Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распространение следа за телом

В. Распространение следа за телом  [c.344]

Перечисленные условия подобия, включая последнюю систему равенств, являются необходимыми условиями подобия. Трудности стоят на пути выяснения достаточных условий подобия. Эти трудности связаны с тем обстоятельством, что существующие доказательства теоремы единственности решений уравнений Стокса относятся к отдельным классам движений вязких несжимаемых жидкостей. Для этих классов движения теорема об условиях подобия (необходимых и достаточных) двух входящих в них движений, конечно, может считаться полностью доказанной. Большое разнообразие встающих перед практикой задач (наряду с обычными задачами обтекания тел и протекания жидкости сквозь трубы и каналы существуют еще задачи свободной конвекции, распространения струй, образования следов за телами, развития пограничных слоев и мн. др.) не позволяет считать вопрос об установлении достаточных условий подобия движений вязкой несжимаемой жидкости решенным.  [c.369]


К первому классу относятся всевозможные случаи распространения турбулентных струн в неподвижно жидкости и в спутных потоках, образования следа за телом и др.  [c.705]

Корпускулярная теория света встречается в данном случае с большими трудностями. Уже со времен Ньютона известно, что проходящие вблизи края экрана световые лучи не остаются прямолинейными и что некоторые из них проникают в область геометрической тени. Ньютон приписывал это отклонение влиянию некоторых сил, которые якобы действуют со стороны края экрана на световые корпускулы. Мне кажется, что это явление заслуживает, очевидно, более общего объяснения. Так как, по-видимому, между движением тел и распространением волн существует глубокая связь и так как лучи фазовых волн могут теперь рассматриваться как траектории (возможные траектории) квантов энергии, мы склонны отказаться от принципа инерции и утверждаем Движущееся тело всегда должно следовать за лучом своей фазовой волны. При распространении волны форма поверхностей равной фазы будет непрерывно изменяться, и тело всегда будет двигаться, согласно нашему утверждению, по общему перпендикуляру двух бесконечно близких поверхностей.  [c.636]

Иногда в число условий единственности входят некоторые интегральные равенства, подобно тому, как это имело место в идеальной жидкости, где при расчете подъемной силы крылового профиля (гл. V) использовалась присоединенная циркуляция. В динамике вязкой жидкости аналогичную роль играют задание величины импульса струи при расчете явления распространения струи в пространстве, затопленном той же жидкостью, задание сопротивления тела для определения течения в аэродинамическом следе за ним и др.  [c.365]

Одним из самых распространенных методов анализа химического состава поверхностей твердых тел стал метод электронной оже-спектроскопии (ЭОС) [60 ]. Преимущества метода ЭОС — высокая чувствительность при проведении элементного анализа, быстрота получения информации и возможность обнаружения всех элементов, следующих за гелием в периодической системе Д. И. Менделеева.  [c.85]

На плоскостях, параллельных направлению набегающего потока, при скорости, меньшей скорости распространения звука, имеет место следующая картина распределения скоростей в передней части, где струйки раздвигаются перед телом, скорости направлены наружу выделенного объема, а в задней части, где струйки смыкаются за телом, они направлены внутрь выделенного объема. Чем дальше от тела проведены эти плоскости, тем меньше протекающее сквозь них количество движения.  [c.598]

В то же время для следа за тупым телом, когда ничто не препятствует свободному распространению возмущений, давление в высокоэнтропийном слое выравнивается быстрее, а ударная волна за несимметричным телом становится осесимметричной (рис. 12.5).  [c.300]


Обычно в опытах измеряется относительный коэффициент излучения, так как непосредственное измерение коэффициентов поглощения связано со значительными трудностями. Для опытного исследования интегральных коэффициентов излучения применительно к твердым телам получили распространение следующие методы радиационный, калориметрический, метод регулярного режима, и метод непрерывного нагревания с постоянной скоростью [Л. 173, 189]. Во всех методах перенос тепла за счет конвекции и теплопроводности должен быть пренебрежимо мал по сравнению с излучением.  [c.360]

