Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные режимы движения механизмов

ОСНОВНЫЕ РЕЖИМЫ ДВИЖЕНИЯ МЕХАНИЗМОВ  [c.203]

В механизмах различают помимо относительных перемещений звеньев, допускаемых геометрическими связями, также и перемещения, допускаемые податливостью (упругостью) звеньев. В первом случае говорят о структурных степенях свободы, характеризующих основное движение звеньев. Во втором случае говорят о параметрических степенях свободы, зависящих от конструктивных (масса, жесткость) параметров механизма и режима движения (в частности, частоты возбуждения). Относительное движение звена, обусловленное параметрическими степенями свободы, суммируется с основным движением звена иногда в виде фона, характеризуемого малыми перемещениями по сравнению с абсолютными перемещениями и значительными скоростями и ускорениями. Введение параметрических степеней свободы необходимо при анализе и проектировании механизмов и ма-щин вибрационного и ударного действия, при проектировании виброзащитных устройств в случае возможности возникновения опасных колебаний, при проектировании оборудования для интенсификации и повышения эффективности технологических и транспортных операций.  [c.58]


Как показывают многочисленные эксперименты, механизм действия сил сопротивления существенно различен при разных граничных условиях и разных режимах движения жидкости. В этой главе рассмотрены основные закономерности сопротивлений, которые возникают в потоках, ограниченных твердыми стенками (внутренняя задача гидродинамики).  [c.138]

Многообразие форм течения парожидкостных смесей, необходимость учитывать динамическое воздействие потока на процесс формирования паровых пузырей и процессы взаимодействия между фазами на границе раздела создают значительные трудности при решении задачи о теплообмене в условиях направленного движения среды. Однако с точки зрения расчетной практики, из всего многообразия условий протекания процесса теплообмена при кипении в трубах и каналах произвольной формы вполне допустимо выделить пять основных режимов. В пределах каждого из выделенных режимов устанавливаются характерные для него соотношения между параметрами, определяющими доминирующее влияние того или иного механизма переноса (или совместное их влияние) на интенсивность теплообмена.  [c.229]

Книгу условно можно разделить на три части. В первой части (главы 1, 2, 3) формулируются основные задачи исследования динамики и устойчивости механизмов с упругими связями, приводятся дифференциальные уравнения динамики механизмов с упругими связями на примерах простейших динамических моделей дается представление об устойчивости периодических режимов движения вибрационных и виброударных систем, вводятся основные понятия и определения (глава 1).  [c.8]

Скоростные следящие системы, ошибки в которых зависят главным образом от ускорения вращения задающего вала, применяются для управления объектами, основным режимом работы которых является движение с постоянными скоростями и малыми ускорениями. Обладая структурной неустойчивостью, скоростные следящие системы требуют введения эффективных средств для стабилизации. В частности, в качестве стабилизирующего сигнала широко используется сигнал, пропорциональный скорости перемещения люльки насоса, получаемый от тахогенератора, встроенного в механизм управления.  [c.258]

Операции по обслуживанию основных деталей, соединений, механизмов, агрегатов, техническое состояние которых оказывает непосредственное влияние на безопасность движения подвижного состава автомобильного транспорта, должны быть отнесены к основным при установлении рациональных режимов технического обслуживания.  [c.48]


Основным фактором, влияющим на процесс торможения, является относительное открытие выхода жидкости, величина которого определяется радиальным и осевым размерами выступов золотника управления и реверсивного золотника, дросселями регулирования паузы и движения реверсивного золотника, передаточным механизмом и, наконец, чувствительностью предохранительного клапана. При определении размеров золотника следует выбирать их с таким расчетом, чтобы первоначальное открытие выхода было по возможности большим тогда противодавление получается меньшим при установившемся режиме движения стола, а относительное открытие в начале торможения резко падает в течение двух или трех фаз волнового пробега. Надо подчеркнуть, что дроссели регулирования паузы и движения реверсивного золотника влияют на процесс торможения не только на данной стороне, но, в основном, на процесс торможения на другой стороне.  [c.246]

