Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критерий устойчивости САР частотный

Цель анализа динамики машин и станков — оценка их устойчивости и качества. При расчете линейных систем на устойчивость наибольшее распространение получили алгебраический критерий Гурвица, частотные критерии по годографу Найквиста и по логарифмическим частотным характеристикам (ЛЧХ). Частотные критерии используются для оценки устойчивости по частотной передаточной функции разомкнутой системы и (1со) (со — круговая частота, I — мнимая единица)  [c.55]


Критерии устойчивости подразделяют на алгебраические и частотные. К алгебраическим принадлежат критерий Рауса (1875) и критерий Гурвица (1895). Оба критерия основаны на рассмотрении числовых значений коэффициентов характеристик ческого уравнения, которое принято записывать в следующем виде  [c.183]

Частотные критерии устойчивости Найквиста и Михайлова.  [c.185]

К частотным критериям устойчивости принадлежат критерии Найквиста (1932) и Михайлова (1938). Оба критерия используются преимущественно при исследовании систем автоматического регулирования, так как позволяют учесть влияние обратных связей на устойчивость регулирования. Однако и при исследовании устойчивости движений в механизмах они могут быть полезны, в особенности в тех случаях, когда требуется установить, в каких пределах можно изменять тот или иной параметр механизма.  [c.185]

В 30-х годах современная теория автоматического регулирования только зарождалась. В наследство от классической теории регулирования хода машин, основы которой были заложены Вышнеградским и Стодолой, был получен критерий устойчивости Раута — Гурвица для определения устойчивости линейных систем, кривые Вышнеградского, пригодные для выбора параметров линейных систем 3-го порядка и некоторые другие результаты. Потребности развития новой техники и автоматизации технологических процессов настоятельно требовали введения более сложных и качественных систем автоматического регулирования. Для выполнения этих задач требовались новые эффективные методы расчета автоматических регуляторов. Результаты, полученные в классической теории регулирования хода машин, постепенно были распространены на регулирование электрических параметров, тепловых процессов и т. д. К концу 30-х годов в теории регулирования наметился серьезный сдвиг, связанный с введением частотных представлений. Повышение быстродействия и увеличение точности производственных процессов требовали от автоматических регуляторов не только устойчивости, но и высокого качества регулирования. Таким образом, в 30-е годы расширяется понятие о регулировании машин, постепенно осуществляется переход к регулированию технологических процессов и выдвигаются новые задачи теории регулирования исследование качества регулирования, синтез регуляторов и т. д. [48].  [c.237]


На основе работ, выполненных в 1936 г. в ВЭИ, в 1938—1939 гг. были опубликованы исследования А. В. Михайлова, который предложил использовать в теории регулирования частотные методы, ранее применявшиеся в радиотехнике, и сформулировал новый критерий устойчивости линейных систем автоматического регулирования. В 1939 г. в ВЭИ В. В. Солодовников применил преобразование Лапласа для решения задач теории регулирования и провел анализ устойчивости системы регулирования с распределенными параметрами.  [c.238]

Основными условиями применимости преобразования Лапласа является равенство х (t) = О при < О, а также условия ограниченного роста функции. Пользуясь преобразованием Лапласа, можно исследовать уравнения динамики линейных САУ станков при различных параметрах их элементов. Для оценки устойчивости САУ используют частотные критерии Найквиста и Михайлова. Если требуется определить лишь область изменения параметров из условия устойчивости, обычно используют алгебраический критерий устойчивости Рауса-Гурвица. При использовании этих критериев, а также критериев устойчивости по логарифмическим частотным характеристикам, определяют передаточную функцию САУ станка  [c.102]

Задача практически сводится к решению линейных диференциальных уравнений и-го порядка (3-го, 4-го и выше) с применением критерия устойчивости Гурвица или более нового, использующего применяемый в электротехнике метод частотных характеристик, критерия Найквиста [53, 55]. Эти критерии дают условия, при которых отдельные экспоненциальные функции, входящие в выражение для общего интеграла рассматриваемого диференциального уравнения, постепенно убывают до нуля. Тем самым процесс возвращается к устойчивому состоянию, которое определяется начальными условиями имевшегося переходного процесса.  [c.31]

Расчет устойчивости проектируемых устройств, имеющих обратные связи (замкнутые контуры), является важным и трудоемким этаном расчета. Достоинство известных алгебраических критериев устойчивости (Рауса, Гурвица) и частотных критериев (Найквиста, Михайлова и других) состоит в том, что они позво-  [c.85]

