Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы экспериментального определения характеристик разрушения

МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК РАЗРУШЕНИЯ  [c.142]

Методы экспериментального определения характеристик трещиностойкости в настоящее время достаточно разработаны и регламентированы соответствующими нормативными техническими документами (НТД) для различных видов нагружения [3-9]. Идеология построения и научные основы этих документов рассмотрены в [10]. Первым основополагающим документом явились методические указания РД 50-260-81, регламентирующие определение характеристик трещиностойкости при статическом нагружении [9], доработка и совершенствование которых завершились разработкой ГОСТ 25.506-85 [3]. Развитие теоретических основ линейной механики разрушения (1955-1965 гг.) выдвинуло фундаментальную характеристику напряженно-деформированного состояния и прочности хрупких тел с трещинами — коэффициент интенсивности напряжений. В дальнейшем наибольшее внимание уделялось энергетическим и деформационным характеристикам нелинейной механики разрушения (1970-1980 гг.). При разработке документов, регламентирующих экспериментальные методы и технологии определения характеристик трещиностойкости, во внимание принимались следующие обстоятельства  [c.15]


Основополагающими для разработки методов экспериментального определения указанных характеристик упругопластического разрушения послужили испытания по определению критических значений коэффициентов интенсивности напряжений в условиях плоской деформации К] [3, 20]. Условия плоской деформации считаются выполненными, если размер пластической зоны у вершины трещины не превышает 1/50 любого характерного размера образца (элемента конструкции), а именно толщины образца Г, размера нетто-се-чения (В - /) или длины трещины /, что достигается выполнением соотношения  [c.20]

Экспериментальное определение характеристик сопротивления разрушению выполнено на лабораторных образцах промышленных биметаллических материалов, изготовленных методами наплавки, наплавки с последующей прокаткой и совместной пластической деформацией, а также сварных соединений плакированной стали, изготовленной пакетной прокаткой. Технология изготовления и термическая обработка заготовок для образцов соответствовали принятым для штатных изделий.  [c.110]

Это означает, что трещина начнет распространяться, когда расстояние между двумя противолежащими точками 5 = 2v х = у = 0) на противоположных берегах трещины у ее вершины достигнет предельного значения. При этом пластическое течение у вершины трещины приводит к ее затуплению и расхождению берегов трещины один от другого на величину 5 у вершины. Один из методов экспериментального определения пластического раскрытия трещины 5с (трактуемой, как характеристика материала, оценивающая его трещиностойкость) состоит в доведении до разрушения балки на двух опорах с изгибающей силой посередине пролета (трехточечный изгиб). Па растянутой стороне балки имеются, предварительно выращенные, две одинаковые, рядом расположенные трещины. Полное разрушение происходит по одной из них, а на оставшейся трещине оказывается возможным замерить остаточное (пластическое) критическое раскрытие 5 = 5с которое образовалось в качестве разрушающего значения нагружающего усилия.  [c.134]

Задача заключается в подборе таких величин Sa и S , чтобы результат расчета по экспериментальным значениям a(i) и ip(i) дал лучшее согласие с I t), определенным из эксперимента. Решение целесообразно искать методом наименьших квадратов с помощью вычислительной техники. Отношение Sa/S можно принять в качестве характеристики разрушения. Нашими расчетами для хрупкого разрушения сплава Zn + 22% А1 оно получено в пределах  [c.35]


В сборнике рассматриваются основы методов расчетного и экспериментального определения прочности и долговечности циклически нагруженных элементов конструкций в широком диапазоне температур, времен и чисел циклов. Приводятся критерии и основные уравнения статических и циклических предельных состояний в температурно-временной постановке рассмотрены закономерности деформирования и разрушения в зонах концентрации и в связи с неоднородностью напряженных состояний. Рассмотрены методы испытаний на циклическое нагружение, описан ряд опытных результатов. Систематизированы данные по характеристикам малоцикловой усталости, по концентрации напряжений и деформаций, необходимые для расчета прочности. Излагаемый материал в значительной степени основывается на результатах работ сотрудников Института машиноведения, доложенных на Всесоюзном симпозиуме по малоцикловой усталости при повышенных температурах в Челябинске в 1974 г.  [c.2]

