Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поток тепловой к компоненту

Поток тепловой к компоненту 273 Прандтля число 37, 163  [c.529]

Принцип работы разрушающихся теплозащитных систем характеризуется потерей поверхностного слоя (или разложением одной из компонент материала) ради сохранения благоприятного теплового режима внутренних слоев и самой защищаемой конструкции. Разрушение поверхностного слоя происходит в результате различных физико-химических превращений под воздействием подводимых к поверхности конвективных и радиационных тепловых потоков, диффузионных потоков химически активных компонент, а также под действием сил давления и трения. Химические реакции могут протекать как при участии компонент набегающего потока, так и независимо от них. Кроме того, на поверхности теплозащитного покрытия под действием внутреннего давления или внешних сил, а также вследствие термических напряжений может иметь место эрозия — механический унос в виде отдельных частиц.  [c.117]


Тепловыми скоростями молекул можно пренебречь (они в среднем весьма малы по сравнению со скоростью движения спутника по орбите) градиентный эффект также не будем рассматривать. Рассмотрим только эффекты, указанные в пунктах 1 и 2. Компоненты момента аэродинамических сил по осям, связанным со спутником, в общем случае зависят от ориентации этих осей относительно набегающего потока и от компонент р, д, г угловой скорости вращения спутника относительно потока. Ввиду малости линейной скорости вра-шения оболочки спутника по сравнению со скоростью движения центра масс спутника зависимость момента сил от р, д, г можно принять линейной. Пусть /, к — единичные векторы по главным центральным осям спутника. Тогда вектор момента аэродинамических сил  [c.36]

Из проведенного выше анализа следует также, что в области локально-невязкого течения струйки тока, бывшие ранее в верхней части пограничного слоя и несущие большие величины энтальпии торможения и продольного компонента скорости, при повороте подходят к поверхности тела. Поэтому в центральной части крыла следует ожидать появления больших величин тепловых потоков и продольного компонента напряжения трения.  [c.231]

Что касается перпендикулярной к стенке компоненты у , то надо иметь в виду, что кванты возбуждения могут поглощаться или испускаться твёрдым телом — это соответствует просто теплопередаче между жидкостью и твёрдым телом. Поэтому перпендикулярная к стенке компонента скорости у не должна непременно обращаться в нуль граничное условие требует лишь непрерывности перпендикулярной к стенке компоненты потока тепла. Температура же испытывает на границе скачок, пропорциональный тепловому потоку ДТ = К<1, с коэффициентом пропорциональности, зависящим от свойств как жидкости, так и твёрдого тела. Появление этого скачка связано с особенностями теплопередачи в гелии II. Всё теплосопротивление между твёрдым телом и жидкостью сконцентрировано в пристеночном слое жидкости, поскольку конвективное распространение тепла в объёме  [c.626]

Если иметь в виду, что подведенное к стенке канала тепло идет на нагрев компонентов дисперсного потока, то уравнение теплового баланса следует записать так  [c.235]

Прежде всего, на всякой (неподвижной) твердой поверхности должна обращаться в нуль перпендикулярная к этой поверхности компонента потока массы j. Для выяснения граничных условий, налагаемых на надо вспомнить, что нормальное движение есть в действительности движение газа элементарных тепловых возбуждений в нем. При движении вдоль твердой поверхности кванты возбуждения взаимодействуют с ней, что должно быть описано макроскопически как прилипание нормальной части массы жидкости к стенке, подобно тому кан это имеет место для обычных вязких жидкостей. Другими словами, на твердой поверхности должна обращаться в нуль тангенциальная компонента скорости п-  [c.717]


Рассмотрим задачу при наличии на поверхности тела слоя кокса, который образуется в результате выделения газов из твердого пластического материала при определенной температуре и формирования твердой решетки. Слой кокса может достигать по толщине нескольких миллиметров и существенно влиять на тепловые потоки к телу и величину уноса материала. Материал решетки кокса на границе с газовым потоком испаряется и вступает в химическое взаимодействие с потоком (механическое разрушение решетки здесь не рассматривается). Внутри материала обтекаемого тела могут происходить также эндотермические реакции , приводящие к образованию в теле нескольких слоев с различной структурой и различными термодинамическими свойствами. Каждой реакции соответствует характерная температура и скрытая теплота превращения. Пары решетки кокса вместе с газами, образовавшимися при коксовании, поступают в пограничный слой, где они могут вступать в химическое взаимодействие с компонентами смеси газов основного потока. Набегающий на тело поток также может быть многокомпонентным. Будем рассматривать стационарный режим теплового взаимодействия, когда граница газ—слой кокса, а также фронты коксования и эндотермических реакций продвигаются в глубь тела с постоянной скоростью D (тело предполагается имеющим бесконечную толщину).  [c.56]

