Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные уравнения. . ЮЗ Задача Коши и краевые задачи

В работе [1.41] дан обзор результатов по концентрации напряжений в пластинках при растяжении. Автор освещает методы, развитые на базе сведения задачи к краевым задачам теории функций комплексного переменного. Обсуждаются методы бесконечных рядов, интегралов Коши, интегральных уравнений, разделения переменных, конформного отображения, линейного сопряжения.  [c.288]


Основная сложность при решении уравнений заключается в том, что задачи статики стержней относятся к двухточечным краевым задачам, когда решение должно удовлетворять определенным условиям в начале и в конце интервала интегрирования, в отличие от одноточечных краевых задач — задач Коши, когда все условия, которым должно удовлетворять решение, известны в начале интервала интегрирования. Поэтому хорошо разработанные методы решения систем дифференциальных линейных (и нелинейных) уравнений для одноточечных задач использовать для решения двухточечных задач в общем случае нельзя. В настоящее время имеется ряд методов численного решения линейных двухточечных задач (имея в виду стержни), которые получили распространение в расчетной практике метод начальных параметров, метод прогонки [2], метод конечных элементов [15]. Точное аналитическое решение линейных уравнений равновесия стержня, например (1.112) — (1.115), возможно только для случая, когда элементы матрицы Ах— постоянные числа [этот случай будет рассмотрен в 5.2, где изложены теория и методы расчета винтовых стержней (цилиндрических пружин)]. Для уравнений с переменными коэффициентами возможны только численные или приближенные методы решения.  [c.61]

Вычислительные методы решения краевой задачи существенно зависят от вида функции /, в частности от того, является ли уравнение (3.1) линейным или нет. Методы решения задачи Коши с одинаковым успехом решают как линейные, так и нелинейные уравнения.  [c.97]

РЕШЕНИЕ КРАЕВОЙ ЗАДАЧИ ДЛЯ ЛИНЕЙНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА ПУТЕМ СВЕДЕНИЯ ЕЕ К НЕСКОЛЬКИМ ЗАДАЧАМ КОШИ  [c.103]

Имеется большое количество разнообразных численных методов решения уравнений типа (9.2) [6, 13 и др.], из которых для реализации на ЭЦВМ наиболее удобен метод Рунге—Кутта. Отметим, что для распространенных ЭЦВМ обычно имеются стандартные программы решения систем линейных обыкновенных дифференциальных уравнений, к которым уравнение (9.2) приводится обычным приемом [90]. Однако предварительно рассматриваемую краевую задачу необходимо свести к задаче с начальными условиями (задаче Коши). Этот во-  [c.66]

Наиболее простым способом перехода от краевой задачи к задаче Коши является метод комбинации решений, основанный на линейности решаемого уравнения. Рассмотрим его применительно к уравнению (9.2) [61].  [c.67]


В случае противотока, когда возмущения по параметрам рабочей среды и температуре газа задаются на разных концах теплообменника, приходится решать линейную краевую задачу. Как известно, для линейных систем решение краевой задачи сводится к решению нескольких задач Коши [Л. 71]. Для противотока решение проводится в два этапа. На первом этапе уравнения интегрируются при единичном возмущении по температуре газа в сечении Х—0. Результаты решения обозначим через где 11 = 1, D2, q, t.  [c.107]

Вопрос о разрешимости краевой задачи исследуется всякий раз отдельно (даже в линейном случае). Численные методы решения задачи Коши и краевой задачи (4.21)—(4.23) для линейного уравнения приведены в п. 5.1.12.  [c.102]

В работе [370] рассмотрены осесимметричные деформации пологой конической оболочки. Задача Коши по параметру интегрировалась по простой схеме Эйлера. Пошаговые линейные краевые задачи решались методом прогонки. Аналогичная комбинация методов использована в работах [428, 490] для оболочек вращения. В основу положены уравнения Рейсснера [491].  [c.187]

