Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругость и пластичность при сложном напряженном состоянии

УПРУГОСТЬ и ПЛАСТИЧНОСТЬ ПРИ сложном НАПРЯЖЕННОМ СОСТОЯНИИ  [c.149]

Теперь наша задача будет состоять в том, чтобы установить закон пластичности при сложном напряженном состоянии. Вспомним сначала, как был получен закон Гука для сложного напряженного состояния. Для изотропного материала опыт на растяжение одного единственного образца дает всю необходимую информацию об упругих свойствах. Для этого нужно измерить продольное удлинение и поперечное сужение. Напряжение, поделенное на продольное удлинение, есть модуль упругости Е] отношение поперечного сужения к продольному удлинению есть коэффициент Пуассона .i. Из линейных соотношений вытекает принцип суперпозиции или принцип независимости действия сил. Пользуясь этим принципом, мы построили обобщенный закон Гука для сложного напряженного состояния.  [c.51]


Как это уже было показано, значения деформаций при на-грузке и разгрузке образца за пределом упругости для одного и того же напряжения неоднозначны. Двузначность сохраняется и при сложном напряженном состоянии в случае нагрузки и разгрузки образца, поэтому в теории пластичности вводят понятие об активной и пассивной деформациях, простом и сложном нагружениях.  [c.97]

При сложном напряженном состоянии материала связь напряжений и деформаций в теории пластичности определяется связью эквивалентных напряжений и деформаций — их интенсивностей. Такой подход используется и при высокоскоростной деформации. Действие интенсивных упруго-пластических и ударных волн характеризуется включением дополнительного параметра — высокого уровня среднего напряжения, которое может оказать влияние на кривую связи интенсивностей напряжений и деформаций. В связи с этим экспериментальное определение влияния величины гидростатического давления на кривую деформирования является необходимым для построения уравнения состояния материала, описывающего его упруго-пласти-ческое деформирование при импульсных нагрузках типа удара и взрыва.  [c.201]

Процесс деформирования пластичных материалов может быть разделен на две стадии. Первая — упругое деформирование при малых деформациях. Компоненты тензоров напряжений и деформаций при этом связаны законом Гука (гл. 6). Прежде чем перейти к установлению физических зависимостей на второй стадии — пластического деформирования, следует определить условия возникновения пластических деформаций. В простейшем случае одноосного напряженного состояния это условие соответствует равенству напряжений пределу текучести От, при котором на диаграмме ст 8 имеется площадка текучести. При сложном напряженном состоянии условие появления пластических деформаций устанавливается на основании двух критериев, соответствующих двум теориям прочности ( 12.5).  [c.503]

Какому же значению д соответствует переход в пластическое состояние При линейном напряженном состоянии, например при растяжении стержня д = (где — предел текучести) как указывает Тимошенко, д = 1,1 где — предел упругости. В условиях же сложного напряженного состояния переход от упругости в пластичность будет затруднен вследствие действия дополнительных напряжений, действующих в перпендикулярных направлениях [14]. В связи с этим имеет место значительное повышение несущей способности контакта, оцениваемой нами коэффициентом с, т. е. <7 = С0,. Теория и опыт показывают, что с изменяется в пределах от 1 до 5- 6. Как показали исследования А. Ю. Ишлинского [3 ], при вдавливании сферы в деформируемое полупространство (проба Бринеля) с = 3.  [c.101]


Остановимся на некоторых характерных чертах теории пластичности. Во-первых, в теории пластичности большое,место (в отличие от теории упругости) занимают вопросы установления законов пластического деформирования при сложном напряженном состоянии. Вопросы эти трудны, и следует заметить, что законы, удовлетворительно согласующиеся (при известных ограничениях) с экспериментальными данными, установлены главным образом для металлов, хотя, вероятно, они сохраняют значение и для многих других материалов. Другой особенностью теории пластичности является нелинейность основных законов, а следовательно, и основных уравнений теории пластичности. Решение этих уравнений представляет большие математические трудности классические методы математической физики здесь непригодны. В теории пластичности важное значение приобретает развитие таких путей исследования, которые, используя специфичность задач теории пластичности, позволяют в той или иной мере преодолеть эти трудности. В этих условиях весьма перспективным также является использование новой вычислительной техники.  [c.10]

Единая теория пластичности исходит из предпосылок Мизе-са — Губера, основанных на теории упругости, п предполагает неизменность объема при пластических деформациях. Однако, изменение объема наблюдается не только в сложном напряженном состоянии для таких материалов как сталь, но и в линейном напряженном состоянии для материалов с различным сопротивлением к растяжению и сжатию.  [c.104]

