Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость движений в механизмах

Устойчивость движений в механизмах  [c.180]

УСТОЙЧИВОСТЬ ДВИЖЕНИЙ в МЕХАНИЗМАХ  [c.183]

S. 371 устойчивость ДВИЖЕНИИ В МЕХАНИЗМАХ 185  [c.185]

К частотным критериям устойчивости принадлежат критерии Найквиста (1932) и Михайлова (1938). Оба критерия используются преимущественно при исследовании систем автоматического регулирования, так как позволяют учесть влияние обратных связей на устойчивость регулирования. Однако и при исследовании устойчивости движений в механизмах они могут быть полезны, в особенности в тех случаях, когда требуется установить, в каких пределах можно изменять тот или иной параметр механизма.  [c.185]


На протяжении почти всей истории развития механики можно проследить взаимную связь между проблемами теоретической механики и проблемами техники и физики. Теоретическая механика в наши дни черпает проблемы, нуждающиеся в разработке, из конкретных вопросов космонавтики, вопросов автоматического регулирования движения машин, их расчета и конструирования, из вопросов строительной механики и т. д. Так возникли новые разделы теоретической механики. Например, современная теория колебаний систем материальных точек и теория устойчивости движения в значительной степени обязаны своим развитием необходимости изучения вибраций летательных аппаратов и различных деталей инженерных сооружений, машин и механизмов, необходимости создания надежной теории регулирования движения машин. Конечно, и теоретическая механика влияет на развитие отраслей техники, связанных с расчетами и конструированием деталей машин и инженерных сооружений. Этим объясняется значимость теоретической механики как науки.  [c.19]

Чтобы получить представление о содержании задачи анализа устойчивости движения виброударных механизмов и систем, мы рассмотрим еще одну динамическую модель (рис. 1.11). Она представляет собой платформу /, движущуюся в вертикальном направлении по гармоническому закону. На платформу брошен шарик 2, выполненный из упругого материала, например из стали. Очевидно, при достаточно интенсивных колебаниях платформы шарик начнет прыгать, ударяясь о платформу и отскакивая от нее ).  [c.36]

Мы здесь будем заниматься механизмами неустойчивостей и исследованием устойчивости движения в малом , т.е. в рамках уравнений, полученных из исходных с помощью разложения в ряд вблизи интересующего нас решения всех нелинейных зависимостей и оставления лишь линейных членов (уже обсуждавшаяся процедура линеаризации). Наиболее важным является исследование устойчивости, во-первых, статического положения системы, т. е. состояния равновесия линеаризованной системы с постоянными коэффициентами, во-вторых, периодических движений системы, малые отклонения от которых описываются линеаризованными уравнениями с периодическими коэффициентами. Относительно же устойчивости линейных систем (а не их решений) дадим пока лишь не вполне строгое определение динамическая система, описываемая коэффициентом передачи Ж р) р = ш) и находящаяся под внешним воздействием V, называется устойчивой, если малое изменение внешнего воздействия приводит к малому изме-  [c.129]


Наличие кратных собственных частот для консервативной системы не связано с какими-либо особенностями её поведения. Для неконсервативной системы, которую представляет собой крыло, находящееся в потоке воздуха, слияние двух частот ведёт к потере устойчивости движения. В процессе колебаний система начинает интенсивно потреблять энергию потока и амплитуды колебаний неограниченно возрастают. Механизм этого явления легко понять, если представить себе, что происходящие с одинаковой  [c.183]

Рабочие органы автоматических машин и систем, как правило, представляют собой по структуре пространственные кинематические цепи со многими степенями свободы (см. рис. 1.2). В этой связи перед современной теорией машин и механизмов возникают новые задачи по структурному, кинематическому и динамическому анализу и синтезу различных схем механизмов роботов, манипуляторов, шагающих и других машин и систем. Должны быть решены задачи устойчивости движения рабочих органов, изучены колебательные процессы, возникающие в период их движения, рассмотрены задачи, связанные с оптимальными законами движения рабочих органов, разработаны алгоритмы движения этих органов.  [c.12]