Струйные течения представляют собой обширный и весьма распространенный класс движений вязкой жидкости. В этом разделе ограничимся рассмотрением стационарных струйных течений несжимаемой жидкости в пространстве, заполненном жидкостью с теми же физическими свойствами (так называемые затопленные струи). Будет рассмотрена задача о струе-источнике в безграничном пространстве [36, 98] и приведена важная для практики информация о структуре следа за движущимися телами [3, 46, 184].  [c.25]

При распространении упругой волны распространяются волна скоростей, несущая с собой кинетическую энергию, и волна деформаций, несущая с собой потенциальную энергию. Происходит перенос энергии так же, как при распространении отдельного импульса. Течение энергии в определенном направлении происходит так же, как и в случае одного импульса. Деформированные элементы стержня движутся и при этом передают свою потенциальную и кинетическую энергию следующим элементам стержня. Энергия течет по стержню с той же скоростью, с какой распространяется волна. Но, как мы видели при движении сжатого упругого тела, энергия течет в направлении движения тела наоборот, при движении растянутого тела энергия течет в направлении, противоположном движению тела. Поэтому, хотя направление движения слоев стержня дважды изменяется за период, но вместе с тем меняется и знак деформации, так что энергия все время течет в направлении +х, т. е. в направлении распространения бегущей волны.  [c.680]

При достаточно больших значениях t возмущение распространяется без затухания со скоростью < с. Итак, картину распространения волны в наследственно-упругом теле нужно представить себе следующим образом. Сначала идет упругая волна с мгновенной скоростью с, за фронтом сигнал быстро затухает по экспоненциальному закону. По мере приближения к фронту упругой волны, распространяющейся с длительной скоростью с , интенсивность сигнала должна возрастать до величины Оо па фронте, а за этим фронтом остается постоянной. Такая довольно очевидная картина может быть получена и в результате более строгого анализа.  [c.611]

Распространение ударных волн в твердых телах по сравнению с газами имеет свои особенности, которые обусловлены различиями во внутреннем строении твердых тел, с одной стороны, и газов — с другой. Силы взаимодействия между атомами и молекулами твердых тел в отличие от газов велики. Сжимаемость твердых тел мала. По этой причине скорость среды за фронтом ударной волны много меньше скорости самой волны. С этой точки зрения ударные волны в твердых телах даже в том случае, когда давление за фронтом составляет сотни килобар, следует считать слабыми.  [c.33]

Для различных веществ коэффициент теплопроводности Я различен и в общем случае зависит от структуры, плотности, влажности, давления и температуры. Все вместе взятое сильно затрудняет выбор правильного значения коэффициента теплопроводности. Поэтому при ответственных расчетах значение коэффициента теплопроводности следует определять путем специального изучения применяемого материала. В технических же расчетах значения коэффициента теплопроводности обычно принимаются по справочным таблицам. При этом надо следить лишь за тем, чтобы физические характеристики материала (структура, плотность, влажность, температура, давление) были соответственны. Так как при распространении тепла температура в различных частях тела различна, то в первую очередь важно знать зависимость коэффициента теплопроводности от температуры. Для большого числа материалов эта зависимость оказывается почти линейной, т. е.  [c.10]


Для тех случаев, когда важна не быстрота проведения опыта, а надежность результатов измерений, заслуживают внимания методы температурных волн. В числе других ценных особенностей этих методов следует отметить возможность многократных измерений в фиксированной температурной точке, легкость изменения интервала осреднения во время опыта, возможность самопроверки вычислением температуропроводности по отношению амплитуд или по разности фаз. В литературе описаны методы определения температуропроводности плохих проводников тепла в широком диапазоне температур, основанные на закономерностях распространения температурных волн в полуограниченном теле [12, 14]. Однако более перспективными являются методы температурных волн на образцах простой формы, в частности цилиндрической (15—19], позволяющие создать удобное устройство для равномерного нагрева образца и проводить измерения за более короткий промежуток времени и на образцах меньших раз.меров. Можно, кроме того, отметить, что изменение температуры тела простой формы одновременно по гармоническому и линейному закону позволяет осуществить непрерывное измерение коэффициента температуропроводности в широком интервале температур.  [c.77]