Разрешающая система уравнений для конструкции, состоящей из Л/оболочек, составляется из Л/систем(II. 19). К граничным условиям на торцах конструкции присоединяется N — 1 условие сопряжения оболочек (11.23). Сформулированная нелинейная краевая задача может быть сведена к системе нелинейных алгебраических или трансцендентных уравнений и к задаче Коши для начального вектора. Однако в силу жесткости задачи Коши подобный алгоритм решения нелинейных задач неустойчив. Более эффективно применение итерационного процесса, на каждом шаге которого решается линейная краевая задача в сочетании с устойчивым численным методом прогонки [30, 90, 134, 1861. В практике решения  [c.36]

Показано, что основная причина нелинейности задачи состоит в сильной анизотропии упругих свойств резиноподобных материалов на сдвиг и объемное сжатие (деформационная анизотропия), и эта нелинейность проявляется через уравнения равновесия элемента объема. Если в массивном теле объемным сжатием обычно пренебрегают (материал считается несжимаемым), то в краевых задачах для тонкого слоя сжимаемость существенна. Нелинейность наиболее важна в уравнениях равновесия. Она может сохраняться и в том случае, когда закон упругости и кинематические формулы Коши линейны.  [c.275]

Неочевидной представляется попытка применения основных идей конструирования степенных характеристических рядов для представления решений сильно нелинейных вырождающихся параболических уравнений, каким является уравнение Лейбензона [8]. Хотя для таких уравнений типичной является ситуация [9], когда фронт возмущения, порожденного каким-либо заданным краевым режимом, движется по области нулевого фона (нулевого давления для уравнения Лейбензона) с конечной скоростью, как и для гиперболического случая, тем не менее возможность применения степенных рядов для описания решения в возмущенной зоне является нетривиальной, т.к. параболические уравнения не являются уравнениями типа Коши-Ковалевской. Для линейного уравнения теплопроводности, например, ряды Тэйлора, как правило, расходятся. В отличие от гиперболических систем, для которых характерна независимость скорости движения поверхности слабого разрыва по заданному фону от вида краевого режима, для вырождающихся параболических уравнений скорость движения фронта возмущения целиком определяется заданным краевым режимом и может быть найдена только в процессе определения возмущенного решения. Тем не менее оказалось, что степенные ряды, особенно в специальном пространстве переменных (аналог временного годографа), позволяют эффективно строить поля давления в задаче о нестационарной фильтрации газа и находить закон движения фронта фильтрации в зависимости от краевого режима.  [c.282]


В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]

Таким образом, краевая задача (8)-(10) сведена к решению счетной системы задач Коши (12), (13) для линейных уравнений с периодическими коэффициентами, частота изменения которых равна 2П. Отметим, что влияние внешнего электрического поля определяется квадратом напряжения [/ = 1/ соз Ш. Если 1/о = = О, то = О и уравнения интегрируются в явном виде. Получающееся решение описывает свободные осесимметричные колебания круглой мембраны. При По ф О, О искомое решение Уn t) п = 1, 2,..., выписывается при помощи функций Матье [6]. Случай 1) = О (постоянное напряжение) также представляет интерес (см. ниже).  [c.49]

Для численного интегрирования полученной системы уравнений разобьем выделенный объем среды точками г = г,- (t = l, 2,. ... .п) пап материальных частиц значения всех искомых функций будем определять в точках г = г, (t = l, 2,. .., п). Тогда четыре последних дифференциальных уравнения в частных производных по времени от переменных ссг, а, w, рг перейдут в 4п обыкновенных дифференциальных уравнения но времени, для численного интегрирования которых удобно использовать модифицированный метод Эйлера — Коши. Для определения значений давления Pi в точках f = r, в каждый фиксированный момент времени необходимо решать линейную (для pi ) краевую задачу для первого дифференциального (по г) уравнения второго порядка с краевыми условиями (6.7.17).  [c.85]

