Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плазменный параметр

Для определения плазменного малого параметра следует по методу подобия перейти в уравнениях для к безразмерным величинам, выбрав подходящую единицу длины. Чтобы айта такую единицу длины и сам плазменный параметр, применим вначале к изучению плазмы дебаевский метод, развитый в 1923 г. Дебаем и Хюккелем для вычисления термодинамических функций сильных электролитов.  [c.278]


Взяв D в качестве единицы длины, нетрудно найти плазменный параметр, перейдя в уравнениях Боголюбова для плазмы к безразмерным величинам.  [c.279]

Плазменный параметр 279, 281 Плотность состояний 196 Показатель политропы 37 Постулат равной априорной вероятности 195, 216 Постоянная Стефана—Больцмана 147, 254  [c.309]

Выполнены /12/ расчеты состава и основных термодинамических параметров плазмы КО в двух существенно отличающихся энергетических режимах. Расчет состава плазмы произведен путем последовательного приближения. На первом этапе - в дебаевском приближении путем разложения в большой канонический ансамбль на уровне разрешения С/+, е и коррелированные ион-электронные пары, включая атомы К, С1. На втором этапе - с учетом полученных значений вспомогательных параметров (плазменного параметра и поправок к потенциалам ионизации и к давлению) в рамках химической модели с разрешением до КС1, К, К2, h.  [c.51]

Условие справедливости, следовательно, заключается в требовании малости характерного плазменного параметра в который входят заряд, плотность и температура.  [c.249]

Этот результат позволяет апостериори обосновать наш выбор диаграмм (6.5.18). Действительно, он показывает, что относительная поправка к свободной энергии идеального газа пропорциональна характеристическому плазменному параметру иЬ/га, и, следовательно, результат соответствует условию (6.5.16).  [c.251]

Перемешивание в фазовом пространстве 17 Плазменный параметр 217 Плотность импульса 163  [c.292]

Это то же само уравнение, что и решенное нами для i ), если только заменить —gab, таким образом, соответствующий первому приближению по плазменному параметру ответ у нас уже есть  [c.656]

Плазменный метод. Преимущества плазменного метода напыления заключаются в следующем 1) более высокая температура рабочего тела 7000—20 000 К 2) повышенная кинетическая энергия расплавленных частиц, обеспечивающая более высокую плотность покрытий и лучшее их сцепление с подложкой 3) широкий интервал регулирования энергетических параметров плазменного потока.  [c.96]

Гомогенная часть гетерогенной системы, отделенная от других частей поверхностью раздела, на которой скачком изменяются какие-либо свойства (и соответствующие им параметры), называется фазой. Если система состоит из жидкости и пара, то жидкость представляет собой одну фазу, пар — другую. Нельзя путать и отождествлять агрегатные состояния с фазами. В то время как агрегатных состояний всего четыре — твердое, жидкое, газообразное и плазменное, фаз — неограниченное число даже у одного и того же химически чистого вещества в твердом агрегатном состоянии может быть несколько фаз (ромбическая и моноклинная сера, серое и белое олово и др.). При небольших дав-.лениях, когда газы мало отличаются от идеальных, в газообразном состоянии может быть только одна фаза, так как при таких условиях все газы обладают способностью смешиваться друг с другом в любых пропорциях, образуя однородную систему. В жидком состоянии в равновесии может находиться несколько фаз, например вода и масло, керосин и вода и др.  [c.20]


Плазменные движители для космических кораблей, прямое преобразование тепловой энергии в электрическую, транспортировка и измерение параметров течения проводящих жидкостей, электромагнитные способы обогащения — вот далеко не полный перечень проблем, решение которых связано с развитием магнитной гидродинамики.  [c.389]

П. Установить начальные значения основных технологических параметров ионно-плазменного осаждения 11= 150 В, /,, = 100 А.  [c.252]

На рис. 4-34 показана 7 з-диаграмма идеального бинарного цикла с плазменным генератором. Как видно, в нем будут значительные потери на необратимость, связанные с передачей тепла от отходящих из плазменного генератора продуктов сгорания к водяному пару. Для лучшего совпадения кривых отдачи тепла продуктами горения (процесс 1-4) и получения тепла водяным паром (процесс 5-6) параметры последнего берут сверхкритическими. И, кроме того, так как теплоемкости этих рабочих тел значительно  [c.198]

Функция распределения Р (а) и параметры активных центров /г , определяются структурой поверхностей, а при плазменном напылении — процессами термопластической деформации вследствие удара частиц о поверхность матрицы.  [c.7]