В настоящей серии будут рассмотрены три группы основных вопросов определения прочности и ресурса ВВЭР 1) конструкции, условия эксплуатации и методы расчетного определения усилий и напряжений (данная книга) 2) методы и средства экспериментального определения напряженно-деформированного состояния на моделях, стендах и натурных конструкциях ВВЭР при пусконаладке и в начальный период эксплуатации 3) методы определения расчетных характеристик сопротивления конструкционных реакторных материалов деформированию и разрушению и расчетов прочности и ресурса при статическом, циклическом, динамическом и вибрационном нагружении.  [c.8]

В Институте машиноведения АН СССР разработана система экспериментальных средств для определения характеристик сопротивления деформированию и разрушению конструкционных материалов. Здесь были созданы [16] получившие широкое распространение испытательные машины и стенды с механическим, электромагнитным и электродинамическим возбуждением, применение которых способствовало развитию вероятностных методов расчетов деталей машин на усталость с распространением их на области больших долговечностей и высоких температур.  [c.130]

Традиционные методы механических испытаний включают установление комплекса свойств материала (предел текучести, предел прочности, характеристики пластичности), а определение сопротивления разрушению сводится к установлению на основе теоретических и экспериментальных данных некоторой функции [239]  [c.137]

Слева в выражении (3.3.2) стоит коэффициент интенсивности напряжений К, который следует знать в виде функции нагрузки, размеров детали и трещины, а справа он же, но определенный из опыта и играющий роль механической характеристики материала, оценивающей его трещиностойкость, т.е. сопротивление материала росту в нем трещины . Величина К . - критический коэффициент интенсивности напряжений для плоского образца данной толщины 1 (более кратко - вязкость разрушения , или просто трещиностойкость) - определяется из эксперимента. (Подробнее о методах экспериментального получения статических характеристик трещи-ностойкости см. п. 3.3.3.)  [c.144]

Стандартизация методов определения характеристик К с и бк трещиностойкости [9, 82, 118, 145] конструкционных материалов требует подбора простых в экспериментальном осуществлении силовых схем разрушения образцов с трещинами, для которых имеются соответствующие теоретические решения. Одна из таких силовых схем — растяжение цилиндрического образца с внешней кольцевой трещиной. В отличие от схемы, когда применяют плоские образцы с трещинами, эта силовая схема реализует локальное состояние плоской деформации вдоль всего кон-тура треЩины, что соответствует расчетным моделям. Кроме того, описанная в гл. VI методика простого изготовления цилиндриче- ских образцов с внешними кольцевыми трещинами также свидетельствует в пользу выбора этих образцов в качестве базовых для определения характеристик К с и бк.  [c.25]


Сформулированы деформационные и энергетические критерии усталостного разрушения металлов и выполнена их экспериментальная проверка. Проанализированы методы ускоренного определения пределов выносливости, основанные на деформационных и энергетических критериях. Рассмотрено влияние неупругих циклических деформаций на несущую способность неоднородно напряженных конструктивных элементов, в том числе при наличии концентрации напряжений. Изложены методы прогнозирования характеристик сопротивления усталостному разрушению металлов с учетом влияния концентрации напряжений, сложного напряженного состояния, режима нагружения и наличия усталостных трещин.  [c.2]

Основной государственный стандарт ГОСТ 25.506-85 "Расчеты и испытания на прочность. Методы механических испытаний металлов -Определение характеристик трещиностойкости (вязкости разрушении) при Статическом нагружении" разработан и введен в действие. 01.01.1986 г. [98]. Как упоминалось ранее, в Определении характеристик трещиностойкости металлов есть ряд методических условностей, без выполнения которых результаты испытаний не будут обладать сопоставимостью. Поэтому остановимся подробнее на принятых методах испытания на трещиностойкость, ибо ГОСТ 25.506-85 является первым в экспериментальной механике разрушения и его внедрение на предприятиях черной металлургии при организации контрольных испытаний металла ответственного назначения безусловно будет способствовать повышению качества металлопродукции. Кроме того, при рассмотрении и анализе основных положений стандарта основное внимание будет уделено вопросам, обеспечивающим возможность получения сопоставимых результатов.  [c.82]