Классическая механика — это как бы своеобразная модель картины мира, движения реальных тел, оправдывающаяся на практике с исключительной точностью. Следующей по времени моделью является релятивистская механика, в которой существенную роль играет скорость распространения электромагнитных колебаний, в частности видимого света, принимаемая в уравнениях движения за постоянный параметр. Если сделать предельный переход в результате устремления этого параметра в бесконечность, то законы релятивистской механики, или механики специальной теории относительности, обращаются в законы механики классической.  [c.4]

Основу ударного виброгасителя составляет тело массой гПу (рис. 7), соударяющееся с элементом А демпфируемой системы, колебания которого следует уменьшить Наибольшее распространение получили плавающие ударные гасители (рчс. 8, а—е) выполненные в виде шара, цилиндра, кольца, установленного свободно с зазором 2Л Плавающие гасители настраивают на режим двух поочередных соударений тела о каждый ограничитель за период движения, дающий для таких устройств наибольший эффект.  [c.354]

Если различные части тела находятся при различных температурах, то тепло течет от более горячих частей к более холодным. Следует различать три механизма распространения тепла 1) теплопроводность, в результате которой тепло передается через само вещество 2) конвекция, в результате которой тепло передается за счет относительного движения частиц нагретого тела, и 3) передача тепла излучением, при котором перенос тепла между пространственно разделенными частями тела происходит за счет электромагнитного излучения.  [c.11]

При Оценке скорости износа следует принять во внимание, что труш иеся поверхности взаимодействующих тел могут находиться в различных условиях изнашивания. Рассмотрим наиболее распространенный метод испытаний на трение и износ на установке типа пальчик-диск (рис. 7.2). Когда пальчиковый образец (1) скользит по диску (2), поверхность трения образца Ai совпадает с номинальной плош адью контакта Ai = тта для диска поверхность трения представляет собой кольцо площадью. Лг = 7г (i 2 -R )- Время нахождения в контакте фиксированных точек поверхности образца и диска также различны. За время испытания At произвольная точка на поверхности об-  [c.358]

Энергетические характеристики. Известно, что на образование новой поверхности тела, т. е. на распространение трещины, необходимо затратить определенную работу. Эти затраты можно покрыть за счет изменения упругой энергии тела при релаксации напряжений с ростом трещины. Отсюда следует известное понятие потока упругой энергии G в вершину трещины (см. п. 2.3.10). Равенство этого потока работе разрушения в критический момент дает при разрушении отрывом позволяет определить вязкость разрушения Gj -  [c.240]

В последние годы исключительно широкое распространение получили оптические методы исследования различного рода физических явлений и процессов в прозрачных средах. К таким явлениям следует отнести образование скачков уплотнения в аэродинамических трубах при обтекании моделей сверхзвуковыми потоками газа, различные процессы теплообмена (свободная конвекция, термодиффузия, образование температурных полей вокруг нагретых тел и др.), деформацию фронта световой волны из-за неоднородности прозрачного исследуемого объекта, вариации показателя преломления (давления, плотности) вследствие каких-либо причин и т. д. Значительный интерес представляет определение параметров плазменных струй, а также изучение полей напряжений оптических моделей под действием приложенных к ним сил, исследование микрорельефа поверхности, структуры тонких пленок и другие вопросы.  [c.3]

Из приведенного обсуждения следует сделать вывод, что, хотя повышение температуры на поверхности твердого тела может вызвать напряжения, большие, чем магнитное давление В2/2)а (рис. 4), такие напряжения содержат высокочастотные составляющие (например, 3-10 Гц при Я = 5/о (для алюминия) и затухают при распространении на несколько сантиметров от поверхности. Однако основная часть волны давления вихревых токов (рис. 3) будет распространяться в твердом теле с малым затуханием, за исключением высокочастотных составляющих, связанных с волновым фронтом.  [c.109]


