Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощение тепла

Превращение одной аллотропической формы в другую при пагреве чистого металла сопровождается поглощением тепла и происходит при постоянной температуре. На термической кривой (в координатах температура — время) превращение отмечается горизонтальным участком (рис. 37). При охлаждении происходит выделение тепла (выделение скрытой теплоты превращения) теоретически при такой же температуре, что и при нагреве, но практически при несколько более низкой вследствие переохлаждения.  [c.55]


Невозможно создать циклическую машину, единственным результатом действий которой было бы производство механической работы за счет поглощения тепла от одного теплового резервуара.  [c.16]

Происходили химические реакции с выделением или поглощением тепла. Некоторые минеральные масла начинают разлагаться уже при 120 °С, а при 500 °С окисление стали идет уже довольно быстро.  [c.214]

Эффект Пельтье возникает при протекании тока через спай двух различных металлов и проявляется в выделении или поглощении тепла, которое пропорционально току. В принципе это явление может быть использовано для нагрева или охлаждения, что зависит от направления тока через спай.  [c.270]

Эффект Томсона, третий термоэлектрический эффект, состоит в выделении или поглощении тепла при пропускании тока через однородный проводник при наличии градиента температуры.  [c.271]

Выделение или поглощение тепла в эффекте Томсона, который, как очевидно, обратим, зависит от температуры, взаимной ориентации тока и градиента температуры. Для чистых металлов и сплавов эффект очень мал. Выделяющееся в единице объема тепло (Т) в эффекте Томсона определяется как  [c.271]

Наоборот, излучение, возбуждаемое не нагреванием, а какими-либо другими процессами, не будет равновесным. Пусть, например, излучение имеет характер хемилюминесценции, т. е. сопровождает какой-то процесс химического изменения вещества. Поглощение большей или меньшей доли испущенной световой энергии не вернет вещество в его первоначальное состояние. Более того, повышение температуры, вызванное поглощением тепла, обычно ведет лишь к более энергичному протеканию химической реакции. Процесс непрерывного изменения излучающей системы будет продолжаться до тех пор, пока может идти химическая реакция, и, следовательно, система все больше и больше удаляется от первоначального состояния. Равновесие установится только тогда, когда закончится химический процесс, а с ним и хемилюминесценция, и характер установившегося излучения будет определяться температурой нашего тела, т. е. равновесное состояние будет соответствовать опять-таки тепловому излучению.  [c.684]

Необходимо, однако, отметить, что согласно закону Кирхгофа тело, сильнее поглощающее, должно и больше испускать только при условии, что сравнение производится при одинаковой температуре. Это условие соблюдено в описанном выше опыте с расписанным фарфором, отдельные части которого нагреты до одной температуры то же имеет место и в ряде других аналогичных опытов при накаливании платиновой пластинки, до половины покрытой платиновой чернью, черные части светятся гораздо ярче капля фосфорнокислого натрия на платиновой проволочке остается те м-иой, хотя проволочка ярко раскалена, ибо капля даже при высокой температуре остается прозрачной для видимых лучей, и т. д. Поэтому лишь кажущимся парадоксом является известный опыт, в котором в водородное пламя вводятся рядом куски извести и угля и известь оказывается гораздо более ярко раскаленной, чем уголь. Конечно, поглощательная, а следовательно, и испускательная способность угля гораздо больше, чем у извести для всех длин волн, и поэтому при равной температуре уголь будет светиться во всем спектральном интервале ярче, чем известь. Но в описанных условиях опыта температура угля оказывается гораздо ниже температуры извести. Причина лежит отчасти в химических процессах, сопровождающихся поглощением тепла, отчасти в том, что уголь именно в силу своей большой испускательной способности излучает много энергии во всем спектре, в том числе очень много и в инфракрасной области. Этот огромный непрерывный расход энергии и приводит к тому, что температура, до которой раскаляется уголь, оказывается значительно ниже, чем температура самого пламени или извести, не несущей таких больших потерь энергии, ибо ее испускательная способность селективна и, в частности, в инфракрасной части очень мала.  [c.691]