По параметрической диаграмме можно определить и другие характеристики, например предельно допустимую температуру эксплуатации. В этом случае на оси ординат параметрической диаграммы задают предельно допустимые значения удельной потери массы металла или глубины коррозионного разрушения. Затем движутся до пересечения с линией gg Р или gh — Р, затем вверх по ординате при постоянном значении Р до пересечения с линией Р — l/T , соответствующей определенному времени эксплуатации и, наконец, от точки пересечения вправо при постоянном значении ординаты до пересечения с осью ординат 1/Г. Точка пересечения соответствует определенной величине предельно допустимой температуры. Ниже приводятся параметрические диаграммы [131 для ряда сталей и сплавов, широко используемых при высоких температурах. Параметрические диаграммы построены в основном по экспериментальным данным (точки на диаграмме). Если диаграмма построена по значениям констант кинетических и температурных уравнений (51) и (52) окисления металлов, то экспериментальные точки отсутствуют. При построении диаграмм применялись следующие величины и их единицы g, g — г/см , h — мм, т — ч, Т — К, Q — кал/моль. Эти отступления от системы СИ для Q сделаны сознательно, для того чтобы не снизить точность диаграммы. При использовании вышеуказанных единиц шкалы Ig и Ig /г почти совпадают для сталей и никелевых сплавов. Параметрический метод позволяет надежно проводить интерполяцию, а также экстраполяцию. Экстраполяцию можно проводить по температуре на 50—100 °С, по времени на 1—1,5 порядка [13].  [c.309]

В большинстве исследований влияния сложного напряженного состояния на сопротивление разрушению (особенно разрушению в условиях ползучести) опыты проводились в ограниченном объеме при малом количестве испытаний и варьировании вида напряженного состояния в небольших пределах всего трехмерного пространства (испытания тонкостенных трубчатых образцов от чистого сдвига до двухосного растяжения), параллельные опыты на один и тот же режим в большинстве случаев отсутствуют, В связи с этим используются такие методы обработки экспериментальных данных, которые допускают совместный анализ результатов различных исследований, проведенных в разных условиях на материалах разного класса. С этой точки зрения целесообразно использование безразмерных координат, когда все параметры напряженного состояния отнесены к какой-либо характеристике механических свойств материала, например к условному пределу длительной прочности за определенный срок службы или к сопротивлению разрушения при кратковременном разрыве в условиях одноосного растяжения  [c.130]

При таком методе определения Nr умеренные значения запаса по долговечности (л у = 24-3) перекрывают возможные случайные отклонения числа циклов до разрушения. Специфику термоусталостного нагружения учитывают характеристиками прочности при соответствующих температурах (а чах 2 " ") и величиной Л 1, определяемой экспериментально при неизотермическом циклическом нагружении. При этом величина N-1 различна для каждого уровня нагружения Де, а общий вид диаграммы не меняется. С увеличением статической нагрузки роль амплитуды переменной деформации снижается, что подтверждает увеличение угла наклона кривых Де—N с ростом От-  [c.157]

В последнее время проводились работы в области механики полимеров, создания методов расчета деталей из полимеров на прочность, комплексного изучения их физико-механических характеристик. Изучаются теории, необходимые для решения задач о деформированном и напряженном состоянии упруго-вязких полимеров. Получила развитие теория и накоплен обширный экспериментальный материал в области температурно-временной зависимости прочности, развиты представления о статической усталости армированных систем на основании свойств отдельных компонентов, показано существование предела длительной статической прочности. Для описания условий разрушения предложены критерии предельного состояния, экспериментально показана зависимость плотности и упругости. Определенное развитие получили представления о взаимосвязи структуры полимеров и их механиче ских свойств, а также структурная механика армированных систем.  [c.215]