Законы распространения вихревых следов за лопатками турбо-.машины на участке до смыкания аналогичны законам распространения следа за плоским одиночным телом, обтекаемым вязкой жидкостью при большом числе Не. Соответствующие решения базируются на полуэмпирических теориях свободной турбулентности. Во всех случаях рассматривается слабая неоднородность, т. е. оешения име.ют асимптотический характер и пригодны только на значительном отдалении от обтекаемого тела. При расчете следов за решетками будет наблюдаться несколько худшее (чем для одиночных тел) совпадение теории и эксперимента в деталях, так как приходится делать дополнительные предположения и рассматривать следы на более близких расстояниях за лопатками, чем это допускается классической теорией. На больших расстояниях результаты расчета также отличаются от классических, так как в этом случае следы смыкаются, чего не возникает при одиночном следе. Отметим, что некоторое несовпадение теории и эксперимента в деталях не имеет существенного значения, так  [c.240]

До появления логарифмических формул широкое применение как при описании движения в трубах, так и в пограничном слое имели разнообразные эмпирические, в том числе степенные формулы скоростей и сопротивлений. В настоящее время теория турбулентного пограничного слоя еще очень далека от своего завершения, хотя и располагает большим числом эмпирических (Бури, Грушвитц,, Лойцянский, Дёнхсфф и Колз) и полуэмпирических (Калихман, Мельников, Сполдинг, Федяев-ский) методов. К той же области могут быть отнесены вопросы распространения затопленных струй и образования следа за телами (Г. Н. Абрамович, Г. В. Гродзовский, А. С. Гиневский, Л. Г Лойцянский, Д. Н. Ляховский и др. у нас в Советском Союзе, Прандтль, Толмин, Шлихтинг за рубежом).  [c.40]

Амсден и Харлоу [1965] рассчитали крупномасштабные характеристики сверхзвукового турбулентного течения в донной области, Крейн [1968] пытался точно рассчитать гинерзвуковое течение о ближнем следе за телом, применяя метод частиц в ячейках к уравнениям для невязкого газа однако этот метод не подходит к подобной задаче, и поэтому расчет окончился неудачей. Точность метода жидкости в ячейках независимо подтвердили Гурурая и Деккер [1970] на расчетах сложных двумерных задач о распространении ударных волн и Сатофука  [c.362]

Т. е. в течение некоторого характерного для кинетики данной реакции времени т ). Поэтому ясно, что за ударной волной будет следовать передвигающийся вместе с нею слой, в котором и происходит горение, причем толщина этого слоя равна произведению скорости распространения волны на время т. Существенно, что она не зависит от размеров тел, фигурирующих в данной конкретной задаче. Поэтому при достаточно больших характерных размерах задачи можно рассматривать ударную волну вместе со следующей за ней областью горения как одну поверхность разрыва, отделяющую сгоревший газ от несгорев-шого. О такой поверхности разрыва мы будем говорить как о детонационной волне.  [c.671]

В последнее время метод ОЭС стал одним из самых распространенных методов анализа химического состава поверхностей твердых тел, превратившись фактически в стандартный метод лабораторного анализа. Основные преимущества метода — достаточно высокая чувствительность при проведении элементного анализа приповерхностной области глубиной 0,5—3,0 нм, быстрота получения спектра и возможность обнаружения всех элементов, следующих за гелием в Периодической системе элементов Д. И. Менделеева. Оже-спектр дает количественную информацию о составе приповерхностного слоя, в некоторых случаях — сведения о химических связях атомов в нем, в сочетании с ДМЭ (электронные микрофотографии) — о микротопографии поверхности, а с ионным  [c.120]

К числу еще недостаточно исследованных областей теории ламинарного пограничного слоя в несжимаемой жидкости следует отнести прежде всего пространственные, существенно трехразмерные задачи, с большим трудом поддающиеся не только приближенным аналитическим методам, но и численным машинным расчетам. Многое еще необходимо сделать в области нестационарных задач теории пограничного слоя. Почти ничего еще не сделано в теории нестационарного распространения струй и образования следов за хорошо обтекаемыми телами.  [c.522]