Первый вопрос — каково условие перехода из упругого состояния в пластическое. При простом растяжении или сжатии это условие записывается просто jaj ==От-Но сложное напряженное состояние задается тензором напряжений а, оГу, Xyj, ху, или тремя главными напряжениями сть I3. Остается совершенно неясным, как записать условие пластичности в этом случае. Поэтому мы вынуждены будем стать на путь гипотез, на путь построения более сложных математических моделей. А всякая модель описывает свойства реальных тел лишь с известным приближением. Степень достоверности этого приближения и его допустимость для практических целей проверяется в экспериментах. Опыт сам по себе еш,е не дает закона природы. Чтобы из частных результатов извлечь общие следствия, необходима догадка или интуиция. В истории любой науки, и нашей науки в частности, бывало так, что теория предшествовала эксперименту и лишь последующая проверка подтверждала ее правильность.  [c.52]

Влияние нагрузки на машинах МИ можно изучать при чистом качении (отключен верхний образец от принудительного вращения) и при качении с частичным скольжением и 10%-ным скольжением. Давление определяют по формуле Герца. Таким образом освобождаются от влияния размеров образца, так как одна и та же нагрузка при различных размерах образца вызовет появление площадок различной величины и различные сжимающие напряжения. Давление имеет довольно большое значение и превосходит предел упругости линейного напряженного состояния. Однако это не значит, что в месте касания образцов достигнут предел пластичности сложного напряженного состояния.  [c.240]

Для простоты и наглядности представления теории рассмотрим частный случай плоского напряженного состояния в теле, когда векторы Э и S являются двумерными. Для изучения законов упругости и пластичности материалов, т. е. для установления связи между 5 и Э, необходима постановка таких опытов, в которых в любой момент времени могут быть измерены напряжения и деформации во всех точках тела. Для этого необходимо, чтобы напряженное и деформированное состояние испытуемого тела было однородно, т. е. одинаково во всех точках тела. В таком случае по значениям внешних сил и значениям перемещений границ тела легко находятся напряжения и деформации тела. Однако фактически осуществить однородное состояние удается лишь в очень небольшом числе случаев. Выше мы видели, что тело любой формы при равномерном внешнем давлении по всей границе получает однородную деформацию равномерного сжатия, и в этом — простота изучения свойств объемной сжимаемости тел. Далее будем рассматривать однородные сложные напряженные состояния и состояние сдвигов.  [c.152]


При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]

Несмотря на значительные достижения теории пластичности и методов упругопластического расчета деталей при статических и циклических нагрузках [3, 4], методы расчета сложных конструкций при наличии в них зон упругопластических деформаций для более широкого их. применения в инженерной практике развиты недостаточно. Это относится не только к методам, требующим учета процессов сложного нагружения, деформационной анизотропии, трехмерности напряженного состояния и т.д. [51, но и к методам, основанным на теории малых упругопластических деформаций при наличии кинематических гипотез типа гипотез прямых нормалей в теории оболочек и пластин, принимаемых обычно в случае упругого деформирования для обширного класса задач [3,. 6—8].  [c.123]

В этом случае для количественной оценки пластических деформаций, в зависимости от действующих внешних нагрузок, предварительно необходимо установить закономерности снижения предела текучести при переменных нагрузках для простых однородных напряженных состояний (асимметричное растяжение — сжатие, асимметричное кручение, сочетания переменного и постоянного растяжения — сжатия и кручения на полых образцах). Затем, используя аппарат теории пластичности (теорию малых упруго-пластических деформаций, теорию течения), можно установить зависимости между внешними нагрузками и деформациями при рассматриваемых относительно сложных случаях (сочетание изгиба и кручения). Для статических условий совместное действие изгиба и кручения рассматривается в работах [6], [10], [15].  [c.371]

Уравнения пластического равновесия в (функциях напряжений g, т . Одной из наиболее сложных задач теории пластичности, как и в теории упругости, является определение напряженно-деформированного состояния с помощью функций напряжений в любой точке деформируемого тела в зависимости от ее координат. В методе характеристик для этого служат интегралы пластичности, т. е. функции л и Они постоянны вдоль характеристических линий Si и Sa, но меняются при переходе от одной линии к другой. Следовательно,  [c.283]