В соответствии с ЛМР процедура определения условий роста трещины предусматривает расчет коэффициентов интенсивности напряжений вдоль контура (края) трещины при заданных нагрузках, нахождение из специальных экспериментов характеристик трещиностойкости материала (выражаемых в терминах критических значений этих коэффициентов или некоторой их функции) и, наконец, сравнение на основе критериев ЛМР расчетных и экспериментальных величин и установление допустимых критических параметров трещин. Практическая реализация этой процедуры Во многом определяется тем, располагают ли специалисты представительным банком данных по трещиностойкости конструкционных материалов и достаточным набором решений задач теории упругости о трещинах различной конфигурации в элементах конструкций разной геометрии. В последние годы интенсивного развития механики разрушения постоянно накапливаются экспериментальные данные по трещиностойкости, пополняется запас решенных задач о трещинах, разрабатываются принципы и правила моделирования реальных трещин, обнаруживаемых в конструкциях средствами дефектоскопии и расчетными методами.  [c.5]

В последнее время появились интересные работы по исследованию состава и структуры, а также физико-механических характеристик стеклопластиков 137, 151]. В работе [137] рассматривается задача по оценке содержания связующего, пористости и правильности укладки слоев стеклоткани в изделиях из стеклотекстолита, без их разрушения. В результате экспериментов было установлено, что технология изготовления изделий оказывает решающее влияние на характер связи между акустическими и структурными характеристиками стеклопластиков. Показано, что при изготовлении изделий при постоянном удельном давлении прессования наблюдается определенная закономерность содержания пор в стеклопластике. Следует отметить, что импульсный акустический метод весьма чувствителен к изменениям содержания связующего, а также любым ошибкам при укладке стеклопакетов. Экспериментальные результаты, полученные авторами статьи [137], очень хорошо согласуются с нашими, хотя расчетные формулы несколько отличаются от приведенных в этой статье. Однако для оценки трех технологических параметров — содержания пор, содержания связующего и правильности укладки стеклопакетов, по-видимому, недостаточно одного акустического параметра — скорости распространения продольных волн, необходимо использовать другой параметр (например, диэлектрическую проницаемость), величина которого более чувствительна к содержанию пор, чем к содержанию связующего.  [c.71]

В первой статье сборника рассматривается целесообразность использования понятия контролирующего фактора для характеристики механизма защитного действия и систематизации различных видов антикоррозионной защиты. Остальные работы сборника посвящены конкретным вопросам экспериментального исследования процессов коррозии и защиты металлических систем. В сборнике нашли отражение такие важные разделы, как исследование газовой коррозии при термообработке сплавов, коррозии и защиты металлов при травлении в кислотах, кислотостойкости металлов при повышенных температурах, коррозии нового металлического конструкционного материала — титана, его сплавов, сплавов ниобия с танталом и новые исследования по межкристаллитной коррозии нержавеющих сталей. В сборнике помещены последние работы по исследованию коррозионной усталости сталей и по коррозии и защите в некоторых производствах химической промышленности. Цель сборника — на основе современных методов исследования и имеющихся научных достижений указать некоторые новые пути и дать вполне определенные рекомендации нашей промышленности по борьбе с коррозионным разрушением.  [c.3]

Методы экспериментального определения характеристик тре-щиностойкости в условиях упругопластического деформирования требуют схематизации накопленного опыта испытаний. В этой области значительное развитие и наиболее широкое практическое приложение среди критериев нелинейной механики разрушения получили раскрытие трещины [11-13], коэффициент интенсивности деформаций в упругопластической области [14], энергетический З-интеграл [15-17] и предел трещиностойкости 1 [18-19], позволяющие анализировать закономерности разрушения, напряженно-деформированное состояние в вершине трещины на стадии ее инициации при значительных пластических деформациях и общей текучести материала, а также проводить оценку предельных состояний элементов конструкций с трещинами.  [c.20]