Обычно анализ устойчивости в той или иной форме выполняется путем изучения положения вектора, характеризующего полол е-ние корней характеристического уравнения в плоскости комплексного переменного. Алгебраические критерии устойчивости обеспечивают этот анализ косвенно в форме анализа знака определителя, образуемого из коэффициентов соответствующего дифференциального уравнения. Частотные критерии связаны с построением годографа вектора Михайлова А (/ш), получаемого путем подстановки = /<в в характеристическое уравнение.  [c.86]

Все вышеприведенные критерии устойчивости могут быть использованы тогда, когда известно характеристическое уравнение всей системы. Бывают случаи, когда для некоторых звеньев системы трудно составить достаточно достоверные дифференциальные уравнения, но легко собрать действующий макет отдельного звена или взять его в готовом виде и снять частотную характеристику. Тогда устойчивость замкнутой автоматической системы определяется по частотной передаточной функции разомкнутой системы при помощи критерия Найквиста.  [c.13]

С помощью частотного критерия устойчивости можно судить об устойчивости замкнутой системы по виду КЧХ этой системы в разомкнутом состоянии [48, 51) система, устойчивая или нейтральная в разомкнутом состоянии, будет устойчива в замкнутом состоянии, если ее КЧХ в разомкнутом состоянии не охватывает точку с координатами (—1 /0). Охватываемой является область, лежащая справа от КЧХ, если осуществляется движение по кривой в направлении возрастания частоты ш (рис. 6.33).  [c.450]

Рис. 13-15. К определению частотного критерия устойчивости. Рис. 13-15. К определению частотного критерия устойчивости.

Для нахождения критерия устойчивости Найквиста используется амплитудно-фазовая частотная характеристика Y (гсо) разомкнутой системы автоматического регулирования. С этой целью необходимо найти сумму  [c.511]

В соответствии с критерием устойчивости Найквиста система автоматического регулирования, устойчивая в разомкнутом состоянии, остается устойчивой и в замкнутом состоянии только в том случае, если амплитудно-фазовая частотная характеристика разомкнутой системы при характеристике первого рода протекает так, что фазовый угол всегда остается больше —я (фиг. 276, а)  [c.514]

Достаточные условия устойчивости систем с диссипацией. Структура областей неустойчивости для распределенных систем может быть весьма сложной, особенно по частотным параметрам. Если система обладает диссипацией, то практический интерес представляют достаточные условия устойчивости со слабой зависимостью от возбуждающей частоты. Примером может служить нестрогий критерий устойчивости для особого случая, основанный на использовании критических значений коэффициентов возбуждения (см. гл. VII). Этот критерий отделяет область заведомой устойчивости, проходя через носики главных областей неустойчивости. Аналитическая запись этого критерия следует из формулы (41) гл. VII  [c.256]

Принципиальная возможность возникновения неустойчивости движения, а затем в силу нелинейности и автоколебаний, в колебательной системе с одной степенью свободы при наличии запаздывания может быть сравнительно просто обнаружена применением частотного критерия устойчивости [71] если разомкнутая цепь устойчива или нейтральна, то для устойчивости соответствующей замкнутой системы необходимо и достаточно, чтобы амплитудно-фазовая частотная характеристика разомкнутой цепи не охватывала точку с координатами (-1, /0).  [c.358]

Частотный критерий устойчивости Г. Найквиста (1932 г.) ориентирован на приложения к анализу устойчивости линейных систем автоматического управления. Этот критерий позволяет сделать вывод об устойчивости замкнутой системы по виду амплитудно-фазовой характеристики разомкнутой системы. Популярен также в инженерной практике подход, основанный на использовании логарифмических частотных характеристик разомкнутой системы.  [c.468]

Известный критерий устойчивости и понятия о запасах устойчивости, используемые при анализе непрерывных СП с помощью ЛЧХ, остаются справедливыми и для ИСП, если их передаточные функции записываются в -преобразованном виде [Л. 58]. При исследовании устойчивости импульсной системы, как правило, анализируют логарифмические частотные характеристики ИСП при е=0 [Л. 77].  [c.176]

ЧАСТОТНЫЙ КРИТЕРИИ УСТОЙЧИВОСТИ  [c.756]

Критерии устойчивости делят на алгебраические и частотные. Алгебраический критерий Гурвица определяет устойчивость системы по характеристическому многочлену D (s) передаточной функции замкнутой системы  [c.72]

Из частотных критериев устойчивости наибольшее распростра нение получили критерий Найквиста и критерий устойчивости по логарифмическим частотным характеристикам, которые формулируются для передаточной функции разомкнутой системы. Замкнутая динамическая система тем более устойчива, когда она устойчива в разомкнутом состоянии.  [c.73]

Если система дифференциальных уравнений, описывающих процессы регулирования, имеет порядок выше четвертого, то составление и исследование критериев устойчивости Гурвица становится весьма затруднительным. В таких случаях целесообразнее воспользоваться частотными методами анализа устойчивости.  [c.123]