Теперь понятие плотности вероятностей не всегда имеет смысл, и приходится рассматривать уравнение в вариационных производных для характеристического функционала решения задачи,. которое в этом случае играет роль стохастического уравнепия Лиувилля и называется уравнением Хопфа (см., например [29]). Усредняя последнее по ансамблю реализаций стохастических параметров, получаем замкнутое уравнение в вариационных производных. Полученное уравнение для характеристического функционала представляет собой бесконечномерный аналог уравнений, соответствующих обыкновенным дифференциальным уравнениям и квазилинейным уравнениям в частных производных. Если же исходное уравнение само является линейным, то несущественно, какие у него производные (первого или более высокого порядка по пространственным переменным) важно лишь выполнение условия причинности (т. е. уравнение должно быть первого порядка по времени и для него должна ставиться задача Коши). Если условие причинности нарушается, т. е. мы имеем не задачу Коши, а краевую задачу, то в этом случае надо воспользоваться теорией инвариантного погружения, сводящей краевые задачи к задачам Коши для вспомогательных уравнений.  [c.164]

МГЭ состоит из решения задачи Коши в матричной форме и краевой задачи для линейной системы. Краевая задача сводится к решению системы линейных алгебраических уравнений относительно начальных и конечных параметров всех стержней. Для решения системы уравнений МГЭ целесообразно применять метод исключения Г аусса без выбора ведущих элементов или с ограниченным выбором ведущих элементов.  [c.181]

В используемом подходе удачно подбирается зависимость ядра от времени и вводятся автомодельные переменные, через которые выражаются скорость и давление. Это позволяет свести нелинейную краевую задачу типа Стефана для уравнения в частных производных к задаче Коши для линейного обыкновенного дифференциального уравнения второго порядка.  [c.13]

Излагаются методы эффективного построения этих решений и много внимания уделяется обстоятельствам, при которых решения существуют и единственны. Эти вопросы в безмоментной теории решаются нетривиально. Общая линейная краевая задача моментной теории оболочек единообразна она заключается в интегрировании эллиптической системы уравнений с выполнением в каждой точке края (или краев, если область многосвязна) четырех граничных условий. Она всегда имеет единственное решение. Однако при переходе к описанной выше безмоментной краевой задаче картина становится весьма пестрой, так как тип уравнений, подлежащих интегрированию, может оказаться любым (эллиптическим, гиперболическим и параболическим). Различными по своему характеру оказываются и краевые задачи безмоментной теории это могут быть задачи типа Дирихле, задачи типа Коши, а также задачи, не предусмотренные существующей классификацией. К тому же может существовать несоответствие между типом краевой задачи безмоментной теории и типом уравнений, для которых ее надо решать. Например, задачу Дирихле иногда приходится решать для гиперболического уравнения, а задачу Коши — для эллиптического. Все это приводит к тому, что теоремы существования и единственности для краевых задач безмоментной теории формулируются далеко не единообразно и в них вопрос не всегда решается положительно. Однако такая ситуация не свидетельствует о принципиальной порочности самой идеи выделения в самостоятельное рассмотрение краевой задачи безмоментной теории. Каждая из описанных выше странностей краевых задач безмоментной теории свидетельствует об определенных особенностях искомого напряженно-деформированного состояния оболочки. Для широкого класса задач это будет показано в части IV.  [c.174]


Изложенный способ решения алгебраической системы уравнений парогенератора аналогичен решению краевой задачи для системы линейных дифференциальных уравнений путем сведения ее к нескольким задачам Коши. По существу математическая модель трактов рабочей среды представляет собой краевую задачу для уравнений гидродинамики с граничными условиями, заданными на концах интервала изменения координаты длины. Хотя дифференциальное уравнение движения рабочей среды и аппроксимировано в рассматриваемой модели системой алгебраических уравнений сопротивления на участках, следующих друг за другом, такая схема решения оказывается наиболее экономной. Ее удобно применять потому, что при описании моделируемая система представлена как совокупность ориентированных звеньев [Л. 77], для которых уравнения вход —выход разрешены в явном виде относительно выходов. Для каждого звена выходы легко рассчитываются, если известны входы. Эта форма уравнений звеньев обусловливает выбор метода решения системы уравнений, оиисывающей взаимосвязанные теплообменники.  [c.156]