Динамика машин является разделом общей теории механизмов и машин, в котором движение механизмов и машин изучается с учетом действующих сил и свойств материалов, из которых изготовлены звенья-упругости, внешнего и внутреннего трения и др. Важнейшими задачами динамики машин являются задачи определения функций движения звеньев машин с учетом сил и пар сил инерции звеньев, упругости их материалов, сопротивления среды движению звеньев, уравновешивания сил инерции, обеспечения устойчивости движения, регулирования хода машин. Как и в других разделах теории машин, в динамике можно выделить два класса задач — анализ и синтез механизмов и машин по динамическим критериям. Весьма существенные критерии эффективности и работоспособности машин — их энергоемкость и коэффициент полезного действия также изучаются в разделе Динамика машин .  [c.77]

Для исследования устойчивости движения механизма пред-положим, что система линейных уравнений движения механизма приведена к одному дифференциальному уравнению, кото-рое в операторной форме имеет вид  [c.181]

Корни характеристического уравнения (9.78) для исследо-вания устойчивости движения удобно изображать в виде точек на комплексной плоскости. Тогда условие устойчивости при линейных уравнениях движения формулируется как условие расположения всех корней характеристического уравнения слС ва от мнимой оси комплексной плоскости. Если хотя бы один вещественный корень или одна пара сопряженных комплексных корней находится справа от мнимой оси, то механизм неустойчив. Мнимая ось является границей устойчивости.  [c.182]

К недостаткам данной конструкции тормозов, кроме повышенной сложности замены тормозных накладок и несколько меньшей доступности для наблюдения за состоянием трущихся поверхностей, следует отнести притормаживание тормоза при работе механизма с малыми моментами сопротивления и, как следствие этого, повышенный износ и нагрев тормозных накладок и повышенный расход электроэнергии. Явление притормаживания имеет место главным образом в механизмах подъема, в которых полное размыкание тормоза будет иметь место только при работе с грузами, близкими к номинальным. При подъеме малых грузов тормоз работает с притормаживанием. Однако эту особенность тормоза можно использовать для создания системы регулирования скорости подъема и опускания груза. Наличие у двигателя, приводящего механизм в движение, обычной ступенчатой регулировки позволяет создать изменение скорости движения груза. При этом достигается [70] получение устойчивых малых скоростей как при подъеме, так и при спуске груза.  [c.294]


Скорость подпитки Д зависит от ширины щели золотника и разности давлений в питающей сети и рабочей камере. Внешнее возбуждение Р (1) создается динамическими силами механизмов и изменением проекции силы тяжести на ось амортизатора при наклоне фундамента. Для устойчивости движения массы, согласно критерию Гурвица, необходимо ограничение скорости подпитки В< Ск/т.  [c.99]

Однако в работах, посвященных устойчивости движения механизмов подач, не учитывается характер движения приводимого звена, а в работах по динамике ШД не принимаются во внимание параметры и характер движения приводимых звеньев.  [c.183]

Таким образом, условия устойчивости движения механизмов подач, приводимых ШД, в общем случае могут быть получены только путем моделирования системы уравнений (12) по одной из стандартных числовых программ на ЭЦВМ или АВМ. Для решения некоторых частных задач для этой цели пригодны неравенства (18) (21), которые также дают возможность выявить области динамически неустойчивых частот с достаточной для инженерных расчетов точностью.  [c.187]

Напряжение Рейнольдса (ы, /) как дополнительное напряжение к силам давлений и вязкого напряжения оказывает дополнительное влияние на осредненное течение. Если напряжение передает энергию от основного течения к возмущению, то это может вызвать неустойчивость. В работе [41 ] показано, что наличие этого напряжения благоприятствует переходу энергии осредненного движения в энергию возмущенного течения. Обмен энергией между основным течением и наложенными возмущениями является одним из физических механизмов, который используется как в теории турбулентности, так и в теории устойчивости ламинарных течений.  [c.177]