При расшифровке этих выражений задача сводится к записи в лабораторной системе координат составляющих скорости и , теплового потока и компонент тензора вязких напряжений и  [c.54]

Векторы всех компонентов теплового потока направлены обычно перпендикулярно к поверхности раздела, а знаки их могут не совпадать. Так, при конвективной сушке вектор конвективного компонента направлен от теплоносителя к продукту, а массообменного ды — от продукта. Важно, что в любом случае алгебраическая сумма компонентов дает общую плотность теплового потока д.  [c.25]

Здесь использована естественная система координат, оси которой X и у направлены по касательной и по нормали к обтекаемой поверхности, и qis — соответственно массовая скорость образования компонентов и тепловой эффект -й независимой гетерогенной химической реакции Ns — число независимых гетерогенных реакций, — плотность диффузионного потока а-компонента, Ra — массовая скорость образования ос-компонента в результате гетерогенных химических реакций и сублимации, (ро)ш — массовая скорость термохимического разрушения тела, — толщина слоя теплозащитного материала, индексы ш и е приписывают параметрам на границе раздела сред и на внешней границе пограничного слоя, и, V— компоненты скорости.  [c.213]

Уравнение (14-23) впервые было получено Стефаном. Это уравнение отличается от закона диффузии (14-4), относящегося к условиям беспрепятственного распространения обоих компонентов смеси, дополнительным множителем 1//Пг,с. Этот множитель учитывает конвективный (стефанов) поток, вызванный непроницаемостью поверхности испарения для газа. Как следует из изложенного, стефанов. конвективный поток появляется и при отсутствии вынужденной или свободной тепловой конвекции.  [c.337]

Зависимость qw/qo от Gg остается линейной лишь при <7и,/<7о>0,5. Как показывают расчеты и эксперименты с разрушающимися теплозащитными материалами, тепловой поток к стенке не обращается в нуль даже при высоких скоростях вдува газообразных компонент. На рис. 4-15 представлены результаты расчета разрушения графита в диссоциированном потоке воздуха. Обратим внимание на два обстоятельства  [c.107]

Фазовые превращения являются одним из самых эффективных способов поглощения тепла, особенно переход в газообразное состояние, поскольку теплота сублимации почти на порядок превосходит теплоту плавления. Кроме того, отвод газифицированного вещества сопровождается вдувом массы в пограничный слой. С этих же позиций необходимо рассматривать и химическое взаимодействие отдельных компонент внутри материала между собой, а также с компонентами набегающего потока. Во многих случаях химические реакции протекают с выделением тепла, что ухудшает тепловой баланс в поверхностном слое. Тем не менее образование в результате этих реакций больших масс газообразных продуктов считается положительным явлением, так как оно ведет к снижению доли механически унесенного материала с поверхности и вдуву газа в пограничный слой.  [c.120]


Для того чтобы связать суммарный тепловой эффект поверхностных процессов с теплотами диссоциации и концентрациями отдельных компонент, рассмотрим выражение для конвективного теплового потока на испаряющейся поверхности. Предположим, что числа Льюиса для различных компонент близки к единице, а концентрации атомов азота и молекул окиси азота у разрушающейся поверхности пренебрежимо малы. Тогда в соответствии с гл. 2 имеем  [c.203]