В процессе плазменного напыления очень важно обеспечить достаточно хорошую связь между напыленным слоем и волокнами, а также между напыленным слоем и фольгой. Хорошая связь между этими тремя составляющими композиционного материала значительно облегчает операции раскроя и укладки, предотвращает отрыв и поломку волокон. Прочность связи покрытия с волокнами и фольгой, так же как и качество покрытия, его пористость, содержание примесей, определяют следующие основные технологические параметры 1) состояние поверхности волокон и фольги (чистота, шероховатость) 2) окружающая атмосфера (воздух, аргон, водород, азот) 3) температура напыляемой поверхности (подложки) 4) расстояние от дуги до напыляемой поверхности 5) напряжение и плотность тока дуги 6) расход плазмообразующего газа 7) скорость подачи напыляемого материала (порошка или проволоки) 8) размер частиц напыляемого порошка 9) скорость перемещения факела относительно напыляемой поверхности.  [c.171]

Вследствие термического расширения газа в канале генератора и интенсивной эрозии электродов формируется плазменная струя, насыщенная металлической компонентой, состоящей из смеси пара и частиц жидкой фазы. Соотношение между ними регулировали электрическими параметрами разряда. Средний размер частиц при импульсном распылении составлял 30—500 мкм и менее.  [c.175]

Следует отметить, что по составу и свойствам плазменные покрытия отличаются от исходного материала. Это определяется технологическими параметрами процесса напыления и свойствами напыленного материала. Например, пластичность напыленного материала ниже, чем исходного, хотя в целом она удовлетворительна прочность в 5—10 раз ниже прочности исходного компактного материала. Покрытия имеют слоистую структуру, в них образуются открытые и закрытые поры.  [c.139]

В настоящей работе рассмотрен механизм плазменного распыления вольфрама и молибдена по схеме проволока-анод и исследовано влияние переменных параметров процесса на гранулометрический состав и выход фракций получаемого сферического порошка. Экспериментальная часть работы проведена на универсальной плазменной установке УПУ-2М. Диаметры сопла и электрода горелки равны соответственно 3 и 9,5 мм.  [c.57]

По результатам исследования влияния переменных параметров процесса плазменного распыления вольфрама определены максимально возможные выходы некоторых фракций и соответствующие им технологические режимы процесса (табл. I. 25).  [c.61]

Системы большого числа взаимодействуюхцих частиц обычно представляют собой настолько сложные объекты, что для них не удается получить в явном виде точные и компактные кинетические уравнения. В предыдущих разделах, однако, нам встретились два класса систем, для которых в ряде предельных случаев удается получить строгое решение. Точнее говоря, для систем этих классов удается просум)сировать бесконечное число диаграмм определенного типа и получить таким образом явный вид кинетического уравнения. В каждом случае интересующий нас тип диаграмм определялся из условия малости некоторого параметра х, причем нас интересовал главным образом предельный переход ц -v 0. В первом случае малый параметр пропорционален плотности, а во втором он представляет собой плазменный параметр. К настоящему времени удалось найти описание и решение лишь для очень небольшого числа систем такого типа, особенно в неравновесной теории. Две из них будут вкратце рассмотрены ниже.  [c.299]


Т. е. будет специфически плазменного типа единица — это нулевое приближение в теории самосогласованного поля, когда Fab = FaFb = 1, а поправка к ней пропорциональна плазменному параметру v. При малых же R это выражение бессмысленно и может даже принимать офицательные значения.  [c.324]

Вихревые плазматроны или плазмотроны с вихревой стабилизацией плазменного жгута известны давно, и их характеристики можно найти в изданных зарубежных и отечественных монофа-фиях. Однако устройства, генерирующие поток плазмы заданных параметров, целенаправленно использующие характерные особенности эффекта Ранка, впервые были описаны в 1992 г. [148]. Особенность таких устройств — это уже отмеченное ранее естественное конвективно-пленочное охлаждение корпусных элементов подаваемым через сопло закручивающего устройства потоком интенсивно закрученного газа, перемещающегося от сечения соплового ввода к противоположному концу вихревой камеры плазмотрона в виде квазипотенциального периферийного вихря. Одновременно осуществляя аэродинамическую стабилизацию, вихревые плазмотроны на базе вихревых энергоразделителей Ранка позволяют заметно повысить интенсивность повышения температуры плазменного факела при увеличении коэффициента теплоотдачи. Термический КПД в опытах составлял 85 94%  [c.353]