В некоторых случаях обычного динамического исследования оказывается недостаточно. Как уравнения статики позволяют найти положения равновесия, но не отвечают на вопрос о том, какие из. найденных положений являются устойчивыми, точно также и уравнения динамики дают возможность найти различные режимы движения системы, но не всегда отвечают на вопрос, при каких условиях тот или иной режим движения физически реализуется системой. Возникает новая задача — исследование устойчивости движения рассматриваемой машины, механизма или устройства.  [c.9]

Б у р г в и ц А. Г. Устойчивость движения шипа в подшипнике при неуста-новившемся движении смазки. Труды Института машиноведения, Семинар по теории машин и механизмов, вып. 67, Изд. АН СССР, 1957.  [c.114]

Описывается возможный механизм возникновения переменной силы в проточной части гидротурбины, приводящий при определенных условиях к потере устойчивости движения ротора. Приводятся рекомендации, позволяющие в некоторых случаях решить проблему повышенных вибраций.  [c.121]

Цель управления в режиме стабилизации заключается в обеспечении асимптотической устойчивости заданной программы измерения, формализованной в виде программного движения исполнительного механизма КИР. На практике важно обеспечить не только асимптотическую устойчивость программного движения, гарантирующую компенсацию динамических ошибок, но и заданный характер переходного процесса. Это требование усложняет расчет системы управления.  [c.288]

Исследование движения механизмов и агрегатов, описываемого нелинейными дифференциальными уравнениями, способствует дальнейшему развитию теории устойчивости этого движения в зависимости от параметра механизмов. Предлагаемая монография является крупным шагом вперед в области изучения кинематики и динамики машин и механизмов.  [c.4]

Однако, учитывая, что анализ устойчивости состояний равновесия механизма будем выполнять на основе теоремы Ляпунова по линеаризованному уравнению [3] в соответствии со структурой уравнений Лагранжа второго рода, члены, содержащие частные производные, выпадут из уравнений движения, поэтому инерционные коэффициенты можно представить в таком виде  [c.15]

Трение в механизмах систем. Трение покоя (при трогании с места) и трение движения определяют нечувствительность системы, снижают ее к. п. д. и увеличивают тепловыделение. Падение величины силы трения (так называемое отрицательное возрастание) при движении вызывает заброс и перерегулирования системы, сопровождающиеся потерей ее устойчивости.  [c.474]

В механизмах управления насосами переменной производительности для устранения возможности залипания золотника и повышения чувствительности гидроусилителя золотнику или золотниковой втулке сообщается осциллирующее движение высокой частоты (аксиальная осцилляция). В этом случае золотники выполняют с положительными перекрытиями, а требуемую чувствительность гидроусилителя при сохранении его устойчивости получают путем регулирования амплитуды осцилляции. Кроме того, регулирование амплитуды осцилляции позволяет существенно уменьшить влияние технологических допусков на характеристики гидроусилителя.  [c.275]

В процессе исследования удалось установить наряду с качественными показателями и некоторые количественные показатели влияния и зазоров в кинематической цепи привода на устойчивость движения системы. Зубчатый редуктор без механизма компенсации обеспечивал устойчивую работу системы при более низком граничном давлении, чем с таким механизмом.  [c.148]

Основным достоинством рассматриваемых приводов с управляемым сливом является то, что в полостях исполнительного механизма масло находится под давлением и движение механизма происходит вследствие понижения давления в одной из полостей при неизменном давлении в другой. Это обстоятельство весьма благоприятно сказывается на повышении устойчивости движения привода, что можно объяснить, не вдаваясь в детали вопроса, следующим образом.  [c.134]