Остановимся на некоторых вопросах расчета механизмов рулевого управления. В отличие от автомобилей, где основным режимом поворота колес является поворот на ходу, для манипуляторов характерен поворот колес на месте. Это объясняется тем, что манипулятор работает на ограниченной площадке и направление движения приходится выбирать заранее, так как для маневрирования на ходу места не хватает. Определим момент, необходимый для разворота колеса на месте. Конструкция управляемых колес обычно такова, что шины смещены относительно вертикальной оси поворота. В результате при повороте колеса происходит не только скольжение пятна контакта шины, но и ее перекатывание. Это учитывается в формуле для расчета момента разворота колеса  [c.167]

У электрических двигателей различают два основных режима работы двигательный и тормозной. Во время подъема груза и при передвижении тележки или крана двигатели работают в двигательном режиме. Работая в тормозном режиме, двигатель замедляет движение груза, тележки или крана и тем самым предотвращает возможность движения с недопустимыми скоростями. В тормозном режиме работают двигатели механизма подъема и передвижения при электрическом торможении.  [c.106]

Режим работы крана (табл. 1) в данном случае находится между легким и средним. Учитывая, что поворот крана является его основным рабочим движением, дальнейший расчет механизма производим по среднему режиму работы.  [c.213]

Турбулентное движение жидкости в трубах и каналах уже давно стало предметом многочисленных исследований, так как в больщинстве случаев жидкости движутся в условиях турбулентного режима. Несмотря на это, до сих пор еще не создано достаточно удовлетворительной теории турбулентного движения, которая непосредственно вытекала бы из основных уравнений гидродинамики и полностью подтверждалась опытом (как для случая ламинарного движения). Это объясняется сложностью структуры турбулентного потока, внутренний механизм которого до сих пор еще полностью не исследован.  [c.168]

По принципу кипения все промышленные испарители можно разделить на две основные группы. К первой, наиболее многочисленной группе относятся аппараты, в которых кипение происходит в условиях направленного движения жидкости (аппараты с естественной и принудительной циркуляцией). Ко второй группе следует отнести аппараты, кипение в которых осуществляется в условиях естественной конвекции на теплоотдающих поверхностях, погруженных в жидкость. Такой вид кипения называют кипением в большом объеме. В обоих случаях, т. е. независимо от условий протекания процесса, можно наблюдать два резко отличающихся один от другого по механизму переноса теплоты режима кипения пузырьковый и пленочный.  [c.161]

Другим примером выявления областей допустимых режимов работы изделия может служить анализ работы прецизионных поступательных пар трения (столов, суппортов, ползунов), работающих при малых скоростях. Возникающие в паре силы трения могут привести к возникновению релаксационных колебаний, при которых работа механизма будет неустойчивой. При данных характеристиках фрикционного контакта на переход в область неустойчивого трения основное влияние оказывают жесткость привода С и скорость движения v (рис. 166, б). Их предельные значения С р и Unp определяют запас устойчивости /Су > 1 по  [c.525]


Для процессов теплоотдачи режим движения рабочей жидкости имеет очень большое значение, так как им определяется механизм переноса тепла. При ламинарном режиме перенос тепла в направлении нормали к стенке в основном осуществляется путем теплопроводности. При турбулентном режиме такой способ переноса тепла сохраняется лишь в вязком подслое, а внутри турбулентного ядра перенос осуществляется путем интенсивного перемешивания частиц жидкости. В этих условиях для газов и обычных жидкостей интенсивность теплоотдачи в основном определяется термическим сопротивлением пристенного подслоя, которое по сравнению с термическим сопротивлением ядра оказывается определяющим. В этом легко убедиться, если проследить за изменением температуры жидкости в направлении нормали к стенке (рис. 2-2). Как видно, наибольшее изменение температуры происходит в пределах тонкого слоя у поверхности, через который тепло передается путем теплопроводности. Следовательно, как для ламинарного, так и для турбулентного режима течения вблизи самой поверхности применим закон Фурье  [c.34]

Основным методом снижения вибрации клапанного механизма является понижение скорости начала и конца движения клапана за счет применения специальных компенсирующих устройств, автоматически обеспечивающих неизменность тепловых зазоров при любых режимах работы двигателя, либо за счет установки на двигателе коррегированных кулачков.  [c.197]