Плазмообразующий газ выбирают исходя из требуемой температуры потока, его теплосодержания. Чаще всего останавливаются на смесях аргона с водородом или аргона с азотом. Добавка к аргону водорода или азота делается с целью увеличения теплосодержания потока. Энергетические параметры плазменного потока определяются мощностью, подводимой к плазменной головке, и для каждого конкретного случая разрабатываются специально. Основным требованием к форме и к размерам частиц порошкообразных напыляемых. материалов является их транспортабельность газовым потоком в зону плазменной струи. Порошок должен не комковаться, не создавать заторов в транспортных трубопроводах системы питания установки и равномерно подаваться в плазменную струЮ. С помощью методов порошковой металлургии можно  [c.96]

САМОРЕГУЛИРОВАНИЕ ПАРАМЕТРОВ ЗОИЫ РЕЗАНИЯ ПРИ ПЛАЗМЕННО-МЕХАНИЧЕСКОЙ ОБРАБОТКЕ  [c.81]

В условиях ионйо-плазменнмх технологий для достижения критических параметров (при воздействии электронного и ионного пучков, вытянутых из плазм газового и злектродугового разрядов) происходит смена механизма диссипации энергии — переход от диссипации энергии по механизму теплопроводности к конвективным потокам, исследование формирования износостойких покрытий системы Ti(N, С) при ионно-плазменной технологии показали, что смена механизма диссипации энергии при фиксированных параметрах ионного и электронного пучков отвечает установлению изотермических условий на поверхности изделия, т. е. постоянство температуры.  [c.174]

В применении к газам и плазме уравнения цепочки Боголюбова для функций распределения (15.32) позволяют, как мы видели, ввести соответственно газовый и плазменный малые параметры и находить решение этих уравнений в виде разложения функций распределения по степеням того или другого малого параметра В случае жидкости уравнения (15.32) не допускают выделения малого параметра. Тем не менее наиболее важным является при менение метода функций распределения к построению статистиче ской теории жидкостей. Это достигается другим, отличным от ме тода малого параметра, способом решения цепочки уравнений Бо голюбова. Этот способ основан на обрыве цепочки уравнений когда исходя из дополнительных физических соображений стар шая функция распределения (s>2) аппроксимируется выраже нием, включающим в себя более младшие функции (k[c.287]

Процесс вакуумно-плазменной обработки состоит из двух этапов. Первый этап - это ионная бомбардировка, второй - конденсация покрытия. Реализация указанных этапов обеспечивается технологическими параметрами процесса обработки, последовательность которого можно представить следующим образом бомбардировка подложки o yп e твляeт я ионами с энергией 1-2 кэВ. Одновременно осуществляется очистка поверхности от загрязнений и нагрев образца до тре-  [c.249]

Выбор установки для ионно-плазменной обработки определяется в соответствии с технологическими возможностями данной модели оборудования и решаемыми задачами. Промышленно освоенные модели [145] (табл. 8.2) в основном отличаются числом и расположением испарителей, формой и размерами вакуумных камер, а также скоростью осаждения ионно-плазменных потоков. Последовательность операций и параметры типового технологического процесса ионноплазменной обработки инструментальных материалов следующие.  [c.251]

Необходимым оборудованием для радиационно-энергетической обработки твердо-сплавных режущих пластин и инструментов являются вакуумная термическая печь, установка для нанесения покрытий, ускоритель сильноточных ионных пучков. Выбор режимов термической, ионно-плазменной и ионно-лучевой обработки осуществляется в соответствии с известными и специально разработанными технологическими рекомендациями. Наиболее важные варьируемые параметры технологического процесса - состав и толщина наносимого покрытия, плотность тока сильноточного ионного пучка, а также режимы окончательной термической обработки износостойкого комплекса. Стабилизационный отжиг, являющийся окончательной технологической операцией, желательно проводить в условиях вакуума с контролируемой скоростью охлаждения, которая регулируется циркуляцией инертного газа. Режимы и вид предварительной термической обработки назначаются для каждой марки твердого сплава, исходя из задач его дальнейшей эксплуатации, определяемых условиями трибомеханического нагружения модифицированного инструмента в прогдессс пезаиня.  [c.267]