Для изотропных материалов экспериментально было обнаружено, что энергия, затраченная на продвижение трещины, относительно постоянна. Поэтому большая часть усилий была сконцентрирована на изучении различных методов вычисления затраченной энергии, причем игнорировалось обоснование сделанного выше упрощения. Анализ энергетического неравенства (И) показывает, что левая часть (11) постоянна тогда и только тогда, когда Цравая. часть неравенства является функцией одного параметра. Это на самом деле соответствует случаю изотропного разрушения, когда под действием любого сложного плоского нагружения наблюдается неустойчивый рост трещины в направлении, ортогональном направлению максимального нормального напряжения около кончика трещины (например, см. работу [15]). Иначе говоря, в изотропном материале со случайно распределенными трещинами равной длины (рис. 9) только трещина, перпендикулярная действию нагрузки, является критической и только один вид испытания — растяжение в направлении, перпендикулярном трещине,— необходим для определения характеристики разрушения такого материала.  [c.228]

Последующие этапы расчета на прочность и долговечность элементов конструкций в рамках механики хрупкого разрушения связаны с решением соответствующих задач о предельно-равновесном состоянии тел с трещинами (задач теории трещин) и с экспериментальным определением характеристик сопротивления материала распространению в нем трещины. Решения двумерных задач такого класса в рамках указанных моделей эффективно осуществляют на основе известных методов Колосова — Мусхели-швили [72] или других, разработанных в настоящее время методов в частности численных методов. Эти методы с достаточной  [c.11]

В настоящее время для качественной оценки способности материала тормозить развитие магистральной трещины существует достаточно больпюй набор экспериментальных методов и соответствующих характеристик материала (точнее, образца из пего). Здесь будут рассмотрены несколько таких характеристик, представляющих не только качественный (для сравнения и выбора материалов и технологий), но и расчетный интерес. Последнее означает, что но такой характеристике возможно, на основании соответствующих критериев разрушения, вести расчеты па прочность с определением требуемых коэффициентов запаса. Эти характеристики (называемые характеристиками трещиностой-костп) Кс, Ки — критические коэффициенты интенсивности на-пря/кений при плоском напряженном состоянии и объемном рас-тя кении (в случае плоской деформации) бс — критическое раскрытие трещины в вершине (разрушающее смещение) Лс — упругопластическая вязкость разрушения h — предел трещино-стойкости.  [c.123]


Таким образом, теория прочности композитов при внеосном растягивающем нагружении развита для случаев, когда либо разрушение происходит не по поверхности раздела, либо разрушение по поверхности раздела учитывается лишь косвенно. При решении более сложной задачи — прямого анализа влияния поверхности раздела на прочность при внеосном нагружении — достигнуто меньше успехов, хотя определенные возможности представляет метод конечных элементов [1]. С помощью теорий, рассматривающих непосредственно поверхность раздела, были предсказаны разумные величины верхнего и нижнего предельных значений поперечной прочности, однако они пока не подтверждены экспериментально. Задача разработки более соверщенного подхода, который позволил бы количественно оценить влияние поверхности раздела на прочность при внеосном нагружении, пока не решена. Ряд проблем возникает из-за трудностей экспериментального определения важных характеристик поверхности раздела, другая группа проблем — из-за того, что неясно, как на основе экспериментальных значений данных характеристик предсказать прочность композита. Это — сложные проблемы драктического и теоретического характера, однако начало их решению может быть положено определением характеристик композита при внеосном растяжении и исследованием разрушенных образцов, что позволяет установить роль поверхности раздела в разрушении композита при растяжении. Результаты ряда таких исследований рассмотрены ниже.  [c.203]

Вследствие практической невозможности регистращш нагрузки в области откольного разрущения информация о деформировании материала и кинетике его разрущения получается в результате анализа волновых процессов, основанного на регистрируемой диаграмме изменения скорости свободной поверхности или давления на границе раздела исследуемого материала с материалом меиьщей акустической жесткости. В связи с этим принятая для анализа модель механического поведения и разрущения материала и метод аналитической обработки оказывают существенное влияние на получаемые из экспериментальных исследований результаты, а имеющиеся в литературе данные о силовых и временных характеристиках сопротивления материала откольному разрушению неразрывно связаны с методами их определения. Выбор в качестве определяющих параметров различных величин исключает возможность сопоставления экспериментальных результатов и ведет к получению количественно и качественно противоречивых выводов. Это снижает информативность таких исследований и затрудняет их использование для практических расчетов.  [c.232]