Основоположником применения частотных методов в теории регулирования и создателем одного из частотных критериев устойчивости был А. В. Михайлов [66].  [c.282]

Ниже выводится более общая формулировка частотного критерия устойчивости Охватывая критерий Михайлова и Найквиста,  [c.282]

И четвертого). При исследовании устойчивости более сложных систем критерии Рауза-Гурвица приводят к рассмотрению большого количества сложных неравенств, что делает их использование затруднительным. В связи с этим, в настоящее время при анализе устойчивости сложных систем используются частотные методы, введенные в теорию автоматического регулирования А. В. Михайловым в 1938 г. Им же предложен оригинальный и простой критерий устойчивости, получивший впоследствии его имя.  [c.321]

Устойчивость движении динамической системы (отсутствие автоколебаний, заклинивания при скольжении, "подрывания" инструмента) оценивают по известным критериям устойчивости. Частотный критерий Найквиста требует построения АФЧХ так называемой разомкнутой системы. Она образуется при размыкании одной из связей эквивалентной замкнутой одноконтурной динамической системы. Замкнутая система устойчива (в простейшем случае), если АФЧХ разомкнутой системы не охватывает точку с координатой Ке = -I на вещественной оси.  [c.74]

Применение нового математического аппарата дискретного преобразования Лапласа позволило создать теорию импульсных автоматических систем, формально подобную теории непрерывных систем, основанную на операторном методе или методе преобразования Лапласа. Это позволило ввести в теорию импульсных автоматических систем привычные понятия и представления (передаточной функции, временной и частотной характеристик, установившегося и переходного процесса и т. п.). Были установлены аналоги частотных критериев устойчивости Михайлова, Найквиста, разработаны методы построения процессов и оценки их качества на основе степени устойчивости и интегральных оценок, коэффициентов ошибок. Основные результаты теории и методов исследования импульсных систем как разомкнутых, так и замкнутых, достигнутые к 1951 г., были подытожены и изло жены в монографии Переходные и установившиеся процессы в импульсных цепях Я. 3. Цыпкина [48].  [c.249]


Теория нелинейных импульсных автоматических систем начала развиваться сравнительно недавно. Применяя идеи методов исследования абсолютной устойчивости, основанных на прямом методе А. М. Ляпунова в форме, приданной ему А. И. Лурье, и используя подход В. М. Попова, удалось найти достаточные условия абсолютной устойчивости положения равновесия нелинейных импульсных автоматических систем в виде разрешающей системы квадратных уравнений и частотных критериев устойчивости. Изучение периодических режимов в импульсных и цифровых автоматических системах исторически началось раньше установления критериев устойчивости. Вначале эти исследования основывались на привлечении идей приближенного метода гармонического баланса. Распространение метода гармонического баланса позволило разработать эффективные способы определения режимов с периодом, кратным периоду повторения в нелинейных амплитудно-импульсных и широтно-импульсных сиотемах. Этот подход весьма удобен и оправдан для определения низкочастотных периодических режимов. Для высокочастотных периодических режимов оказалось, что простая замена частотной характеристики непрерывной части на импульсную частотную характеристику позволяет не приближенно, а точно определить существование высокочастотных периодических режимов. Что же касается периодических режимов с периодом, не кратным периоду повторения, а также сложных периодических режимов, то единственная возможность их определения, которая существует в настоящее время, связана с развитием метода гармонического баланса по преобладающей гармонике. Задача исследования устойчивости периодических режимов сводится к задаче определения устойчивости в малом линейной импульсной системы с несколькими импульсными элементами [48].  [c.270]

См. статью В. Г. Елезова и В. В. Яблонского Применение частотных критериев устойчивости в задачах активной виброизоляции многорезонансных систем , помещенную в настоящем сборнике.  [c.64]

ПРИМЕНЕНИЕ ЧАСТОТНЫХ КРИТЕРИЕВ УСТОЙЧИВОСТИ В ЗАДАЧАХ АКТИВНОЙ ВИБРОИЗОЛЯЦИИ МНОГОРЕЗОНАНСНЫХ СИСТЕМ  [c.70]

Ниже будет показано, что, если собственные частоты колебаний источника и амортизируемого объекта, как систем с распределенными параметрами, удалены от основной частоты, а постоянная времени Т достаточно велика, устойчивость реального объекта определяется все же низкочастотной областью. В противном случае источник и изолируемый объект должны рассматриваться как многорезонансные системы. Их характеристики, определяемые со стороны упругого элемента (механическое сопротивление, подвижность или податливость), задаются непосредственно в функции частоты и могут быть аппроксимированы в комплексной области лишь полиномами высокого порядка. В этих условиях целесообразно применять частотные критерии устойчивости, например критерий Михайлова, Найквиста или им-митансный критерий. Однако для первых двух необходимо знать характеристическое уравнение или полную матрицу системы. Иммитансный критерий в отличие от них оперирует непосредственно с суммой сопротивлений, в том числе полученных экспериментально. Ниже этот критерий будет использован для анализа устойчивости системы (см. рис. 1) при различных параметрах эквивалентных схем источника и нагрузки.  [c.70]