Задачи испытания материалов. При изложении первых глав настоящего курса нам постоянно приходилось ссылаться на данные опытов, в результате которых устанавливались те или иные свойства материалов. Основные законы упругости и пластичности, полагаемые в основу различных теорий сопротивления материалов, получены путем прямых испытаний образцов, поставленных в специальные условия. Эти законы применимы, строго говоря, лишь в тех пределах, в которых они нашли прямое экспериментальное подтверждение. Так, если сталь проявляет упругие свойства в довольно большом диапазоне напряжений и закон Гука для стали является весьма точным законом, мягкие металлы, например свинец, обнаруживают пластическую деформацию уже при очень малых нагрузках и вряд ли вообще могут считаться упругими. Поэтому, применяя выводы сопротивления материалов к новым материалам, необходимо подвергать их всестороннему исследованию. Некоторые основные гипотезы сопротивления материалов проверяются лишь для ограниченного числа частных случаев, тогда как теория придает им универ--сальный характер. Так, например, условие пластичности при сложном напряженном состоянии мы считаем справедливым для любых напряженных состояний, хотя имеющийся опытный материал, на основе которого эти условия были сформулированы, относится почти исключительно к двухосному напряженному состоянию, да и то не при всех возможных соотношениях между главными напряжениями. Поэтому одна из важных задач состоит в принципиальном выяснении на опыте правильности тех или иных механических теорий и установлении траниц их практической применимости.  [c.122]

И. И. Тарасенко, В. М, Чебанов, О. Н. Халдина. Прочность стали при сложном напряженном состоянии в случае простого и сложного путей нагружения. Сб. Исследования по упругости и пластичности , № 1. Изд. ЛГУ, 1961.  [c.130]

Для титановых, алюминиевых, магниевых сплавов графорасчетные методы Г. А. Николаева и Н. О. Окерблома не рекомендуется применять, так как остаточные напряжения в шве по экспериментальным данным получаются меньше предела текучести. Это несоответствие объясняется не только искривлением сечений и нарушением принятой гипотезы плоских сечений, но и в значительной степени недостаточно точным учетом изменения свойств материалов от температуры. Поэтому дальнейшее совершенствование графорасчетных методов осуществлялось в направлении более точного учета изменения свойств. При сварке реальных конструктивных элементов (в отличие от наплавки валика на кромку полосы и сварки встык узких пластин) существует, как правило, сложное напряженное состояние, для которого нельзя применять графорасчетные методы. В этом случае следует применять методы, основанные на использовании теории упругости и пластичности.  [c.417]


Выбор области контактных давлений, охватывающей интервал Os < (/max НВ, обусловлен нреждв всего ее практической неизученностью. В настоящее время точное определение деформаций и напряжений в реальных условиях трения не представляется возможным как вследствие локальности процесса, так и из-за значительного их градиента по глубине. Аналитическое решение этой задачи, основанное на достижениях теории упругости и теории пластичности, получено соответственно только для областей упругого и пластического контактов [20, 22]. Область упругопластических деформаций пока не поддается аналитической оценке. Предложенные в Гб] критерии перехода от упругого контакта к пластическому через глубину относительного внедрения являются в достаточной степени условными, так как не учитывают сил трения. При трении, как и при статическом вдавливании индентора, до сих пор нет однозначного критерия пластичности, который указывал бы на условия наступления пластической деформации [96]. Если при одноосном нагружении пластическая деформация металла начинается при напряжениях, равных пределу текучести, то при трении вследствие сложного напряженного состояния несущая способность контакта повышается и пластическая деформация начинается при значениях q = ds, где Ts — предел текучести с — коэффициент, который в зависимости от формы индентора, упрочнения и т. д. может меняться в значительных пределах (от 1 до 10) [6, 97]. В связи с тем что структурные изменения являются комплексной характеристикой состояния поверхностного слоя, представляется целесообразным их исследование именно в унругопластической области, где они могут служить критерием степени развития пластической деформации, критерием перехода от упругого контакта к пластическому.  [c.42]

Условия пластичности устанавливают соотношения между действующими напряжениями, при которых металл переходит из упругого состояния в пластическое. При линейном одноосном напряженном состоянии этот переход происходит, когда действующее напряжение достигает напряжения предела текучести а . В случае сложного напряженного состояния (плоского или объемного) число возможных комбинаций значений действующих напряжений, вызывающих переход упругих деформаций металла в пластические, может быть бесконечно велико. Эти возможные комбинации определяются уравнениями пластичности, которые выводятся на основании экспериментальной проверки принятых гипотез и определяют связи между напряжениями и деформациями при заданных темпера-турно-скоростных параметрах.  [c.18]