Отметим, что поскольку о и Й однозначно определяются выбором г, и ср, то (2j может быть увеличено только путем увеличения среднего дав.пе-ния р и объема V . Количество поглощенного тепла, которое, разумеется, пропорционально числу циклов, совершаемых в единицу времени, определяется также и скоростью вращения вала. В машине Филипс вал делает 1440 об мин.  [c.20]

Для всех температур выше абсолютного нуля наклон кривой критического поля отрицателен, так что энтропия нормальной фазы всегда больше энтропии сверхпроводящей фазы иными словами, сверхпроводящая фаза есть более упорядоченное состояние, чем нормальная. Если переход из сверхпроводящего состояния в нормальное происходит в магнитном поле, наблюдается поглощение тепла (вследствие наличия скрытой теплоты перехода). Таким об-  [c.635]

Эффект Томсона. Из (8.81) и (8.82) также следует, что-даже в однородном проводнике, если он нагрет неравномерно, при прохождении тока происходит выделение или поглощение тепла  [c.162]

Сильные разрывы возникают, например, в спутных потоках, из которых один является жидкой пленкой, а другой — смесью газов в этом случае необходимо формулировать дополнительные условия на поверхности их раздела. Аналогичная ситуация возникает при исследовании обтекания газовым потоком твердых тел при решении сопряженной задачи прогрева потока и твердого тела. Прогрев тел может сопровождаться фазовыми превращениями с поглощением или выделением тепла. С поглощением тепла проходят плавление, сублимация, испарение с выделением тепла — конденсация, горение. При этом граница раздела фаз может быть подвижной.  [c.25]

К инжектируемым жидкостям предъявляется ряд важных требований выделение тепла при реакции с продуктами сгорания топлива (если жидкости инертны, то их испарение или диссоциация должны происходить с малым поглощением тепла) небольшая удельная теплоемкость и вместе с тем низкие температуры кипения и испарения, а также возможно малые молекулярные веса газообразной фазы. Выполнение этих требований обеспечивает наибольшее значение относительного импульса Ф при впрыске. Целесообразно, чтобы у инжектируемой жидкости был большой удельный вес.  [c.345]

Какой бы ни была связь между активностями и концентрациями, увеличение термодинамической константы равновесия соответствует смещению реакции вправо (в сторону продуктов реакции). Это позволяет интерпретировать уравнения (11-41) и (11-45) следующим образом. При увеличении температуры равновесие в реакции смещается в ту сторону, куда она идет с поглощением тепла, а при увеличении давления — в ту сторону, куда она идет с уменьшением объема. Эти утверждения представляют собой частный случай известного принципа Ле Шателье, определяющего смещение равновесия в любой системе при том или ином внешнем воздействии.  [c.234]

Если можно пренебречь влиянием вязкости и теплопроводности и если нет выделения или поглощения тепла за счёт фазовых переходов и химических реакций, зависящих от новых размерных постоянных, то, очевидно, параметры механического движения газа можно искать независимо от параметров молекулярного движения (температуры и т. п.).  [c.188]

Энергия, которая передается данному телу от более нагретого тела в результате теплового контакта между ними, без того, чтобы внешние условия, в которых находится рассматриваемое тело, изменялись и, следовательно, производилась работа одного тела ад другим, называется теплом. Другими словами, тепло есть та энергия, которую получает тело от другого, имеющего более высокую температуру тела, когда работа не производится поглощение тепла однородным телом при неизменных внешних условиях сопровождается повышением температуры тела.  [c.8]

Не меняется при политропическом процессе в случае идеального газа и отношение произведенной работы I к количеству поглощенного тепла q.  [c.52]

Кроме фазовых переходов первого рода, существуют фазовые переходы, при которых выделения или поглощения тепла не происходит. Такие фазовые переходы называются фазовыми переходами второго рода для этих переходов 5(2)=s< ) u(2)=u( ). При фазовых переходах второго рода скачкообразные изменения объема энтропии и, соответственно, внутренней энергии и энтальпии не имеют места зато теплоемкости и коэффициенты теплового расширения в точке перехода изменяются скачком. Фазовые переходы второго рода наблюдаются обычно в кристаллах  [c.137]