Подход Давиденко использован для исследования свшств операторов уравнений Феппля—Кармана в работе [440]. Отдельные задачи [514,462, 402, 38, 179, 39, 343, 300,461, 187, 532] решены с помощью дифференцирования по параметру с применением различных явных схем разного порядка точноста и неявных схем интегрирования задачи Коши по параметру и методов типа прогонки для решения пошаговых линейных краевых задач.  [c.186]

Систему трех обыкновенных линейных дифференциальных уравнений (7.5) можно решить на ЭВМ с помощью численных методов. Для решения задачи реализуем стандартную подпрограмму DLBVP [184], которая сводит решение краевой задачи к решению задачи Коши, где модифицированным предиктор-корректор методом Хэмминга четвертого порядка решают дополнительные задачи Коши и определяют перемещения Uz, 0, Ч " завершающей задачи Коши. Интеграл вычисляется по интегральной формуле Эрмита четвертого порядка. Выбираем начальный шаг интегрирования Ды=0,01 м и задаемся допустимой погрешностью вычислений е=МО-  [c.204]

Выше указана только часть публикаций по нелинейным-проблемам эластомерного слоя и конструкций. Перечень работ можно бы продолжить, но это не меняет общей оценки состояния вопроса. Если создание линейной теории слоя можно считать завершенным и ее значение можно сравнить со значением классической теории оболочек для соответствующих краевых задач, то создание общей нелинейной теории слоя находится в-началь-. ной стадии. Опубликованных результатов мало, и они не достоверны даже в отношении интегральных упругих характеристик констукций, не говоря уже о полях перемещений и напряжений, В то же время только теоретические исследования и расчеты с последующей экспериментальной проверкой позволяют пороз11ь оценить влияние геометрической и физической нелинейности и решить такие важные вопросы, как пределы применения закона-Гука и выбор упругого потенциала. Лелать упор на физическую нелинейность при умеренных деформациях < 50%, по убеждению автора, неправильно. Есть три источника появления нели-. нейности задачи — формулы Коши, связывающие деформации с перемещениями, уравнения равновесия и закон упругости, которые, вообще говоря, независимы.  [c.23]

Сходимость ряда (1.6) и рядов для соответствующих производных можно доказывать для фиксированных функций (f), которые определяются для конкретных задач аналитическим краевым условием, заданным на нехарактеристической поверхности уравнения (1.4). Доказательство сходимости сводится к специальным аналогам теоремы Коши—Ковалевской. Теоремы такого типа для случая линейных уравнений доказаны в [3 - 5.  [c.330]

Для определения скорости вращения Уф или циркуляции Г следует найти решение уравнения (19) при известной функции и х). В силу его линейности для уравнения (19) достаточно построить решеиие задачи Коши Г(0)=0 Г (0)=1. Определив значение Т Хт)=Тг,г, можно перенормировать решение Г(х), разделив его иа Гт. Построенное таким образом решение будет удовлетворять краевым условиям по переменной г Г(0)=0 Г(1)=1. При этом размерная циркуляция Гр (г) будет определяться выражением Гг,(г) = vi [c.197]


Смотреть страницы где упоминается термин Линейные уравнения. . ЮЗ Задача Коши и краевые задачи : [c.161]    [c.187]    [c.184]    [c.65]   
Смотреть главы в:

Теплоэнергетика и теплотехника Общие вопросы  -> Линейные уравнения. . ЮЗ Задача Коши и краевые задачи



ПОИСК



I краевые

Задача Коши и краевые задачи

Задача краевая

Коши задача

Коши уравнения

Коши)

Линейная задача

Линейные Краевые задачи

Линейные уравнения

Решение краевой задачи для линейного уравнения второго порядка путем сведения ее к нескольким задачам Коши



© 2025 Mash-xxl.info Реклама на сайте