Конвективный теплообмен — в общем случае процесс переноса тенла в жидкой или газообразной среде с неоднородным распределением скорости, температуры и концентрации, осуществляемый совместным действием двух механизмов перемещением макроскопических частей среды и тепловым движением микрочастиц. Первый из этих механизмов называется конвективным переносом, тогда как второй — молекулярным. В свою очередь применительно к теплообмену последний механизм подразделяется на теплопроводность и диффузию. Влияние конвективного переноса на теплообмен проявляется в зависимости от величины и направления скорости течения среды, от профиля скорости в потоке и от режима течения (ламинарного или турбулентного). Влияние молекулярного переноса на теплообмен проявляется в зависимости от состава и термодинамических и переносных свойств компонент газового потока. В технических приложениях иногда производят дальнейшее дифференцирование терминов и используют понятия теплоотдача и теплопередача . Под теплоотдачей подразумевают теплообмен между твердым телом и омывающей его жидкой или газообразной средой, теплопередачей — теплообмен между жидкими или газообразными средами, разделенными твердой стенкой.  [c.370]

Сублимационный режим разрушения — режим поверхностного разрушения теплозащитных материалов в условиях интенсивных конвективных и радиационных тепловых воздействий, скорость которого определяется величиной скорости сублимации основных компонент материала. На этом режиме разрушения скорость уноса массы экспоненциально зависит от температуры поверхности, что приводит к слабому изменению этой температуры в широком интервале варьирования тепловых потоков (при постоянном давлении).  [c.373]

Вследствие колебаний теплового потока по лобовой образующей с относительно равномерным шагом появляются трещины в защитной окисной пленке, по которым к обнаженной поверхности металла проникают агрессивные компоненты из золовых отложений и топочных газов.  [c.21]

Наличие двойственной вариационной формулировки стационарной задачи теплопроводности на основе функционалов (2.48) и (2.50) позволяет получить интегральную оценку погрешности приближенного решения по разности [12] aJ = J(T) - J(T, q). Чем ближе приближенные распределения температуры Г и компонентов плотности теплового потока к истинным распределениям, тем ближе между собой значения J(T) и J(T, q) и меньше 52  [c.52]

Тепловое разрушение термоизоляции с ограниченным временем работы происходит в условиях интенсивного поверхностного нагрева и сопровождается комплексом физико-химических процессов термическим разложением, плавлением, испарением, газификацией термоизолятора или его отдельных компонентов, а при наличии механического воздействия потока среды, обтекающей поверхность, - механическим разрушением и уносом твердых частиц, удалением с поверхности жидкой или газообразной фазы. При этом значительная доля подводимого к нагреваемой поверхности теплового потока поглощается за счет протекания указанных процессов, а количество теплоты, передаваемой-кондукцией в глубь слоя термоизоляции (особенно для термоизоляторов с низкой теплопроводностью), сравнительно мало.  [c.112]

Упрощенная схема задачи показана на рис. 4-2. К стенке, на которой образован ламинарный пограничный слой, подводится удельный тепловой поток q. Капли, содержащиеся в паровом потоке, омывающем стенку, достигают пограничного слоя (толщиной б), имея только нормальную к стенке компоненту скорости w . Двигаясь к стенке, капля испаряется и теряет скорость, встречая поток пара, движущийся в обратном направлении со скоростью w . Легко убедиться в том, что даже при отсутствии теплообмена только более крупные капли проникнут в пограничный слой до самой стенки.  [c.108]

Для решения задачи без этих допущений необходимо отойти от упрощенной схемы потока и рассмотреть наряду с турбулентным ядром и турбулентный пограничный слой, состоящий из переходного слоя и вязкого подслоя. Имея в виду, что величины, относящиеся к внешней границе слоя и подслоя, будут соответственно без штриха и со штрихом, относящиеся к твердым и жндким (газообразным) компонентам с индексом т и без ил-декса и относящиеся ко всему потоку — с индексом п , рассмотрим последовательно касательные напряжения и тепловые потоки в вязком подслое, а затем в промежуточном слое и турбулентном ядре.  [c.185]

Большинство уравнений гидродинамики смеси описывает движение центра масс системы (барицентрическое движение [154]), причем индивидуальное движение компонентов характеризуется членами диффузии в смеси [831]. В последующих главах будет показано, что при исследовании системы с дискретной фазой часто желательно и удобно рассматривать движение отдельных компонентов, взаимодействующих с другими ко шонентами смеси. Это требует выяснения связи общего движения компонентов с движением смеси, которую они составляют, и связи свойств переноса компонентов в смеси со свойствами переноса смеси в цело.м и чистых компонентов. Чтобы сделать возможными расчеты физических систем, в формальный аппарат для выражения, парциальных напряжений, энергии и тепловых потоков должны быть включены, как предложено Трусделлом и Ноллом [831], свой-ч тва, поддающиеся измерениям. Выводы применимы к общему виду смесей, содержащих частицы различных масс (аэрозоли или молекулы).  [c.269]