Рассмотренные выше задачи о движении вибрационного механизма с двумя степенями свободы относятся к системам, работающим в зарезонансном режиме. Одной из особенностей такой системы является то, что сила упругости пружины мала по сравнению с силами инерции. Вследствие этого здесь можно было рассматривать движение системы без пружины как основное, а влияние упругих сил пружины рассматривать как незначительное искажение основного движения.  [c.144]

Выбор мощности двигателя (общие положения). Если исключить простейшие случаи работы двигателя при продолжительном режиме работы на постоянную или на мало меняющуюся нагрузку, то выбор мощности двигателя основывается на решении уравнений движения электропривода. Для этого решения необходимо знать номинальные данные и основные электромеханические параметры двигателя и, в частности, его маховой момент. Поэтому предварительно на основании ориентировочных подсчётов по процессу рабочей машины задаются мощностью двигателя, выбирая тот или другой тип и габарит двигателя по заводским каталогам нормальной или специализированной серии. Наметив таким образом тип двигателя, можно решать уравнение движения привода, а затем соответствующими методами, приводимыми ниже, определить действительную потребную для данного механизма мощность. Если полученная мощность совпадает с предварительно принятой, расчёт окончен, В противном случае следует проделать расчёт для нового типа, исходя из мощности, полученной расчётом.  [c.34]

Применение прибора значительно ускоряет теоретические исследования по определению оптимальных метрических параметров, удовлетворяющих требованиям траектории движения зубьев шпинделя. К основным достоинствам прибора относятся 1) ускорение процесса экспериментальных и теоретических исследований скоростных режимов вертикально-шпиндельной хлопкоуборочной машины 2) возможность получения в лабораторных условиях метрического синтеза механизмов уборочных аппаратов 3) вычисление траекторий рулетт точек зубьев шпинделя при различных скоростных режимах и определение опти.мальных значений скоростей, а также диаметров шпинделя и барабана.  [c.26]

Ручные перфораторы применяют, главным образом, для образования отверстий в различных материалах. Некоторые модели могут работать в режимах молотка и сверлильной машины. Перфораторы являются импульсно-силовыми машинами со сложным движением рабочего органа - бура, для чего в трансмиссии перфоратора имеются ударный и вращательный механизмы, иногда конструктивно совмещенные. Основными параметрами перфораторов являются энергия и частота ударов. По назначению различают перфораторы для образования неглубоких отверстий (300. .. 500 мм) в материалах с прочностью 40. .. 50 МПа и глубоких отверстий (2000. .. 4000 мм и более) в материалах практически любой прочности (200 МПа и более). По типу привода перфораторы подразделяют на машины с электрическим (электромеханическим и электромагнитным), пневматическим приводом и от двигателей внутреннего сгорания.  [c.343]

Привод исполнительных механизмов ПР должен отвечать следующим основным требованиям обеспечивать движение рабочих органов с точностью позиционирования, соответствующей целевому назначению робота обладать высоким быстродействием и возможностью работы в режиме автоматического управления и регулирования иметь минимально возможные габарит и массу, обладая при этом высокими энергетическими показателями. В настоящее время этим требованиям в наибольшей мере отвечают гидравлический и пневматический приводы [3, 10].  [c.339]

Современная гидродинамика при изучении турбулентного режима идет по иному пути и использует в основном статистический метод исследования, рассматривающий не истинные, а сглаженные — средние по времени характеристики потока. На основании всестороннего теоретического и экспериментального исследования с помощью этого метода можно не только установить основные качественные закономерности, объясняющие механизм движения, но и получить (что особенно важно для практических целей) определенную их количественную оценку.  [c.114]

Работа в горных условиях с точки зрения режимов и износа основных механизмов и агрегатов может быть отнесена к тяжелым условиям движения. Так, например, при движении по горным дорогам Кавказа и Крыма автомобилей ЗИЛ-150 и Москвич количество включений сцепления увеличивалось в 4,5—  [c.199]


Интенсивность внутрнпорового теплообмена. Одной из основных величин, определяющих испарение потока теплоносителя внутри пористых металлов, является интенсивность Ау объемного теплообмена. Выполним приближенную оценку этой величины. Из приведенного ранее физического механизма процесса следует, что основным режимом внутрнпорового теплообмена при движении двухфазного потока в нагреваемых матрицах является передача теплоты от пористого каркаса с температурой Т теплопроводностью через жидкостную микропленку к ее поверхности, имеющей температуру, равную температуре насыщения, где теплота затрачивается на испарение жидкости.  [c.85]