В условиях сложного напряженного состояния реализуется множество различных сочетаний компонентов напряжения, которые могут изменяться по величине, знаку, частоте. Поэтому задача о расчете на прочность становится весьма сложной и в общей постановке до сих пор не решена [703, 1025, 1036]. Известные теории усталостного разрушения предложены применительно к отдельным, наиболее простым случаям циклического нагружения. При этом для установления условий разрушения обычно используют статические теории прочности. Возможность такого использования имеет два оиоснования. Во-первых, соотношение пределов вьшосливости при растяжении — сжатии и кручении изменяется для разных классов материалов примерно в том же интервале, что и соотношение между пределами текучести (или пределами прочности) при тех же способах нагружения, которое прогнозируют классические теории прочности 703]. Во-вторых, процесс усталости связан с возникновением и развитием локальных микропластиче-ских деформаций, а классические теории пластичности как раз и прогнозируют условие перехода материала из состояния упругости в пластическое состояние [3971.  [c.276]

Значительные возможности в использовании методов строительной механики в расчетах напряженных состояний осесимметричных несущих элементов ВВЭР открьшаются в связи с расширением применения вычислительной техники в практике проектирования. Матричная запись и решение соответствующих дифференциальных уравнений на ЭВМ позволили в компактной и единообразной форме при сравнительно небольших затратах машинного времени (измеряемого десятками секунд) получать распределение напряжений в таких сложных зонах корпусов реакторов, как фланцевое соединение главного разъема [9, 10, 12]. В таком расчете представляется возможным учесть ступенчатое изменение толщин, несовпадение средних радиусов оболочек, условия взаимодействия между элементами. Увеличение числа сопрягаемых элементов и уменьшение их высоты (до долей толщин) позволяет заменить сложный профиль в зоне сопряжения ступенчатым и получить напряжения, характеризующие концентрацию напряжений. Вводя в такие расчеты интегральные функции пластичности или переменные параметры упругости, можно получить данные о перераспределении напряжений в упругопластической области [12, 15].  [c.35]

Сложность процесса износа становится вполне очевидной, если учесть, что его характеристики зависят от многих переменных, таких, как твердость, вязкость, пластичность, модуль упругости, предел текучести, усталостные характеристики, структура и состав сопрягаемых поверхностей, а также от формы с прягаемых деталей, температуры, напряженного состояния, особенностей распределения напряжений, коэффициента трения, величины проскальзывания, относительной скорости, отделки поверхности, смазки, различных примесей и состояния окружающей среды у изнашиваемой поверхности. В некоторых случаях важным фактором также может быть зависимость зазора между изнашиваемыми поверхностями от времени контакта. Хотя процессы износа сложны, в последние годы достигнут значительный прогресс и получены количественные эмпирические соотношения для оценки различных видов износа при определенных условиях. Однако, прежде чем эти соотношения получат широкое распространение, необходимо провести еще большую экспериментальную работу.  [c.572]

Зависимости напряжейий от характера деформирования материала за пределом упругости являются намного более сложными, чем в области упругих деформаций. Характеристики поведения материалов при пластическом деформировании, как впрочем и любые данные о теплофизических свойствах материалов, либо измеряются в экспериментах, либо получаются с помощью физических теорий пластичности. Точно так же, как и в случае уравнений состояния, экспериментальные и теоретические данные используются при построении математических теорий пластичности. Эти теории опираются в основном на гипотезы и предположения феноменологического характера. Их характерной чертой является математическая простота, необходимая для проведения расчетов и качественного анализа поведения конструкций. Математические теории пластичности можно разделить на два вида теории упругопластических деформаций и теории пластического течения. Первые являются обобщением теории упругости и опираются на уравнения, определяющие связь между напряжениями и деформациями. Вторые опираются на уравнения, связывающие напряжения со скоростями деформаций. Многочисленные экспериментальные данные показывают, что уравнения упругопластического деформирования должны содержать напряжения, деформации и скорости деформаций [31, 32]. С позиций такого подхода теории упругопластических деформаций и теории пластического течения должны рассматриваться как асимптотические теории, справедливые в случаях, когда одно из свойств материала пренебрежимо мало по сравнению с другими.  [c.73]


При сложном нагружении, в отличие от простого, соотношения между компонентами тензоров напряжений и деформаций ие остаются неизменными в процессе нагружения. Причем при наличии деформаций пластичности и ползучести трудность расчета состоит в том, что компоненты деформация и напряжения не связаны методу собоё конечными соотношениями. Для расчета напряженного и деформированного состояния в этом случае используется метод) последовательных нагружений [181, суть которого состоит в последовательном приложенин внешних нагрузок и последовательном решении аадач упругости, пластичности и ползучести. В большинстве случаев оказывается целесообразным расчленение действительной истории нагружения по этапам во времени.  [c.30]