В 1938—1939 гг. были опубликованы работы сотрудника Всесоюзного электротехнического института А. В. Михайлова, явившиеся началом весьма широкого применения новых, так называемых, частотных методов в теории автоматического регулирования. Идеи, заложенные в работах А. В. Михайлова и получившие всестороннюю и глубокую разработку в трудах В. В. Солодовникова, Я. 3. Цыпкина, Э. Ш. Блоха, М. А. Айзермана и многих других, положили начало новому структурному. .анализу систем автоматики и дали сравнительно простой критерий устойчивости, который с успехом был использован при решении м югих задач.  [c.23]

Для оценки устойчивости заданных движений наибольшее раэвн не в настоящее время получили частотные методы анализа, в частности, критерий устойчивости  [c.119]

Применение частотного критерия устойчивости Найквиста сводится к построе-характеристики так называемой разомкнутой системы как произведения харак-Ристик ЭУС и процесса резания. Пример такой характеристики показан на рис. 2, г. Ри охвате этой характеристикой точки —1 на вещественной оси динамическая сис- станка будет неустойчивой, т. е. возникнут нарастающие колебания (такая форма Рнтерия Найквиста достаточна для рассматриваемых условий). Ограниченные влия-Кол л или иной нелинейности, эти колебания и являются так называемыми авто-зан Таким образом оценивается граница появления автоколебаний при ре-  [c.121]

Под этим названием объединены так называемые частотные критерии устойчивости, получившие широкое распространение при анализе устойчивости систем автоматического управления. Эти критерии основаны на графоаналитическом анатшзе частотных характеристик систем и по существу представляют собой подходягцую интерпретацию принципа аргумента Коши из теории функций комплексного переменного.  [c.467]

Качество динамических систем оценивается по показателям точности, устойчивости и быстродействия. Эти показатели определяют как по временным, так и по частотным характеристикам динамических систем. Степень устойчивости характеризуется запасами устойчивости по амплитуде и фазе. При использовании критерия устойчивости Найквиста запас устойчивости по амплитуде оценивают коэффициентом передачи р, на который необходимо увеличить передаточный коэффициент динамической системы, чтобы она потеряла устойчивость. Запас устойчивости по фазе (в градусах) определяется углом Лф между отрицательной вещественной полуосью и лучом, проведенным через точку, где модуль АФЧХ равен единице.  [c.74]

Книга состоит из тридцати глав, объединенных в семь разделов, и приложения. В первом разделе приводятся основные понятия и определения теории цифровых систем, а также способы их описания с помощью г- и -преобразований, получивших широкое практическое применение. Здесь автор исследует методы преобразования непрерывных сигналов в цифровую форму и их воспроизведение с помощью экстраполяторов различных типов. Анализируются ошибки, связанные с квантованием сигналов по времени и по уровню. На основе этих представлений строятся модели цифровых систем в пространстве состояний. В конце раздела излагаются основные положения теории устойчивости. Приводимые алгебраические и частотные критерии устойчивости удобны для выполнения расчетов на ЭВМ.  [c.5]

Замкнутая система, в которой объект состоит из трех и более последовательно включенных элементов первого порядка, становится неустойчивой, если общий коэффициент усиления превосходит некоторое значение. Физическое объяснение явления неустойчивости приводится в главе, посвященной частотным характеристикам. В этой главе приводится математическое обоснование неустойчивости и выводится условие устойчивости некоторых простейших систем, устойчивых в разомкнутом состоянии. Более общие критерии устойчивости Найкви-ста и Рауса приведены в приложении.  [c.101]


Смотреть страницы где упоминается термин Критерий устойчивости САР частотный : [c.252]    [c.450]    [c.756]    [c.507]    [c.532]    [c.520]    [c.8]    [c.281]   
Теплотехнический справочник Том 2 (1976) -- [ c.756 ]



ПОИСК



Г частотная

Генкин, В. Г. Блезов, В. В. Яблонский. Применение частотных критериев устойчивости в задачах активной виброизоляции многорезонансных систем

Критерий устойчивости Михайлова САР частотный

Критерий устойчивости алгебраический, частотный

Частотные критерии абсолютной устойчивости систем с непрерывной нелинейностью

Частотный критерий устойчивост

Частотный критерий устойчивост



© 2025 Mash-xxl.info Реклама на сайте