Саркиц пришел к следующему представлению о механизме теплообмена стенки с и севдоожиженным слоем [Л. 931] твердые частицы являются основными. источникам и тепла , поддерживающими высокий температурный градиент на границе с теплообменной поверхностью за с ет частой смены охлажденных и нагретых частиц. При ла.минарном режиме движения газа чем меньше размеры твердых частиц и выше их концентрация, тем меньше длина пу-тепло вой  [c.385]

По способу распределения потоков вторичной (механической) энергии можно разделить приводы на три основных типа фуппо-вой, индивидуальный и взаимосвязанный. Групповой привод обеспечивает движение от одного двигательного устройства группы исполнительных органов или нескольких рабочих машин через систему передаточных механизмов (трансмиссий). Ввиду сложности последних в большинстве случаев вместо группового привода применяют индивидуальный, в котором каждое рабочее движение выполняется отдельным двигательным устройством. Это объясняется преимуществом индивидуального привода с точки зрения больших возможностей по реализации оптимальных режимов движения каждого исполнительного органа независимо от остальных.  [c.538]

Структура потока при турбулентном режиме движения сложна, и в связи с этим делались попытки создать упрощенные схемы механизма турбулентного потока. По схеме, предложенной Л. Прандтлем, при турбулентном режиме движения основная часть потока состоит из турбулентного ядра, в котором наблюдаются пульсацил скорости и происходит перемешивание частиц. При турбулентном режиме движения, непосредстненно примыкая к стенке, расположен тонкий слой, движение в котором близко к ламинарному. Этот пристенный слой условно называется ламинарной пленкой. На стенке скорость движения равна нулю, а в пределах ламинарной пленки скорость увеличивается по / пнейному закону до величины дл, которая равна  [c.103]

Для того чтобы можно было оценить величину сопротивлений самоустанавливаемости звеньев конкретных механизмов, рассчитаем эти сопротивления для наиболее широко распространенных в практике конструирования кинематических пар машин с несколькими подвижностями в зависимости от соотношения скоростей основного относительного движения звеньев и скоростей их самоустанавливаемости. Приведенные ниже формулы пригодны для случаев полужидкостног о, полусухого и сухого трения. Однако во многих механизмах скорости относительного движения звеньев пар сравнительно невелики, а реакции в парах значительны и часто переменны по величине и направлению. В таких условиях элементы. даже кинематических пар с поверхностным контактом звеньев работают в режиме полужидкостного или полусухого трения. В тех же условиях работают элементы кинематических пар всех механизмов в момент пуска, когда условия самоустанавливаемости их звеньев очень тяжелые. Наконец, в настоящее время для изготовления трущихся элементов пар широко внедряют новые синтетические материалы, обеспечивающие нормальную работу механизмов при слабой смазке или вообще без лее.  [c.44]

Крайние (граничные) по концентрации формы существования дисперсных потоков — потоки газовзвеси и движущийся плотный слой. Истинная концентрация здесь меняется от величин, близких к нулю (запыленные газы), до тысяч кг/кг (гравитационный слой). Будем полагать, что простое увеличение концентрации вызывает не только количественное изменение основных характеристик потока (плотности, скорости, коэффициента теплоотдачи и др.), но — при определенных критических условиях— и качественные изменения структуры потока, механизма движения и теплопереноса. Эти представления оналичии режимных точек, аналогичных известным критическим числам Рейнольдса в однородных потоках, выдвигаются в качестве рабочей гипотезы [Л. 99], которая в определенной мере уже подтверждена экспериментально (гл. 5-9). Так, например, обнаружено, что с увеличением концентрации возникают качественные изменения в теплопереносе и что может происходить переход не только потока газовзвеси в движущийся плотный слой, но и гравитационного слоя в несвязанное состояние — неплотный слой, т. е. осаждающуюся газовзвесь. Это изменение режима гравитационного движения, связанное с падением концентрации, зачастую сопровождается резким изменением интенсивности теплоотдачи. Обнаружено существование критического числа Фруда (гл. 9), ограничивающего область движения плотного гравитационного слоя и определяющего критическую скорость, при которой достигается максимальная теплоотдача слоя.  [c.22]