Ходовая часть гусеничных кранов состоит из неповоротной рамы, опирающейся на две приводные гусеничные тележки с многоопорными гусеничными звеньями, обеспечивающими низкие (до 0,1 МПа) давления на грунт. Каждая гусеница приводится в движение собственным механизмом. При движении на разворотах одну гусеницу затормаживают или включают двигатели гусениц для движения в разные стороны. Для повышения устойчивости в направлении поперек гусениц у ряда моделей гусеничных кранов применяют раздвижные гусеничные тележки.  [c.175]

Выявление и изучение механизмов возникновения различных форм движения многофазных сред при периодических воздействиях представляет собой предмет нового направления в динамике многофазных сред (теории нелинейных колебаний и устойчивости движения многофазных сред). Основы его были установлены лишь в последнее время и наиболее полно изложены в работах [4, 5].  [c.100]

Моисеев [7] на основе рассмотрения механизмов развития живой природы сформулировал принцип минимума диссипации энергий в неживой материи Если множество устойчивых движений или состояний, удовлетворяющих законам сохранения и другим ограничениям физического характера, состоит более чем из одного элемента, т.е. они не выделяют единственного движения или состояния, то заключительный этап отбора реализуемых движений или состояний определяется минимумом диссипации энергии (или минимумом роста энтропии) . Это гипотетическое утверждение Моисеев назвал принципом минимума диссипации энергии. Опытные данные подтвердили, что существует определенный класс явлений в неживой природе, для которых этот принцип является важнейшим. Применительно к живой природе этот принцип отражает стремление синергетической системы в максимальной степени использовать энергию и вещество.  [c.13]

Математическая теория устойчивости ламинарных течений в настоящее время хорошо разработана, но ее изложение потребовало бы значительного места. Принимая во внимание, что она по своему довольно сложному и, скорее, чисто математическому характеру выпадает из общего стиля настоящего курса, пришлось удовольствоваться в нем лишь качественным описанием основного механизма явлений потери устойчивости и его связи с главным для практики процессом перехода ламинарных движений в турбулентные, для объяснения которого математическая теория устойчивости пока еще мало что дает.  [c.524]

Н. Е. Жуковский сделал ряд выдающихся открытий в различных отделах механики. Он разработал методы изучения движения тел с полостями, наполненными жидкостью, исследовал сложное явление гидравлического удара в водопроводных трубах и расширил возможности решения задач гидроаэродинамики методами струйной теории сопротивления. Важные открытия сделаны Жуковским по теории регулирования хода машин, теории механизмов и теории устойчивости движения.  [c.69]

Как уже указывалось, общее решение однородного уравнения есть сумма слагаемых, вид которых огфеделяется значениями корней характеристического уравнения. Если в этом решении какое-нибудь его слагаемое неограниченно возрастает по абсолютной величине, то возрастает ио абсолютной величине и вся сумма в целом. Принимая во внимание значения показателей степени в слагаемых (10.10) и (10.11), получаем, что присутствия одного положительного вещественного корня или одной пары сопряженных комплексных корней с положительной вещественной частью а/ >0 оказывается достаточным, чтобы значения ус. неограниченно возрастали. Следовательно, для асимптотической устойчивости движения звеньев механизма необходимо и достаточно, чтобы все корни характеристического уравнения имели отрицательную вещественную часть.  [c.86]

Н.Н, Моисеевым [19] с учетом механизма развития живой природы сформулирова г принцип минимума диссипации энергии в живой материи. Он гласит если множество устойчивых движений, или состояний, удовлетворяющих законам сохранения и другим ограничениям физического характера, состоит бо.чее чем из одного элемента, т.е. они не выде.пяют единственного движения или состояния, то заключительный этап отбора реализуемых движений или состояний определяется минимумом диссипации энергии (или минимума роста энтропии).  [c.28]