Основываясь на законе сохранения живой силы, открытом для частного случая колебания маятника еще Гюйгенсом и получившем широ-кое распространение в первой половине XVIII в., Бернулли впервые изложил в Гидродинамике теорему, устанавливающую связь между давлением, уровнем и скоростью движения тяжелой жидкости. Теорема эта является фундаментальной теоремой гидродинамики. Согласно этой теореме, если в точках потока, находящихся на одном уровне, понижается скорость, то доллсно возрастать давление, — результат, который вначале казался парадоксальным. Действительно, в связи с ньютоновскими воззрениями па давление жидкости на обтекаемое тело, да и исследованиями самого Бернулли о давлении жидкости на преграду прочно установился взгляд о возрастании давления жидкости на тело при увеличении скорости набегания ее на тело. Это противоречие было легко устранено Эй(.аером, который с бо.пьшой отчетливостью разъяснил, что теорема Бернулли как гидродинамическая интерпретация закона живых сил верна лишь в том случае, если следить за движением частиц одной и той же струи. Принадлежащее Эйлеру ноясие1ше заключалось в следующих словах вся сложность понимания этого предложения устраняется, если считать, что здесь сравнение производится не между скоростями двух разных течений, а между разными скоростями вдоль данной струи, которая обтекает поверхность тела . Эти слова Эйлера заслуживают упоминания в любом руководстве но гидродинамике, так как и сейчас эта важная сторона теоремы Бернулли часто ускользает от учащегося.  [c.22]

В главных передачах задних мостов автомобилей наибольшее распространение получили конические шестерни со спиральными зубьями, для которых требуются жесткие опоры. В связи с этим, упорные шарикоподшипники с канавками в задних мостах почти не применяются. Вследствие возрастающей скорости передач угюрные подшипники также не применяются, так как окружная скорость превышает допустимую для сепараторов. Для восприятия осевой нагрузки, создаваемой вследствие наличия спиральных зубьев и одновременно радиальной нагрузки, а также нагрузки, создаваемой от карданного вала, служат двухрядные радиально-упорные шарикоподшипники. Если габаритные размеры не позволяют применить подшипник с достаточным коэффициентом долговечности, то используют два подшипника с коническими роликами из ряда 313. В таких случаях необходимо следить за достаточной подачей смазки в подшипники через специальные каналы, а также за беспрепятственным отводом смазки. При трогании автомобиля с места необходимо обеспечить уровень масла, достигающий середины нижнего тела качения, а при применении двухрядных радиально-упорных подшипников рекомендуется предусматривать специальные каналы для подачи смазки (фиг. 9).  [c.365]

Термомеханический метод исследования полимеров является одним из наиболее распространенных методов экспериментального определения температуры стеклования Т . Этот метод был разработ ш В.А. Каргиным и Т.И. Соголовой. Су щность метода заключается в следующем. Полимерное тело подвергается действию постоянной или переменной нагрузки и при этом фиксируется его деформадия при кы<дой температу ре и выбранном времени действия силы. Известно, что если полимерный образец подвергается действию постоянного напряжения, в нем развивается полз) честь. Графически это выглядит так, как изображено на рис. 17, Чтобы проводить опыты в сравнимых условиях, деформацию нeoбxoди ю отсчитывать за строго постоянное время наблюдения, которое может быть выбрано любым, но желательно таким, чтобы отсчет деформации производился на втором, пологом участке кривой ползучести. Продел ш такой опыт при разных температу рах, люжно построить температурную зависимость деформации, которая будет иметь в общем слу чае вид, изображенный на рис. 18.  [c.85]


