движения, кинетического момента и кинетической энергии для тела переменной массы.  [c.302]

Завершает вторую главу 2.3, посвяш енный важнейшим законам динамики точки переменной массы. В первом разделе представлены теоремы об изменении количества движения, кинетического момента и кинетической энергии, а во втором дается беглое описание вариационного принципа Гамильтона в связи с его исходной, основополагаюш ей ролью для составления уравнений движения Лагранжа в обобш енных криволинейных координатах.  [c.47]


Смотреть страницы где упоминается термин Количество движения и кинетическая энергия точки : [c.213]    [c.5]    [c.310]    [c.95]    [c.236]    [c.40]   
Смотреть главы в:

Краткий курс теоретической механики 1970  -> Количество движения и кинетическая энергия точки



ПОИСК



Кинетическая энергия точки

Кинетическая энергия—см. Энергия

Количество движения

Количество движения точки

Точка — Движение

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)



© 2025 Mash-xxl.info Реклама на сайте