Для механизмов, работающих в неустановившемся режиме, основным методом силового расчета является кинетостатическпй вне зависимости от характера движения их ведомых звеньев.  [c.19]

В области изучения износа транспортных машин имеются исследования по износу автомобилей [1 98], самолетов [38, 97], железнодорожного транспорта, судовых установок [1011 и др. Характерным для всех транспортных машин является взаимосвязь износа с динамическими параметрами машины. Нередко поломки элементов машины связаны с износом ее механизмов, так как в результате износа возрастают динамические нагрузки. Стремление к высоким скоростям и нагрузкам современных транспортных машин приводит к жестким требованиям в отношении износа основных элементов, влияющих на эти показатели и опре-деляюш,их безопасность движения. Существенно также влияние окружающей среды — запыленности и влаги воздуха, наличия агрессивных сред, возможности столкновения с препятствиями, качества дорог и покрытий аэродромов. Кроме того, из-за сильной изменчивости режимов работы, для транспортных машин характерен широкий диапазон силовых и температурных нагрузок.  [c.367]

Натяжение ремня — необходимое условие работы ременных передач. Оно осуществляется 1) вследствие упругости ремня - укорочением его при сшивке, передвижением одного вала (рис. 251, а) или с помощью нажимного ролика 2) под действием силы тяжести качающейся системы или силы пружины 3) автоматически, в результате реактивного момента, возникающего на статоре двигателя (рис. 251,6). Так как. на практике большинство передач работает с переменным режимом нагрузки, то ремни с постоянным предварительным натяжением в период недогрузок оказываются излишне натянутыми, что ведет к резкому снижению долговечнорти. С этих позиций целесообразнее применять третий способ, при котором натяжение меняется в зависимости от нагрузки и срок службы ремня наибольший. Однако автоматическое натяжение в реверсивных передачах с непараллельными осями валов применить нельзя. Для оценки ременной передачи сравним ее с зубчатой передачей как наиболее распространенной. При этом можно отметить следующие основные преимущества ременной передачи 1) плавность и бесшумность работы, обусловленные эластичностью ремня и позволяющие работать при высоких скоростях 2) предохранение механизмов от резких колебаний нагрузки вследствие упругости ремня 3) предохранение механизмов от перегрузки за счет возможного проскальзывания ремня 4) возможность передачи движения на значительное расстояние (более 15 м) при малых диаметрах шкивов 5) простота конструкции и эксплуатации. Основными недостатками ременной передачи являются 1) повышенная нагрузка на валы и их опоры, связанная с большим предварительным натяжением ремня 2) некоторое непостоянство передаточного отношения из-за наличия упругого скольжения 3) низкая долговечность ремня (в пределах от 1000 до 5000 ч) 4) невозможность выполнения малогабаритных передач. Ременные передачи применяют  [c.278]


Как было показано в гл. 5, многие задачи динамического анализа и синтеза цикловых механизмов могут быть решены на (базе моделей с медленно меняющимися параметрами. Вместе с тем встречаются случаи, когда допущения о медленности изменения параметров оказываются неправомерными. Помимо зон параметрического возбуждения, рассмотренных в гл. 6, такая ситуация может возникнуть на режимах, весьма далеких от резонансов. Например, изменение параметров механизма иногда носит в целом медленный характер за исключением незначительных зон, требующих отдельного рассмотрения. В этих случаях периодичность параметрических возмущений имеет второстепенное значение, поскольку колебания в течение одного цикла оказываются сильно задемпфированными. В то же время локальные возмущения системы в отмеченных зонах могут быть весьма значительными. Такая ситуация наблюдается в механизмах ряда станочных автоматов, механизмах раскладки нити текстильных машин и в других устройствах, когда основная технологическая операция совершается на участках равномерного движения рабочего органа, а его разгон и торможение осуществляются на малых отрезках времени, где переменный приведенный момент инерции, а следовательно, и собственная частота изменяются весьма резко. Аналогичные явления имеют место при рассмотрении динамики вариаторов и механизмов переменной структуры.  [c.296]