При конструировании иротивоточного теплообменника в первую очередь необходимо стремиться свести к минимуму тепловое сопротивление между двумя потоками газа. Общее тепловое сопротивление состоит из трех компонент сопротивления пеподвижиой пленки газа на металлической поверхности каждого из двух каналов и сопротивления теплонерехода через металл  [c.134]

Подобным же образом можно интерпретировать и термомеханичоский эффект. Поскольку в этой модели температура какого-либо объема жидкого Не II определяется относительной концентрацией двух жидкостей, изменение этой концентрации проявляется либо как нагрев, либо как охлаждение жидкости. Аномалии теплоемкости гелия, возникающие при испарении конденсата Бозе—Эйннзтейна, соответствуют, по Тисса, тепловой энергии, необходимой для перевода атомов гелия из сверхтекучего в нормальное состояние. Когда одному из двух объемов жидкости, соединенных между собой капилляром, сообщается тепло, температура этого объема повышается, или, другими словами, в нем возрастает относительная концентрация нормальной компоненты. Это вынуждает сверхтекучую компоненту из другого сосуда перетекать по соединительному капилляру для того, чтобы выравнять возникшую разность концентраций (фиг. 20). Течение сверхтекучей части по капилляру не сопровождается диссипацией и происходит без сопротивления, течение же нормальной жидкости подвержено трению, и потому ее поток в достаточно узком капилляре будет пренебрен имо мал. Таким образом, в этом случае должен наблюдаться перенос гелия из холодного сосуда к подогреваемому, что и имеет место в действительности. Этот процесс подобен осмотическому давлению, причем роль полупроницаемой мембраны играет здесь капилляр или трубка, заполненная порошком. Очевидным следствием этого объяснения, принадлежащего Тисса, является предсказание обратного эффекта, состоящего в том, что при продавливании гелия через тонкий капилляр он должен обогащаться сверхтекучей компонентой и температура его должна падать. Следует отметить, что это предсказание действительно предшествовало открытию механокалорического эффекта, о котором шла речь ранее.  [c.802]

Для простоты мы в этом историческом обзоре опустили описание работ над разбавленными растворами Не в Не , которые проводились еще за год до первого ожижения чистого Не . Первый подобный эксперимент выполнили Доунт, Пробст и Джонстон [67], показавшие, что Не не увлекается сверхтекучим течением. Оказалось, что, если Не II переносится по пленке на твердой поверхности или перетекает через узкую щель, примеси Не не участвуют в этом движенпи и поэтому отфильтровываются. Вскоре было обнаружено, что это же имеет место и и макроскопических объемах жидкости в двухжидкостной модели Не переносится, таким образом, только нормальной компонентой. Если, в частности, к жидкости подводится тепло. Не будет двигаться вместе с тепловым потоком и его распределение но объему жидкости станет неравномерным. Это явление приводило к значительным ошибкам в первоначальных измерениях парциальных давлений над растворами различных концентраций. Оно послужило также основой для одного из методов разделения изотопов гелия [68].  [c.817]

Впоследствии это граничное сопротивление исследовалось рядом авторов, а Гор-тер, Таконис и др. [121] и Халатников [122] предложили соответствующие теоретические интерпретации. Первые авторы предположили, что это явление, по-видимому, происходит в самой жидкости в непосредственной близости от твердой стенки. Они оценили разность температур жидкости в направлении, перпендикулярном твердой поверхности, которую надо поддерживать для того, чтобы скорость перехода сверхтекучей компоненты в нормальную соответствовала полному тепловому потоку. Объяснение Халатникова основано на том, что это контактное сопротивление должно наблюдаться на границах любых тел и оно становится особенно заметным в Не II вследствие его большой теплоироводпости. По Халатникову, передача тепла от металла к жидкости происходит посредством излучения звуковых волн, и как выше, так и ниже 0,6° К коэффициент теплопередачи должен быть пропорционален Т .  [c.848]