В случаях, когда есть основания считать возможное разрушение хрупким, то обычно, предполагая справедливость положений линейной механики разрушения, расчет ведут по критерию разрушения (3.3.2). Вычисление стоящего слева коэффициента интенсивности напряжений К при современном развитии вършслительных методов и техники и наличии справочников, как правило, не вызывает затруднений. Гораздо труднее экспериментальное определение правой части критерия (3.3.2), а именно критического коэффициента интенсивности напряжений К , называемого иногда вязкостью разрушения. Сопротивление материала росту трещины во многом определяется затратами энергии на пластическое деформирование объемов материала в ближайшей окрестности вершины трещины. А величина и распределение пластических деформаций, форма и размеры пластически проде-формированных областей как вдоль фронта трещины, так и в удалении от него существенно зависят от многих условий нагружения и размеров рассматриваемого объекта и образца, служащего для определения характеристики трещино-стойкости. Поэтому постановке эксперимента по определению значений (или, что в некотором смысле более просто, Къ) следует уделять много внимания, проводя эксперимент с ориентацией на данную конструкцию.  [c.169]

В то же время для получения достоверных оценок предельных и допускаемых размеров дефектов требуется разработка методов, учитывающих ограничения, связанные с экспериментальными особенностями определения характеристик трещиностойкости, включая требования их корректности во всем диапазоне размеров трещин и технологичееких дефектов. Такая постановка задачи может быть эффективно рассмотрена при использовании характеристик трещиностойкости, дающих наиболее интегральное представление о процее-сах деформирования и разрушения, происходящих в локальных областях материала и элемента конструкции в целом. Этому условию наиболее удовлетворяют энергетический критерий в форме 1-инте-грала и деформационный в виде коэффициента интенсивности деформаций Кхе, которым уделено основное внимание.  [c.35]

Стандартизация методов определения характеристик трещиностойкости (у, Ki , бк) конструкционных материалов в реальных условиях эксплуатации требует подбора таких силовых схем нагружения образцов с трещинами, которые были бы просты в экспериментальном осуществлении и соответствовали бы теоретическим моделям механики хрупкого разрушения. Наиболее перспективной из таких силовых схем является растяжение цилиндрического образца с внешней кольцевой трещиной. Цилиндрическими образцами давно пользовались [12, 110, 194, 208, 232, 259] при изучении прочностных свойств конструкционных материалов, в частности для выяснения влияния надреза. Цилиндрический образец обладает тем преимуществом, что его легко изготовить и на нем легко создать исходный кольцевой надрез необходимой глубины и остроты. В отличие от схем, когда применяются плоские образцы, эта силовая схема реализует локальное состояние плоской деформации вдоль всего контура трещины, что соответствует расчетным моделям. Кроме того, цилиндрический образец может быть успешно применен для оценки склонности материала к хрупкому разрушению как при статическом, так и,глри ударном нагружении.  [c.134]

Проведем сравнительнь й анализ результатов испытаний на растяжение силой Р гладкого образца и широкой пластины с центральной трещиной, имеющих площадь поперечного сечения о- Ранее эта схема анализа приведена Н.А. Махутовым [138]. Такой способ представления экспериментальных данных дополнительно иллюстрирует, что вновь разрабатываемые методы определения характеристик вязкости разрушения (трещиностойкости) являются развитием и усовершенствованием существующих стандартных методов испытаний. В этом проявляются взаимосвязь и преемственность существующих с вновь разрабатьюаемыми методами испытаний по определению характеристик механических свойств металлов. Еще раз напомним, что при испытании на растяжение силой гладких цилиндрических или плоских образцов с площадью поперечного сечения Fq  [c.33]