Результаты, полученные в полной нелинейной постановке, весьма немногочисленны. В [17] с использованием локального метода конечных элементов рассмотрена задача о движении крылового профиля под свободной поверхностью тяжелой жидкости конечной глубины. Решение в данной работе строится с приближенным учетом системы волн, возникающих в дальнем поле за профилем, и полученной на основе линейной теории. Для решения этой же задачи в [18, 19] использовался метод граничных интегральных уравнений. В [20] рассмотрена задача об определении гидродинамических реакций контура, движущегося на небольшой глубине. Жидкость идеальна, а распространение волн, генерируемых телом, описывается уравнениями Тулина, модифицированными с учетом ненулевого угла атаки. Численное решение осуществляется с помощью панельного метода, при этом используются нелинейные граничные условия на свободной поверхности и постулат Кутта - Жуковского в задней кромке профиля. Результаты расчетов хорошо согласуются с экспериментальными данными. Следует отметить, что волны, представленные в этой работе, далеки от максимально возможных для поверхностных гравитационных волн.  [c.127]

Метод теплового следа связан с исследованием распространения количества тепла и количества двилсеиия за обогреваемым телом, находящимся в турбулентном потоке жидкости. Турбулентное число Прандтля определяется в предположении справедливости упрощений дифференциальных уравнений турбулентного переноса, применяемых для развито о следа [Л. 5-63].  [c.286]

Известно, что расстояние между полосами определяет перемещение трещины за один цикл. Следовательно, подрастание усталостной треш.ииы в данном случае происходит нелинейно и ускоряется перед дорывом. Результаты фрактографического анализа показывают, что усталостная трещина при малоцикловой усталости зарождается в теле зерен и характер ее распространения является внутризеренным. Следовательно, при малоцикловом нагружении конструкционной стали 15Г2АФДпс изменение характера макроразрушения связано с изменением характера микроразрушения на структурном уровне статическому разрушению соответствует внутризеренное распространение трещины, квазистатическому — смешанное, малоцикловому усталостному — внутризеренное. При этом следует отметить, что нет принципиального различия в характере разрушения стали 15Г2АФДпс при испытаниях в условиях малоцикловой и классической многоцикловой усталости в одном и другом случае при развитии усталостной трещины происходит внутризеренное разрушение [4].  [c.138]

Из изложенного выше следует, что рассмотрение пористого тела как однородного материала является большой условностью. Применяемые для них понятия коэффициента теплопроводности и других физических параметров носят весьма условный характер. Они применяются только как эквивалентные тепловые характеристики, позволяющие получить суммарное представление о совокупности всех сложных тепловых явлений, из которых за главное принимается процесс распространения тепла аутеч теплопроводности.  [c.12]

С целью изучения механизма распространения трещины проведен фрактографический анализ хрупких зон изломов. Результаты этих исследований приведены в табл. 5.16. Изломы получены путем разрушения стандартных ударных образцов в среде жидкого азота. Распространение трещины происходит в основном по телу, частично по границам зерен (рис. 5.98). Из табл. 5.16 следует, что существенного ослабления границ зерен феррита в стали на удалении от трещин не происходит ни в основном металле, ни в металле сварного шва. Доля межзеренного разрушения варьируется от 4,1 до 11%. Эти данные указывают на слабое влияние среды на когезивную прочность границ зерен феррита и колоний перлита в щелочной среде за пределами трещин, Появление межзеренного разрушения, по-видимому, связано с наводороживанием стали в результате протекания электрохимического процесса коррозии непосредственно у вершины трещины.  [c.346]

Второе из этих условий определяет направлания взаимодействующих и рассеянной волн. В частности, из (8.54) легко видеть, что в слзгчае бездисперсионной среды и только одной скорости звука возможно взаимодействие волн, распространяющихся только в одном направлении. Отсюда еще раз следует, что комбинационного рассеяния звука на звуке (см. гл. 2, 7) в жидкостях без дисперсии не может быть. В отличие от жидкостей, в твердых телах из за возможности распространения волновых процессов с двумя различными скоростями при выполнении резонансных условий комбинационное рассеяние звука на звуке становится возможным.  [c.320]


Смотреть страницы где упоминается термин Распространение следа за телом : [c.362]    [c.140]    [c.11]    [c.475]    [c.43]    [c.584]    [c.640]    [c.11]    [c.410]    [c.474]    [c.10]   
Смотреть главы в:

Механика жидкости  -> Распространение следа за телом



ПОИСК



След за телом

Следы



© 2025 Mash-xxl.info Реклама на сайте