Теоретическая механика является научной базой теории механизмов и машин, сопротивления материалов, теории упругости и пластических деформаций, гидравлики, гидромеханики и газовой динамики с их многочисленными приложениями в машиностроении, авиации, кораблестроении и других областях техники. Вместе с тем на базе теоретической механики продолжают успешно развиваться вопросы устойчивости движения механических систем, теории колебаний и теории гироскопа. Эти дисциплины также тесно сязаны с теорией автоматического регулирования машин и производственных процессов. Астрономия, внешняя баллистика и физика своим современным состоянием также во многом обязаны теоретической механике.  [c.11]

Значительный вклад в развитие теоретической механики был сделан отечественными учеными. Назовем здесь М. В Остроградского (1801—1862, работы в области аналитической механики) и П. Л. Чебышева Ц821—1894, работы в области теории механизмов и машин), С. В. Ковалевскую (1850— 1891), решившую задачу для сложного случая движения твердого тела около неподвижной точки. Наибол1.ший вклад в теоретическую механику за последующий период был сделан А. М Ляпуновым (IS. j —1918), особенно его трудами по созданию теории устойчивости движения механических систем, Н. Е. Жуковским (1847—1921), основополон ником современной аэродинамики, а также И. В Мещерским (18.59—193. )), давшим решение задачи о движении точки переменной массы, С А. Чаплыгиным (1869—1942), А. Н. Крыловым (1863—1945), Н. Г Четаевым (1902—1959) и др.  [c.16]

Условие устойчивости движений. Предположим, что под действием внешних сил звенья механизма совершают некоторое движение, которое будем называть невозмущенным. Значения обобщенных координат механизма, найденные решением уравнений движения для невозмущенного движения, обозначим через уг(П. где г=1.... 5. Если в некоторый момент времени происходит внезап-  [c.85]

Установление геометрокинематических параметров механизма дает возможность перейти к следующей стадии решения задачи синтеза механизмов — динамическому синтезу, при котором движение механизма рассматривается под действием сил, заданных и возникающих в процессе движения механизмов и машин. В этой стадии завершается определение размеров звеньев, их масс и моментов инерции, решаются задачи уравновешивания сил инерции, регулирования плавности хода, уровней колебаний, демпфирования колебаний и снижения уровней шумов, обеспечения устойчивости движения и др.  [c.75]

Что касается самих сил инерции, то Понселе указал на необходимость их учета во время движения машины. В середине XIX века Луи Лешателье и астроном Ивон Вильярсо разработали вопрос об учете сил инерции. Первый из этих ученых дал элементарную теорию сил инерции в форме, достаточной для технических применений, и сам воспользовался ею при расчете устойчивости локомотивов в движении. Вильярсо, работая в том же направлении, определил силы инерции механизма паровой машины локомотива.  [c.32]


В сборнике представлены работы, посвященные пшрокому кругу проблем динамики механизмов и агрегатов, применяемых в конструкциях современных машин. Исследуются вопросы динамики неустановивхпихся процессов в машинных агрегатах, динамика механизмов с неголономными связями, вопросы устойчивости движения машин, их уравновешивания, оптимизации их параметров.  [c.2]

Наличие предвключенного необогреваемого участка повышает устойчивость потока. При этом теоретическое решение показало, что предвключенный участок является более эффективным, чем эквивалентное ему по сопротивлению дросселирование на входе, при прочих равных условиях. Эффект заключается в более медленном развитии амплитуды пульсаций потока при уменьшении массового расхода ниже граничного. Такое влияние предвключенного необогреваемого участка мон ет быть объяснено при рассмотрении уравнения количества движения в форме (3) и механизма зарождений пульсаций. Действительно, если длина предвключенного участка составляет суш ественную часть от длины трубы, то при значительной величине правой части уравнения (3) из-за большой величины скорость изменения расхода может быть невелика и это тормозит увеличение амплитуды пульсаций потока.  [c.61]