В отличие от обратимых процессов при анализе необратимых процессов по известному аналитическому выражению одной из характеристических функций тела или уравнению состояния данного тела и зависимости для теплоемкости v или Ср могут быть определены не сама произведенная работа L или L и поглощенное тепло Q, а лишь разность L—или и— Q, равная согласно (2-8) и (2-9) убыли энтальпии или внутренней энергии тела. Только если Q или L равняются нулю, как это имеет место в адиабатическом и предельно необратимом процессах, отсюда может быть найдено также значение L или Q. В самом общем случае для раздельного определения Q и L или L нужно знать характеристические функции как самого тела, так и окружающей среды и их изменение в рассматриваемом необратимом процессе.  [c.152]

Так как изобарический процесс сопровождается выделением или поглощением тепла при различных температурах, для обратимого проведения процесса требуется множество (в пределе — бесконечное) источников тепла с разными температурами.  [c.160]

Химические реакции сопровождаются выделением или поглощением тепла. В первом случае, т. е. при выделении тепла, реакции называются экзотермическими, во втором случае — эндотерм и-306  [c.306]

Растворы, образование которых не сопровождается выделением или поглощением тепла, а также изменением объема, называются идеальными растворами.  [c.320]

При поверхностной закалке отверстий также используются два метода одновременный и непрерывно-последовательный. Для одновременной закалки отверстий диаметром 75 мм и более при общей площади закаливаемой поверхности не более 100 см и при использовании серийных установок мощностью 100 кет применяются индукторы без постоянного охлаждения индуктирующего провода. Индуктирующий провод 1 (рис. 8-12) изготовляется из массивной медной шины толщиной 8—10 мм с таким расчетом, чтобы масса металла была достаточной для поглощения тепла, выделяющегося в процессе нагрева. При этом температура индуктирующего провода не достигает величины, опасной для расплавления припоя, соединяющего отдельные части индуктора.  [c.133]

На практике могут встретиться случаи, когда тепло возникает внутри объема тела за счет внутренних источников тепла, например за счет прохождения электрического тока, химических реакций, ядерного распада и др. Поскольку объемное тепловыделение может быть не только равномерным, но и неравномерным, для таких процессов важным является понятие удельной интенсивности объемного тепловыделения или мощности внутренних источников. Эта величина, обозначаемая q , определяет собой количество тепла, выделяемого единицей объема тела в единицу времени она имеет размерность Вт/м . При поглощении тепла внутри объема тела, например, при эндотермической реакции величина отрицательна она характеризует интенсивность объемного стока тепла.  [c.26]

Коэффициент теплопроводности (теплопроводность) является служебной характеристикой теплоизоляционных покрытий. Кроме теплоизоляционных покрытий, преграждающих путь тепловому потоку, применяют теплозащитные покрытия, оберегающие детали и конструкции от термического воздействия главным образом за счет поглощения тепла. Теплостойкие покрытия служат для повышения жаропрочности и жаростойкости [42]. Наряду с экономией основного металла эти покрытия дают возможность сократить теплопотери или предохранить основной металл от воздействия тепла.  [c.89]

Специфический для германиевых термометров сопротивления эффект возникает вследствие довольно высокого значения коэффициента Пельтье для легированного германия. Он проявляется в том, что сопротивление элемента по постоянному и по переменному току различно [53, 54]. Прохождение постоянного тока через германиевый термометр сопротивления приводит к возникновению градиента температуры вдоль элемента вследствие выделения и поглощения тепла Пельтье на спаях элемента с выводами. Наличие градиента температуры вызывает появление небольшой термо-э. д. с. на потенциальных выводах, что приводит к некоторой погрешности в измерении сопротивления. Если же используется не постоянный, а переменный ток частоты f, то от каждого конца элемента распространяются затухающие тепловые волны. Затухание носит экспоненциальный характер, причем показатель экспоненты пропорционален Уf, так что по мере возрастания частоты тепловые волны все больше сосредоточиваются у концов элемента. Для четырехпроводных элементов в форме моста этот эффект исчезает, когда частота измерительного тока поднимается до такого значения, что тепловые волны перестают достигать потенциальных выводов. В этом случае на потенциальных выводах измеряется истинное сопротивление. Частота, на которой это происходит, зависит от температуропроводности и  [c.237]