Экспериментальные результаты характеризуются определен ной степенью рассеивания. Более корректное сопоставление характеристик циклической прочности материала и металлорука-вов требует привлечения статистических методов обработки. С этой целью использовали дополнительные данные о разрушении, полученные на восьми уровнях деформаций как по металлору-кавам, так и пластинам. Среднее количество на уровень металло-рукавов — 40, пластин — 60.  [c.195]

Определение долговечности по приведенному методу учитывает как наиболее важные характеристики процесса нагрузки (плотность вероятности амплитуд, отклонение процесса), так и использованного материала (кривая циклического деформирования, кривая долговечности при гармонической нагрузке). Кроме того, метод позволяет определить вероятность появления усталостного разрушения, что является его одним из наиболее важных аспектов. С точки зрения гадежоости для данного процесса и изделия можно предсказывать вероятность разрушения или проектировать детали по заданной вероятности усталостного разрушения. Различные параметры нагрузки, такие, как ее способ (мягкий, жесткий), асимметрия цикла и скорость (частота), учитываются при вычислении благодаря использованию соответствующей кривой циклического деформирования [4]. Из рис. 3 видно, что экспериментальные и теоретические долговечности дают хорошую сходимость, и поэтому предложенный метод можно считать приемлемым.  [c.109]

Основная идея изложенного ниже подхода заключается в разработке метода расчета, обладающего широкой физической информативностью, учитьшающего не только механические взаимодействия, но и физические, химические явления, толщину смазочного слоя, тепловые процессы, кинематику контакта, кинетические закономерности, зависящие от временного фактора [9-12]. Расширение физических координат при описании процесса изнашивания позволяет более целенаправлено ставить и обобщать экспериментальные исследования. Обобщенные характеристики находятся главным образом на основе фундаментальных зависимостей и математических описаний процесса поверхностного разрушения при трении. Расчетные уравнения для оценки ресурса по критерию износа строятся на основе обобщенных физически информативных структур, построенных и численно определенных в результате модельных и натурных экспериментов.  [c.159]


Применение двух- и многослойных сталей и сплавов, обладающих взаимодополняющими физико-механическими свойствами, позволяет значительно снизить металлоемкость элементов конструкций. Проблема проектирования, создания и эксплуатации биметаллических конструкций повышенного ресурса, в частности высоконагру-женного оборудования АЭС, делает весьма актуальными экспериментальные исследования, направленные на разработку методов оценки несущей способности таких конструкций не только по интегральным характеристикам прочности, но и с учетом наличия трещиноподобных дефектов на стадиях инициации разрущения, а также распространения и остановки трещин. Развитие методов определения критериев сопротивления разрушению и их анализ необходимы для оптимизации свойств биметалла путем правильного выбора сочетания разнородных составляющих соединения, назначения технологического способа его изготовления и определения рационального соотношения толщин основного металла и плакирующего слоя. Кроме того, это необходимо при проведении расчетов на прочность и оценке ресурса биметаллических элементов конструкций, определении допускаемых размеров дефектов, выборе методов и средств дефектоскопии.  [c.107]

Поскольку интеграл/ (= G), определенный с помощью (2.20), обладает обоснованным физическим смыслом в качестве удельной энергии, высвобожденной в вершине трещины, причем ее легко рассчитать, пользуясь простыми численными методами с помощью (2.49) и характеристик полей, удаленных от вершины, то в результате этой величиной можно пользоваться как параметром, определяющим упругодинамическое развитие трещины и ее останов. В [10] приводятся зависимости, связывающие и динамические коэффициенты интенсивности напряжений. Интеграл J, вообще говоря, является функцией скорости движения вершины трещины [10. В динамических задачах разрушения старт трещины возникает при/ = / , а ее движение осуществляется при — где и — характеристики материала. В работах [11, 12, 18, 23, 24] приводятся примеры использования этих критериев для предсказания особенностей развития трещины и ее останова, там же помещены сравнения с экспериментальными результатами.  [c.145]