Фэрбенк II Уилкс [120] для исследования этого граничного сопротивления использовали прибор, изображенный на фиг. 65. Они добавили третий термометр Т. , который вместе с нагревателем был заключен внутри блока из очень чистой меди и находился с ним н хорошем тепловом контакте. При подводе большого количества тепла от нагревателя было обнаружено, что разность температур между Т. и становится много больше, чем между Тп и 7. Это означало, что большая часть теплового сопротивлеиня сосредоточена на границе раздела между медью и жидким гелием. Измеряя тепловой ноток через эту границу при данной разности температур А , они получили зависимость, приведенную на фиг. 67. Перепад температур в этих экспериментах менялся на порядок величины, причем ноток тепла оказывался ему пропорциональным. Величина потока тепла через границу оказалась пропорциональной 7 , причем никаких изменений этого закона при 0,6° К не было замечено. Поэтому Фэрбенк и Уилкс пришли к выводу, что процесс, рассмотренный Халатниковым, скорее ответствен за появление граничного сопротивления, чем переход сверхтекучей компоненты в нормальную.  [c.849]

Тепловой поток в ламинарном пограничнсмелое идеального диссоциирующего газа при др/дх = 0. Определим тепловой поток к пластине, обтекаемой диссоциирующим газом. Для упрощения этой задачи рассмотрим теплоотдачу не в реальной смеси реагирующих газов, а в идеально диссоциирующем газе. Таким газом называют смесь, состоящую только из двух следующих компонентов молекул с массой и атомов А с массой т , причем т = 2т . Кроме того, в этом газе может протекать только реакция вида А 7 2А.  [c.231]

Таким образом, можносделать вывод о том, что вдув в пограничный слой продуктов разрушения, способных поглощать и излучать лучистую энергию, увеличивает суммарный лучистый тепловой поток к поверхности, если вдуваемые компоненты непрозрачны в видимой части спектра, и ужньшает его, если компоненты непрозрачны при К <С <0,115 мкм. Именно поэтому при / >0,06 имеет место снижение суммарного по спектру лучистого потока при Та= = 1,4-10 К и в особенности при = 1,7-10 К (см. рис. 7.10.5).  [c.449]

При анализе влияния к.п.с. на вид функции a=f( u) необходимо учитывать изменение. теплофизических свойств смеси в связи с их зависимостью от концентрации. При этом решающим фактором является направление изменения теплофизических свойств с ростом концентрации одного из компонентов. Влияние этого фактора может ослаблять или усиливать депрессирующее воздействие величины А/п. Если коэффициент теплоотдачи при кипении чистого ВК-компонента Бк больше коэффициента теплоотдачи к чистому НК-компоненту НК, то рост концентрации последнего будет способствовать снижению интенсивности теплообмена. Если при этом кипит азеотропная смесь, то коэффициент теплоотдачи смеси азеотропного состава ааз долл<ен быть меньше Овк. Это является следствием именно ухудшения (с точки зрения теплообмена) теплофизических свойств смеси с ростом концентрации НК-компонента, так как при кипении чистой жидкости и смеси азеотропного состава Atu = 0. Например, для смеси н-пропиловый спирт — вода авк>анк, поэтому авк>ааз, см. рис. 13.4, в). Резкое снижение а при изменении концентрации н-пропилового спирта от О до 9% ( =232 кВт/м ) объясняется налол ением влияния изменяемости теплофизических свойств смеси на депрессирующее воздействие Д/н. В данном случае оба рассматриваемых фактора действуют в одном направлении — в направлении ухудшения интенсивности теплообмена. При понижении плотности теплового потока значение А н становится меньше и соответственно уменьшается ее относительное влияние на вид зависимости <и= (с ик). По этой причине для смеси н-пропиловый спирт — вода при 9 = 58,2 кВт/м2 минимальное значение а устанавливается при большей концентрации (- ЗО /о) н-нропанола.  [c.352]


Вторая причина, почему kpi при кипении смеси больше, чем кр1 при кипении чистых компонентов, связана с обогащением смеси ВК-компонентом в к. п. с. и с повышением вследствие этого ее температуры насыщения у поверхности пузыря на, Д/ц. Действительно, в условиях Д/н>0 необходимо затрачивать большее количество теплоты на подогрев подтекающей в зону испарения смеси исходной концентрации и, следовательно, с избыточной энтальпией перегретой жидкости от единицы теплоотдающей поверхности отводится больший тепловой поток, чем при кипении однокомпонентной жидкости [163]. Как и в первом случае, значение Д<7пер увеличивается с ростом Дс НК и Крутизны Кривой н = /(Снк )-  [c.366]