При простых нагружениях-разгружениях понятие деформационного нагружения (1Э > 0) соответствует понятию активного процесса деформирования (( Лф > > 0), а понятие деформационного разгружения ( /Э < 0) — понятию пассивного деформирования (с Лф < 0), т.е. пропорциональной разгрузке. Понятию силового простого нагружения ёа > 0) соответствует понятие активного процесса нагружения с1Вф > 0), а понятию простого разгружения (с сг < 0) — понятие пассивного процесса разгружения ёВф < 0). Более того, силовое и деформационное нагру-жения-разгружения и активные и пассивные процессы деформирования и напряжения соответствуют друг другу. При сложных процессах такого соответствия не наблюдается. Поэтому для каждой точки К на траектории нагружения либо деформирования не могут иметь места четко выраженные предельные поверхности нагружения /(ст) = О и деформирования Р Э) =0, четко разделяющие области упругих и пластических деформаций, какие вводятся в современной теории течения. Существование таких поверхностей является следствием представлений (22). Вместо предельных поверхностей, разделяющих области упругих и пластических деформаций, мы рассматриваем предельные поверхности энергетического уровня, разделяющие области активных и пассивных процессов пластического деформирования и нагружения, т. е. области полного и неполного пластического и полного и неполного упругого деформирования. Естественно, что этим поверхностям принадлежат особые точки, в которых имеют место состояния полной пластичности. Области же полного упругого либо полного пластического состояний разделены целым переходным упругопластическим слоем неполной пластичности либо неполной упругости.  [c.398]

Для пластических материалов вопрос о прочности в условиях концентрации напряжений также далеко не прост. Если разрушению предшествует значительная пластическая деформация в тех местах, где напряжения по расчету особенно велики, то материал перейдет в пластическое состояние, образуются пластические зоны. Напряженное состояние будет пространственным, сложным для его изучения нужно решать пространственную задачу теории пластичности, что удается лишь в немногих случаях. Экспериментальные методы определения напряжений в пластической области весьма сложны, и соответствующие измерения крайне немногочисленны. Таким образом, первая трудность состоит в нахождении величин напряжений при переходе за предел упругости. Вторая трудность заключается в установлении критерия прочности при сложном пластическом напряженном состоянии. Мы вернемся к этим вопросам в главе XVII, предварительно рассмотрев общую теорию напряженного состояния и общие законы пластичности, а пока ограничимся грубой трактовкой вопроса на базе элементарных представлений.  [c.69]

На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]

Обратимся к сложному изгибу с кручением и растяжением стержня прямоугольного сечения (рис. 12.12). В этом случае при возрастании внешней нагрузки стержень может перейти в состояние предельной упругости по одному из трех вариантов. Первый напоминает задачу о косом изгибе в состояние пластичности переходит малый объем материала в окрестности точки, наиболее удаленной от нейтральной линии (см. точку D на рис. 12.13а). Здесь возникают наибольщие нормальные напряжения (см. соответствующую эпюру там же на рис. 12.13а).  [c.223]

Пластификаторы могут увеличивать хрупкость полимера, если полимер имеет вторичный переход в стеклообразном состоянии, интенсивность которого уменьшается при введении пластификаторов [100—104]. Типичными примерами являются поликарбонат и поливинилхлорид, введение в которые небольших количеств пластификатора превращает их из пластичных материалов в хрупкие. Влияние пластификации и введения в полимерные цепи гибких звеньев (структурная пластификация) в кристаллизующихся пдлимерах носит более сложный характер, чем в аморфных, причем эффект структурной пластификации может оказаться противоположным эффекту обычной пластификации. Пластификаторы понижают и плотность аморфной фазы и незначительно понижают степень кристалличности. В результате этого модуль упругости пластифицированного полимера, предел текучести или разрушающее напряжение уменьшаются, а удлинение при разрыве обычно повышается. Структурная пластификация резко уменьшает степень кристалличности, сокращает размер сферолитов и повышает или понижает Т .. Влияние каждого из этих факторов на деформационно-прочностные свойства полимеров уже обсуждалось. Обобщенный эффект влияния этих факторов иллюстрируется данными табл. 5.1 для сополимеров этилена с винилацетатом [105].  [c.168]


Смотреть страницы где упоминается термин Упругость и пластичность при сложном напряженном состоянии : [c.235]    [c.173]    [c.4]    [c.286]    [c.252]    [c.33]    [c.6]    [c.202]   
Смотреть главы в:

Сопротивление материалов  -> Упругость и пластичность при сложном напряженном состоянии



ПОИСК



Сложное напряженное состояние

Состояние напряженное упругое

Состояние пластичное

Состояние упругое

Упругость и пластичность



© 2025 Mash-xxl.info Реклама на сайте