Экспериментальное подтверждение статистической теории (Подобия усталостного разрушения. Определение параметров уравнения подобия. Экспериментальные исследования, по результатам которых могут быть проверены уравнения подобия усталостного разрушения, делят на две группы. К первой группе относят те исследования, в которых пределы выносливости находились обычным методом путем испытания 6—10 образцов данного типоразмера. В этом случае считают, что найденное значение -Предела выносливости является приближенной оценкой медиан-иого значения Ъ (с возможной ошибкой до rtlO%). Функция распределения предела выносливости и характеристики рассеяния [например, S в формуле (3.56)], в этом случае найдены быть не могут. По этим данным закономерности подобия могут быть проверены только по средним значениям [при Up, = О в уравнении (3.56)]. Ко второй группе относят те исследования, в которых закономерности подобия изучались в статистическом аспекте с построением функций распределения пределов выносливости деталей на основе испытания достаточно большого количества образцов каждого типоразмера (необходимого для применения методов лестницы пробитов и др.).  [c.88]

Надежность определения срока безаварийной работы элементов энергоустановок, изготовляемых из жаропрочных материалов, зависит, в первую очередь, от достоверности оценок характеристик прочности и пластичности в условиях ползучести. Точность прогноза обеспечивают объемом экспериментальных данных (числом испытанных образцов, максимальной продолжительностью отдельных испытаний и диапазоном температур и силовых нагрузок). С увеличением времени до разрушения (уменьшением напряжения) при постоянной температуре возможно изменение механизмов процесса ползучести и, как следствие, изменение коэффициентов в уравнениях температурно-силовой зависимости прочности. Поэтому при решении задач о прогнозировании характеристик жаропрочности на большие сроки службы необходимо особо тщательно составлять программу. эксперимента и проводить отбор результатов испытаний так, чтобы в них была отражена роль процессов, определяющих поведение материалов при рабочей температуре и длительной эксплуатации. В некотором температурном интервале возможен эквивалент между температурой и временем повышением температуры достигается ускорение развития идентичных изменений структурного состояния и ведущих механизмой ползучести. В этом состоит суть методов прогнозирования характе-  [c.35]

За последние годы наука о прочности, как один из разделов материаловедения и физики твердого тела, претерпела огромные изменения. Достаточно назвать экспериментальное достижение теоретической прочности в нитевидных кристаллах, широкое применение теории дислокаций для понимания атомного механизма деформации и разрушения и многое другое. Однако ни один из разделов учения о прочности не претерпел столь резких принципиальных изменений, как разрушение. Этих изменений много и они разные, и может быть наиболее важным является то, что центр тяжести переносится все больше на исследование предстадий полного разрушения. Введены и вводятся новые методы оценки разрушения. Однако прикладная линия пока мало меняется расчеты большей частью относятся к упругой области, реже — к пластической и особенно редко к области разрушения в большинстве случаев испытания проводятся при осевом растяжении с определением пределов прочности, текучести, удлинения, сужения и реже при других испытаниях с определением пределов усталости, ползучести, чувствительности к надрезу, трещине и некоторых других характеристик. Это малое изменение прикладной линии вызвано объективными причинами недостаточной разработкой новых методов, сложностью трактовки и отсутствием в некоторых случаях надежных критериев.  [c.5]

Решение задачи состоит в отьюкании точки пересечения кривых / и 2 на рис. 14.7.1. Кривая 1 соответствует значениям — механической характеристике основного металла, отражающей его способность сопротивляться распространению трещины при различных ее скоростях характеристику следует определять экспериментально при различных задаваемых в опытах скоростях разрушения металла. Описание приемлемых методов определения дано в [39].  [c.543]


Смотреть страницы где упоминается термин Методы экспериментального определения характеристик разрушения : [c.2]    [c.58]    [c.162]    [c.81]    [c.284]    [c.193]    [c.36]    [c.490]    [c.312]   
Смотреть главы в:

Машиностроение Энциклопедия Т I-3 Кн 1  -> Методы экспериментального определения характеристик разрушения



ПОИСК



141 —149 — Определение характеристика

Метод Определение экспериментальное

Метод характеристик

Разрушения определение

Характеристики разрушения

Экспериментальные методы



© 2025 Mash-xxl.info Реклама на сайте