На рис. 3.2 показаны характерные графики изменения температур стенки Тс и газа Гг экспериментального Оэ и замороженного а/ коэффициентов теплообмена, а также изменение концентраций компонентов реагирующей смеси (С]—концентрация N2O4, Сг—NO2 и С4—62). На рисунке наглядно показано влияние кинетики химических реакций на теплообмен. На начальном участке аэ круто снижается, что связано с уменьшением концентрации N2O4 и снижением теплового эффекта первой стадии реакции из-за падения A , = i — Сь Минимум теплоотдачи соответствует промежуточному состоянию потока, когда l и С4 близки к нулю, т. е. химические реакции обеспечивают малые градиенты концентраций по сечению потока. Возрастание С4, характеризующее наличие второй стадии реакции диссоциации, вновь приводит к увеличению Оа. Сравнение э и а/ показывает более существенный эффект первой стадии реакции по сравнению со второй.  [c.67]

Очевидно, что в режиме оттеснения безразмерные скорости разрушения Gw=Gwl(aj p)o столь высоки, что можно полностью пренебречь величиной конвективного теплового потока. При малых скоростях уноса массы вдув может, наоборот, привести к увеличению конвективного теплового потока, что связано с поглощением энергии излучения продуктами разрушения и увеличением температуры во внешней части пограничного слоя. Необходимо считаться также с тем обстоятельством, что компоненты с высокими коэффициентами поглощения, нагреваясь, сами могут начать испускать излучение. За счет смещения спектрального распределения коэффициентов поглощения при повышении температуры 295  [c.295]

Параметром вдува здесь является отношение расхода вдуваемой компоненты к удельному расходу набегающего газового потока pooVoo-Видно, что при достижении сравнимых величин скорости уноса массы и расхода внешнего газа удается снизить радиационный тепловой поток более чем в 2 раза.  [c.296]

В настоящее время разработаны разнообразные конструкции теплообменных аппаратов с пучками витых труб овального профиля. В теплообменном аппарате с продольным обтеканием пучка витых труб (рис. 1.1) трубы установлены одна относительно другой с касанием по максимальному размеру овала и закреплены прямыми круглыми концами в трубных досках. При такой установке труб обеспечивается существенная интенсификация тепломассообменных процессов в межтрубном пространстве аппарата и решается другая важная задача — обеспечения его вибропрочности. Интенсификация теплообмена в межтрубном пространстве такого теплообменника и внутри витых труб [39] при оптимальных относительных шагах закрутки профиля труб 5/с = 6. .. 15 позволяет в 1,5. .. 2 раза уменьшить объем теплообменного аппарата по сравнению с гладкотрубным аппаратом при заданных тепловой мощности и мощности на прокачку теплоносителей. При этом уменьшается масса аппарата и его металлоемкость. В таком аппарате все витые трубы имеют одинаковое направление закрутки (либо правое, либо левое). На границе винтовых каналов таких труб возникает тангенциальный разрыв вращательной компоненты скорости, что приводит к турбули-зации потока. В пристенном слое труб поток закручен по закону твердого тела, а в ядре закрутка потока определяется взаимодействием винтовых течений, обтекающих соседние трубы. Поскольку поток в пристенном слое закручен в большей степени, чем ядро потока (максимум вращательной и радиальной составляющих скорости приходится на внешнюю границу пристенного слоя), то использование витых труб приводит к турбулизации потока прежде всего в пристенном слое[39].  [c.8]


Смотреть страницы где упоминается термин Поток тепловой к компоненту : [c.273]    [c.681]    [c.289]    [c.49]    [c.290]    [c.47]    [c.718]    [c.841]    [c.406]    [c.370]    [c.178]    [c.164]    [c.145]    [c.54]    [c.210]   
Гидродинамика многофазных систем (1971) -- [ c.273 ]



ПОИСК



Поток тепла

Тепловой поток



© 2025 Mash-xxl.info Реклама на сайте