Большинство исследователей считает, что основными режимными параметрами, определяющими закономерности теплоотдачи, являются тепловой поток, давление, массовая скорость и паросодержание потока. Решение вопроса о влиянии любого параметра на интенсивность теплообмена при кипении в условиях вынужденного движения связано с решением более общего вопроса — вопроса о влиянии вынужденного движения и процесса парообразования на механизм теплопереноса при кипении. Работами советских и зарубежных исследователей установлено существование трех режимов теплоотдачи при движении двухфазных потоков. В первой области увеличение наросодержания и скорости циркуляции несущественно влияет на интенсивность теплообмена. Коэффициент теплоотдачи определяется величиной тепловой нагрузки и давлением кипящей жидкости. В другой области параметров коэффициент теплоотдачи определяется в основном вынужденной циркуляцией и практически не зависит от величины теплового потока. Между этими двумя режимами теплоотдачи находится переходная область, где наблюдается влияние как теплового потока, так и скорости циркуляции.  [c.98]

В манжетах с нажимной пружиной давление р можно изменять в необходимых пределах, регулируя усилие пру-жшш перед установкой манжеты. При неподвижном вале механизм уплотнительного действия этих манжет аналогичен механизму эластомерных УН. Материал кромки под действием давления Рк заполняет все поверхностные микронеровности вала, что предотвращает утечку. При вращении вала каждая точка уплотняющей поверхности кромки должна совершать радиальные перемещения для восстановления контакта с валом, сопряженные точки поверхности которого кроме основного движения по окружности совершают радиальные перемещения вследствие биений. Силы трения и адгезии увлекают участки кромки в направлении вращения. В результате этого точки уплотняющей кромки совершают сложные движения, траектории которых в режиме сохранения герметичности близки к элипсам (на рис. 5.9, а показаны результаты экспе-  [c.182]

Для того чтобы быть точнее в утверждениях об устойчивости самолета, необходимо ввести две стороны этой темы, ранее не упоминавшиеся. Во-нервых, влияние начального возмугцення в основном зависит от того, отклоняются или нет новерхности управления во время последующего движения. Очевидно, что следует предположить две крайние возможности, а именно, органы управления постоянно находятся в исходном ноложении и они полностью свободны для движения на своих петлях. Первое предположение очень близко соответствует примеру самолета с поверхностями управления, имеющими силовой привод, которые обычно необратимы в том смысле, что аэродинамические силы не могут заставить их отклониться против механизма управления. Второй ограничивающий случай — органы управления свободны — является отчасти идеализированным представлением самолета с ручным режимом управления, когда пилот позволяет самолету лететь в автоматическом режиме . Степень устойчивости этих крайних примеров может быть различной, настолько, что, очевидно, желаемые цели по устойчивости как нри постоянных, так и при свободных органах управления иногда могут быть очень трудно достижимыми.  [c.159]

Основными характеристиками мостовых кранов являются грузоподъемность, пролет, высота подъема, скорости рабочих движений всех механизмов и режим работы крана. Обычно скорости движений составляют передвижения моста 40—150 м1мин, передвижения тележки 10—50 м1мин, подъем груза до 60 м мин. В отечественном краностроении выпускаются стандартные мостовые двухбалочные крюковые краны общего назначения для легкого, среднего и тяжелого режимов работы грузоподъемностью от 5 до 250 Т по ГОСТ 3332—54 (5—50 Т), по ГОСТ 6711—70 (80—320 Т) при пролетах до 34,5 м, выбираемых по ГОСТ 534—69 Краны мостовые. Пролеты . Этот ГОСТ не распространяется на пролеты подвесных мостовых кранов. Для монтажных работ на мощных гидроэлектростанциях созданы мостовые краны грузоподъемностью до 450 Т. На базе конструкций иостовых кранов общего назначения строятся магнитные краны грузоподъемностью от 5 до 30 7 и грейферные краны от 5 до 20 Г.  [c.386]


Смотреть страницы где упоминается термин Основные режимы движения механизмов : [c.7]    [c.29]    [c.267]    [c.110]    [c.176]    [c.83]    [c.933]    [c.293]    [c.296]    [c.326]    [c.73]   
Смотреть главы в:

Теория механизмов и машин  -> Основные режимы движения механизмов



ПОИСК



Движения механизмов

Режим движения

Режимы движения механизмов



© 2025 Mash-xxl.info Реклама на сайте