Снижение сопротивления движению [2, 3, 7 . В состав некоторых приборов, испытательных машин, исполнительных механизмов систем автоматики включают устройства для вибрационного снижения или линеаризации сопротивления рабочим движениям в подвижных соединениях с сухим (кулоновым) трением. Известно явление снижения кулонова трения путем нал9жения дополнительного движения (монотонного, колебательного или циркуляционного). В качестве примеров вредных последствий этого явления можно назвать занос автомобилей при резком торможении на значительной скорости, самоотвинчивание резьбовых соединений и утрату самотормозящих свойств червячными передачами под действием вибрации, нарушение устойчивости насыпных плотин при землетрясении.  [c.457]

Гидроцилиндры [3] бывают одностороннего и двустороннего действия. По конструкции гидроцилиндры одностороннего действия делятся на поршневые (рис. 11.2.8, й ), плунжерные (рнс. И.2.8, б) и телескопические (рис. П.2.8, е), а гидроцилиндры двустороннего действия — на поршневые с односторонним (рис. П.2.8, г) и Двусторонним (рис. П.2.8, д) штоком, поршневые двухкамерные (рнс. И.2.8, е) и ступенчатые (рис. II.2.8, ж). Разнообразие типов гидроцилиндров обусловлено их конструктивной гибкостью, что позволяет получить требуемое качество с максимальным эффектом. В частности, когда требуется обеспечить большой ход механизма при стесненных габаритных размерах по длине, применяют телескопический гидроцилиндр. Когда стеснены габаритные размеры оо диаметру, а требуется реализовать на штоке большие усилия, прим еНяют сдвоенные гидроцилиндры. При больших ходах гидроцилиндров особое внимание уделяется обеспечению устойчивости его выдвижной части. В этом случае эффективен плунжерный гидроцилиндр, так как трубчатая конструкция плунжера, имеющего большой наружный диаметр, обладает большим радиусом инерции. Гидроцилиндр с двусторонним штоком при движении в обе стороны имеет одинаковую скорость и т. п. При выработке технических требований на гидро-цилиндры регламентируются его основные параметры диаметр поршня >п, диаметр штока шт или параметр г] = dmJDa, ход поршня или плунжера, теоретическое усилие на штоке Т, номинальное давление р, вид крепления и материал основных деталей и уплотняющих устройств, например так, как в табл. П.2 10 В общем случае при конструировании гидроцилиндров по усло-1ВИЯМ компоновки находят присоединительные, и габаритные размеры по условиям внешней нагрузки определяют расчетное усилие, действующее вдоль продольной оси штока выбирают диаметр Dri гидроцнлиндра (поршня) по условию преодоления внешней нагрузки с учетом ограничений на геометрические размеры  [c.310]

В общем случае неустойчивость осесимметричных волн может быть вызвана двумя причинами. Поверхность оболочки может иметь отклонения от идеальной круговой цилиндрической формы кроме того, нелинейности могут привести к взаимодействию форм волнового движения. В данном исследовании, чтобы выявить новый механизм параметрического возбуждения кеоеесимметричных форм, рассмотрен лишь случай идеальной цилиндрической оболочки. Показано, что при достижении амплитудой осесимметричной волны некоторого предельного значения, которое обсуждается и иллюстрируется в работе, неосесимметричная форма становится неустойчивой. Анализ позволил также найти фазовые скорости осесимметричной и неосесимметричной волн для случаев, когда эти формы движения устойчивы.  [c.64]


Смотреть страницы где упоминается термин Устойчивость движений в механизмах : [c.347]    [c.160]    [c.13]    [c.101]    [c.181]    [c.117]   
Смотреть главы в:

Теория механизмов и машин  -> Устойчивость движений в механизмах



ПОИСК



Аршанский. Устойчивость движения механизмов подач, приводимых силовыми шаговыми электродвигателями

Движение устойчивое

Движения механизмов

Устойчивость движения

Устойчивость движения виброударных механизмов



© 2025 Mash-xxl.info Реклама на сайте