Б работе рассматриваются вопросы технологии нанесения плазменной горелкой эрозионностойких покрытий из карбида вольфрама и его смеси с кобальтом. Нанесение производилось на стандартном оборудовании и измененной авторами конструкции плазменной горелки. Получены оптимальные параметры нанесения при мощности горелки 28 квт 1) расход порошка зернистостью 50- -100 мк — 2.3 кг/час, коэффициент использования порошка около 53% 2) расход смеси аргона и азота (напряжение на дуге 70 в) — 1.8Ч-2.5 нм /час 3) расстояние до поверхности подложки — 80- 120 мм. Покрытия имеют объемный вес 15 г/см (для смеси с кобальтом 13.5 г/см ) и адегезию при толщине слоя 0.3 мм около 300 кг/см . Стойкость покрытий из УС-БСо к абразивному износу при обдуве песком в 2 3 раза выше, чем у покрытий из УС. Рис. — 3, табл. — 2.  [c.345]

Изменения технологических параметров напыления, диктуемые техническим заданием предварительный подогрев подложки перед напылением, кратковременный отвод горелки из зоны напыления, оплавление покрытия с поверхности как его охлаждения, так и в процессе напыления — неизбежно вызывают структурные изменения в теле покрытия и приводят к различному характеру отрыва его от подложки (когезионному, адгезионному или смешанному) при испытаниях на прочность сцепления. Эти обстоятельства делают необходимым исследование фракто-графии излома покрытия, которое позволяет судить как о прочности самих кристаллических зерен, так и о прочности когезионной связи между ними в поликристаллической окиси алюминия. Методика эксперимента. Плазменное напыление  [c.127]

Вариации технологических параметров плазменного напыления веизбежво вызывают структурные изменения в теле покрытия и приводят к различному характеру отрыва его от подложки. Фрактографическое исследование покрытия позволяет судить как о прочности самих кристаллических зерен, так и о прочности когезионной связи между зернами в поликристаллической окиси алюминия. Показано влияние на морфологию покрытия предварительного подогрева подложки, отвода горелки в оплавления поверхности покрытия в процессе напыления. Предварительный подогрев подложки способствует увеличению прочности материала керамики, которая может превысить прочность отдельных зерен окиси алюминия, а также повышает прочность сцепления между ниобиевой подложкой и покрытием. Лит. — 4 наэв., ил. — 2, табл. — 1.  [c.265]

Большое число факторов, влияющих на формирование остаточных напряжений в покрытиях и приповерхностных участках основного металла, делает достаточно сложным расчетное и теоретическое определение их уровня и распределения. Поэтому остаточные напряжения часто определяют экспериментально. Среди большого количества практических методик наряду с рентгенографическим выделяют механические способы [80, 281, 282, 285, 286], основанные на последовательном удалении слоев покрытия. К несомненным преимуществам механических методов следует отнести простоту определения искомых характеристик доступность и легкость изготовления испытательного оборудования и образцов широкий диапазон определяемых параметров сопоставимость результатов, полученных на различных установках достаточно высокую чувствительность, селективность и точность. Величина и характер распределения ос,-таточных напряжений зависят от формы образцов. В Кишиневском сельскохозяйственном институте им. М. В. Фрунзе проводились исследования влияния девяти технологических факторов при плазменном напылении (ток дуги, суммарный расход газа, дистанция напыления, диаметр сопла и др.) на величину и характер распределения остаточных напряжений в боросодерн ащих покрытиях [287]. В качестве образцов использовались тонкостенные кольца из  [c.188]

Полуфабрикаты (слойные заготовки) металлических композиционных материалов обычно получают намоткой волокон (борных) на алюминиевую фольгу, закрепленную на оправке, с использованием клея или методов плазменного напыления. Полученная заготовка снимается с оправки, раскатывается и используется как листовой полуфабрикат. В процессе вакуумного горячего прессования происходит диффузионная сварка алюминиевой матрицы. При этом, так же как при использовании полимерных матриц, трудно избея ать пористости, в связи с чем должен быть обеспечен строгий контроль параметров процесса.  [c.63]


Смотреть страницы где упоминается термин Плазменный параметр : [c.108]    [c.127]    [c.128]    [c.281]    [c.281]    [c.98]    [c.466]    [c.252]    [c.217]    [c.222]    [c.656]    [c.389]    [c.137]    [c.200]    [c.199]   
Термодинамика и статистическая физика (1986) -- [ c.279 , c.281 ]

Статистическая механика неравновесных процессов Т.2 (2002) -- [ c.217 ]



ПОИСК



Плазменное эхо



© 2025 Mash-xxl.info Реклама на сайте