Переход чистого металла из одной полиморфной модификации в другую в условиях равновесия протекает при постояниой температуре (при критической точке) и сопровождается выделением тепла, если превращение идет при охлаждении, и поглощением тепла --в случае нагрева.  [c.40]

Теоретический расход холода (тепла) в этом случае должен равняться тепловыделениям (теплопоглощению) человека, что должно дать экономию в мощности по крайней мере в 5 раз. Однако практически невозможно осуществить поверхность, не поглощающую тепловых лучей. Поглощенное тепло отводится от поверхностей путем конвекции к воздуху комнаты. Это является первым источником теплопотерь. Кроме того, необходимость смены воздуха в помещении (проветривание) требует охлаждения (нагрева) приточного воздуха. Поэтому практически экономия холода (тепла) получается меньшей. Одноэтажный дом, в котором была осуществлена опытная установка кондиционирования воздуха, имел следующие показатели общая площадь 168 м объем 460 м площадь наружных стен 149 м площадь остекления 56 м . Стены — бревенчатые (0150 мм) с обшив кой из красного дерева, пол — бетонный по земле, крыша— плоская с изоляцией войлоком. Стены и потолок были оклеены внутри тисненными обоями из плотной бумаги, покрытой слоем алюминиевой фольги толщиной 0,01 мм. Фольга в свою очередь была покрыта тонким слоем (1 мкм) подкрашенного лака, прозрачного в инфракрасной области спектра, но поглощающего тепловое излучение в видимой части спектра. Цвета этого лака подбирались так, чтобы, создав приятное для глаз восприятие, не уменьшать значительно отражательную  [c.238]


Ясно, что для повышения коэффициента k газовых холодильных машин необходимо устранить потерю полезной работы при изобарическом расширении газа в холодной камере и сделать процесс сжатия более экономичным с точки зрения затраты энергии, проводя его квазиизотермически, а не адиабатически. Значительное приближение к такому более выгодному изотермическому процессу отдачи и поглощения тепла было достигнуто недавно Келлером и Джонкерсом [3] в газовой холодильной машине с замкнутым циклом (см. п. 5).  [c.10]

Экспансионный ожижитель Симона. Существуют три различных типа гелиевых ожижителей, а именно непрерывного действия с предварительным водородным охлаждением, непрерывного действия с охлаждением детандером и хорошо известный процесс ожижения без использования непрерывного потока. Первые два способа ожижения кратко описаны выше. Третий способ используется в так называемом экспансионном ожижителе Симона [2], который показан схематически на фиг. 7. В этом ожижителе газообразный гелий, охлажденный и змеевике S, нагнетается в металлическую камеру В, охлаждаемую жидким или твердым водородом G. Чтобы обеспечить теплопроводность пространства Z, последнее заполняется гелием при низком давлении. Теило, поглощенное водородной ванной, определяется уменьшением внутренней энергии гелия после входа в камеру и работой сжатия. Работа сжатия равна 2 mpv, где т—масса очень малого количества входящего "аза, а v—его удельный объем. Если весь газ входит при одинаковой температуре Т,, то общая работа потока равна NRT , где lY—число молей газа, который входит в камеру, а В—газовая постоянная. Охлаждение с помощью водорода, требующееся для поглощения тепла, производимого работой сжатия, может оказаться больше того, которое необходимо для изменения внутренней энергии гелия. Это видно из сравнения величины двух произведений В1 и С ,ср,(2 ,—Tj), где Гд—конечная температура.  [c.132]

При самых низких температурах Г и у уже нельзя использовать как термометрические параметры по причинам, которые будут рассмотрены ниже (см. п. 58). В этой областп 7 и у могут быть заменены другнмп велп-чинами, напрпмер коэффициентом поглощения тепла в переменном магнитном поле или остаточным магнитным моментом соли.  [c.440]

Введение. Выше указывалось, что определение температуры в области ниже 1° К основано на измерении так называемого термометрического параметра , которым может слу кить магнитная характеристика соли. Удобными являются, например, восприимчивость [или магнитная температура, которая непосредственно связаиа с восприимчивостью см. (11. 1)1, коэффициент, характеризующий поглощение тепла в перемепном магнитном поле, и остаточный магнитный момент.  [c.455]

Магнитные методы определения абсолютной температуры в случае этой соли сопряжены с трудностями. ВеличипьЕ у, у/, /" и S оказываются неудовлетворительными в качестве термометрических параметров ниже максимума восприимчивости (см. выше). Восприимчивость у" имеет довольно малую величину (даже в максимуме значение у" намного меньше, чем для хромокалиевых квасцов), так что трудно отличить поглощение тепла в переменном поле от потерь на переменном токе в мосте (см. п. 12). Быстрое изменение  [c.525]

Идея о высокой теплопроводности появилась лишь тогда, когда этот вывод стал совершенно неизбежным. При проведении калориметрических измерений Кеезом и мисс Кеезом [И] поставили задачу определить остроту Х-перехода, наблюдая повышение температуры калориметра при нагревании. Они обнаружили, что в Х-точке меняется не только скорость поглощения тепла жидкостью, но также и характер поглощения (фиг. 5). При выключении тока ниже Х-точки температура калориметра устанавливалась мгновенно, в то время как выше Х-точки имел место явный перегрев. Так как форма кривых нагревания обычно характеризует в калориметрии выравнивание температуры, то стало совершенно ясно, что в Х-точке происходит резкое изменение теплопроводности. Величина этого изменения  [c.789]

Каждая полиморфная модификация имеет свою область температур, при которых она устойчива. Превращение одной кристаллической формы в другую происходит при постоянной температуре с выделением значительного количества тепла при 0XJlaждeнии, что связано с затратой определенной энергии на перестройку кристаллической решетки и с поглощением тепла при нагреве.  [c.6]

Таким образом, обратимый процесс изменения состояния тела сопровождается поглощением тепла, если линия процесса располагается над обратимой адиабатой, проведенной через точку 1, изображающук>  [c.53]

Реакция происходит с поглощением тепла, количество которого например, при 100° С составляет 116 000 ккал1кмоль. Закон действующих масс для этой реакции приводит к следующему соотношению между молярными концентрациями водяного пара, водорода и кислорода  [c.314]

Так как рассматриваемая реакция происходит с поглощением тепла, т. е. Qp<0, то д пК1дТ)р<0 и константа равновесия с ростом температуры убывает. Другими словами, с повышением температуры количество продиссоциировавшего водяного пара или количество продуктов диссоциации увеличивается, а количество водяного пара в смеси уменьшается.  [c.314]

Растворение вещества сопровождается выделением или поглощением некоторого количества тепла наиболее часто три растаорении иа блюдается поглощение тепла.  [c.320]

Как следует из изложенного, скорости химических реакций и, следовательно, скорости выделения (или поглощения) тепла зависят от концентраций реагентов и температуры. Поля же концентраций и температуры зависят не только от хода реакций, но и от процессов тепло- и массообмена, идущих одновременно с химическими превращениями. Таким образом, в общем случае химические превращения и тепло- и массообмен оказываются тесно связанными и взаимозависящими.  [c.353]


Смотреть страницы где упоминается термин Поглощение тепла : [c.211]    [c.5]    [c.10]    [c.16]    [c.441]    [c.457]    [c.507]    [c.120]    [c.120]    [c.218]    [c.32]   
Теплотехнический справочник (0) -- [ c.262 ]

Теплотехнический справочник Том 1 (1957) -- [ c.262 ]



ПОИСК



Коэффициент поглощения тепла

Методы тепловой защиты Поглощение и накопление тепла конденсированными веществами

Поглощение

Поглощение, связанное с тепловыми колебаниями

Процессы нзохорические поглощением тепла



© 2025 Mash-xxl.info Реклама на сайте